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Stabilization, amalgamation and curves of intersection
of Heegaard splittings

RYAN DERBY-TALBOT

We address a special case of the Stabilization Problem for Heegaard splittings,
establishing an upper bound on the number of stabilizations required to make a
Heegaard splitting of a Haken 3–manifold isotopic to an amalgamation along an
essential surface. As a consequence we show that for any positive integer n there are
3–manifolds containing an essential torus and a Heegaard splitting such that the torus
and splitting surface must intersect in at least n simple closed curves. These give
the first examples of lower bounds on the minimum number of curves of intersection
between an essential surface and a Heegaard surface that are greater than one.
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1 Introduction

Two types of surfaces, Heegaard surfaces and incompressible surfaces (especially
essential surfaces), have been seen to be particularly useful in studying 3–manifolds.
Interestingly, these two kinds of surfaces have opposite compressibility properties: an
incompressible surface admits no compressing disks, while a Heegaard surface admits
an entire system of compressing disks on both sides of the surface. Schultens observed
a nice relationship between these two types of surfaces, defining what is known as an
amalgamation [22]. In brief, an amalgamation is a Heegaard splitting created by a kind
of generalized connected sum: if a surface F cuts a 3–manifold M into submanifolds
X and Y , then an amalgamation is a Heegaard splitting of M obtained from Heegaard
splittings of X and Y (see Section 2.3 for the precise definition). We will assume that
the surface F has nonzero genus, since the case that F is a sphere is somewhat unique
and is discussed by Haken [9].

In this paper, we investigate a special case of the Stabilization Problem for Heegaard
splittings (see Problem 2.5 and Problem 2.10), namely: Determine the number of
stabilizations required for a Heegaard splitting of a 3–manifold to be isotopic to an
amalgamation along an essential surface. Upon considering this problem, we have the
following result:
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Theorem 1.1 Let V [S W be a Heegaard splitting of a 3–manifold M such that S

intersects a mutually separating essential surface F in k simple closed curves. Then
V [S W is isotopic to an amalgamation along F after at most

k ��.F /

stabilizations.

Note that the curves of intersection between F and S need not be essential. This bound
may be slightly improved (but not stated as cleanly) by considering the number of
components of F cut along S instead of the number of curves of intersection between
the surfaces (see Corollary 3.9). As the proof of Theorem 1.1 relies on local techniques
near the surface F and does not appeal to the global topology of M , there are likely
many examples of 3–manifolds where the bound given is not best possible. Theorem
1.1 relies heavily on Theorem 3.8, which establishes conditions for when a Heegaard
splitting is recognizable as an amalgamation along an essential surface.

The assumption that F is mutually separating (see Definition 2.7) guarantees that F

has the appropriate separating properties to be able to form an amalgamation along F .
A surface that is not mutually separating can be made so by adding parallel copies of
some of its components, in which case we can apply Theorem 1.1 to this modified
surface. In Section 3.3 we discuss this issue in greater detail.

An interesting application of Theorem 1.1 is that it can be applied to 3–manifolds that
have “degeneration of Heegaard genus” to give a lower bound on the number of curves
of intersection between a minimal genus Heegaard splitting surface and an essential
surface (see Theorem 4.6). Schultens and Weidmann have given examples in [24]
where degeneration of Heegaard genus can be arbitrarily large. Combining these results
leads to the following theorem:

Theorem 1.2 For every positive integer n, there exists a 3–manifold Mn containing
an essential torus Tn and a Heegaard splitting Vn [Sn

Wn such that the minimum
number of simple closed curves of intersection between Tn and Sn is at least n.

While there have been previous results establishing upper bounds on the minimum
number of curves of intersection between a Heegaard surface and an essential surface
(see Section 4), these are the first examples giving nontrivial lower bounds on the
minimum number of curves of intersection.

This paper is organized as follows. In Section 2 we provide the background and basic
definitions concerning Heegaard splittings, stabilization and amalgamation. In Section 3
we prove Theorem 3.8 which allows us to determine when a Heegaard splitting is an
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amalgamation, and use it to prove Theorem 1.1. In Section 4 we discuss bounds on the
number curves of intersection of Heegaard splittings and essential surfaces, establish
lower bounds when a 3–manifold has degeneration of Heegaard genus (Theorem 4.6),
and finally prove Theorem 1.2.

2 Heegaard splittings

2.1 Basic definitions

In this paper, M denotes a compact, orientable 3–manifold. All surfaces in M are
assumed to be orientable and embedded.

Definition 2.1 Let S be a closed, orientable surface. A compression body V is a
3–manifold obtained from S � I by attaching 2–handles to S �f0g and capping off
any resulting 2–sphere components with 3–balls. We denote @CV D S � f1g D S ,
and @�V D @V � @CV . In the case that @�V D∅, V is called a handlebody.

Dually, V can be obtained by taking a closed orientable surface zS and attaching 1–
handles to zS�I along zS�f1g (or to a 3–ball along the boundary if V is a handlebody).
In this case @�V D zS � f0g and @CV D @V � @�V . In either case, the genus of V is
the genus of the surface @CV .

@CV

@�V

Figure 1: A genus 5 compression body (above) and a schematic for it (below)
illustrating the attachment of 1–handles to @�V � I

Definition 2.2 A spine of a compression body V is a graph � embedded in V with
@� \V D � \ @�V such that V deformation retracts onto � [ @�V .
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Figure 2: A spine of the compression body in Figure 1

Any two spines of a compression body are equivalent up to isotopy and edge slides.

Definition 2.3 A Heegaard splitting V [S W of M is a decomposition of M into
two compression bodies V and W of the same genus such that M is obtained from
V and W by identifying @CV with @CW via some homeomorphism. We denote
the surface S D @CV D @CW in M as the Heegaard surface or splitting surface of
V [S W . The genus of V [S W is the genus of S .

@M

V

S W

Figure 3: A schematic of a Heegaard splitting V [S W of M . In this figure,
V is a compression body (the same one as in Figure 1) with two components
of @�V equalling @M , and W is a handlebody. The Heegaard surface S is
given in blue.

Two Heegaard splittings V [S W and P [†Q of M are isotopic if there is an isotopy
of M taking V to P .

2.2 Stabilization

A classic result of Moise [17] implies that every 3–manifold M has a Heegaard
splitting. It follows that M admits infinitely many Heegaard splittings (up to isotopy)
via the following construction.

Definition 2.4 Let V [S W be a Heegaard splitting of M . Add a 1–handle H to
V along @CV such that its core is isotopic in M to an arc on @CV (ie the core
is unknotted). Then V 0 D V [H and W 0 DW �H are compression bodies. The
resulting Heegaard splitting V 0[S 0 W 0 of M is obtained by a stabilization of V [S W .
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W

V

H
W 0

V 0

Figure 4: A stabilization of V [S W

Note that the genus of V 0 [S 0 W 0 is one greater than the genus of V [S W . We
sometimes refer to the splitting V 0[S 0 W 0 itself as a stabilization of V [S W , or as
a stabilized Heegaard splitting. It is a fact that V 0[S 0 W 0 is stabilized if and only if
there exist essential disks D � V 0 and E �W 0 that intersect in a single point (see eg
Scharlemann [20]). Note that a stabilization of a Heegaard splitting is unique in M up
to isotopy.

It is a classic theorem of Reidemeister [18] and Singer [26] that any two Heegaard
splittings of M can be made isotopic after a sufficient number of stabilizations of
each splitting (assuming the Heegaard splittings partition @M in the same way). The
question remains, however, as to the number of stabilizations needed to achieve isotopy.
This is called the Stabilization Problem.

Problem 2.5 (The Stabilization Problem) Given two Heegaard splittings of a 3–
manifold M , determine the minimum number of stabilizations required to make the
two splittings isotopic.

Several examples are known where only one stabilization (of the larger genus splitting)
is needed to achieve isotopy (see eg Derby-Talbot [6], Hagiwara [8], Schultens [23]
and Sedgwick [25]). Recently, Bachman [2] and independently Hass, Thompson and
Thurston [10] as well as Johnson [13; 14] have shown that the necessary number of
stabilizations can be much greater than one, in fact as large as g , where g denotes the
genera of the initial Heegaard splittings.

In general, establishing upper bounds on the number of stabilizations required to make
two Heegaard splittings isotopic is a difficult problem. Rubinstein and Scharlemann
have shown that if M is non-Haken, then two Heegaard splittings of M of genus g

and g0 , respectively, with g � g0 are isotopic after at most 7gC 5g0� 9 stabilizations
of the larger genus splitting [19]. In previous work [7], the author showed that under
mild assumptions, two Heegaard splittings of genus g obtained by Dehn twisting along
a JSJ torus in M are isotopic after at most 4g� 4 stabilizations. In neither case have
these bounds been shown to be sharp. Establishing better bounds is a rich area for
future research.
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2.3 Amalgamation

Definition 2.6 A compressing disk for a properly embedded surface F in M is an
embedded disk D such that D \F D @D , and @D does not bound a disk in F . A
surface F is called incompressible if F admits no compressing disks. A surface F is
called essential if F is incompressible and no component of F is boundary parallel.

We now present a technique originally due to Schultens [22] of constructing Heegaard
splittings of M from Heegaard splittings of components of M obtained by cutting
along some surface F . Almost always this surface is taken to be incompressible.
Moreover, if (a component of) F is boundary parallel, then any Heegaard splitting
V [S W of M is a “trivial” amalgamation of itself and a “Type I” splitting of F � I

(see Scharlemann and Thompson [21]) along F , usually not considered to be an
amalgamation. In light of this observation we will henceforth take F to be essential.

Although the procedure for defining an amalgamation is straightforward, one must take
care in describing how the component Heegaard splittings are attached together so that
the resulting splitting surface remains separating in the manifold. See eg Bachman
and Derby-Talbot [3] or Lackenby [15] for descriptions of the construction in simpler
cases.

Definition 2.7 A closed, orientable surface F in a 3–manifold M is called mutually
separating if M cut along F consists of two (possibly disconnected) 3–manifolds
X and Y such that every neighborhood of each component of F intersects both X

and Y .

In essence, a surface F is mutually separating in M if we can color the components
of M cut along F alternately in black and white.

Definition 2.8 Let F be a mutually separating surface in M such that M cut along F

equals X and Y as above. Let X1; : : : ;Xm and Y1; : : : ;Yn be the components of X

and Y , respectively. For each i; 1� i �m, let V X
i [SX

i
W X

i be a Heegaard splitting
of Xi such that F \Xi � @�V X

i . Similarly for each j , 1� j � n, let V Y
j [SY

j
W Y

j

be a Heegaard splitting of Yj such that F \Yj � @�W Y
j . The surface F has a product

neighborhood N.F / such that in each Xi , N.F /\Xi �V X
i and V X

i �N.F / consists
of 1–handles and possibly a component homeomorphic to Q�I where Q is a subset of
the components of @Xi�F . Similarly, in each Yj , N.F /\Yj �W Y

j and W Y
j �N.F /

consists of 1–handles and possibly a component homeomorphic to R� I where R

is a subset of the components of @Yj � F . In each component zF � I of N.F /,
identify zF � ftg with zF � f1

2
g for t 2 I , so that the ends of any 1–handles in V X

i or
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W Y
j meeting zF � I are taken to be disjoint on zF � f1

2
g. The resulting manifold is

homeomorphic to M , and

V D

m[
iD1

�
V X

i �N.F /
�
[

n[
jD1

V Y
j

W D

n[
jD1

�
W Y

j �N.F /
�
[

m[
iD1

W X
i

are compression bodies. The resulting Heegaard splitting V [S W of M is called an
amalgamation along F . (See Figure 5.)

}
X1

F1

Y1

R

V Y
1

F2

W X
1

V X
1

W Y
1

W Y
1

V X
2

F1 � I

F3

W X
2

V Y
2

W Y
2

V X
2

Y2

X2

W

V

W

W

V

Figure 5: Forming an amalgamation along F : In this schematic the surface F

consists of three components F1 , F2 , F3 (in red), cutting the manifold into
submanifolds X1 , X2 (shaded) and Y1 , Y2 . The Heegaard surfaces SX

i and
SY

i , i D 1; 2 , are colored in blue. The surface R denotes a component of
@M contained in @�W Y

1
.

The simplest case of the above definition is when F is connected and separating. Then
an amalgamation along F is obtained from only two Heegaard splittings, one from each
of the components of M cut along F . If F is nonseparating and connected, then F is
clearly not mutually separating and so the definition of amalgamation does not make
sense. We will consider how to deal with this situation in Section 3.3. For convenience
of discussion, assume for the rest of this section that F is mutually separating.

Remark 2.9 Notice that if V [S W is an amalgamation along F , then S can be
isotoped to intersect F in F � fopen disksg, as indicated by the right hand side of
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Figure 5 (the open disks being where the 1–handles attach). The converse is also true: if
S\F DF �fopen disksg, then V [S W can be untelescoped into Heegaard splittings
of the components of M cut along F , implying that V [S W is an amalgamation
along F by definition.

2.4 The Stabilization–Amalgamation Problem

Recent work has shown that in some sense (low genus) Heegaard splittings of “generic”
3–manifolds are amalgamations (see eg Bachman [1], Bachman, Schleimer and Sedg-
wick [4], Lackenby [15], Li [16] and Souto [27]). Not every Heegaard splitting, however,
is an amalgamation of Heegaard splittings along some essential surface. For example,
so-called strongly irreducible Heegaard splittings, first defined in [5] by Casson and
Gordon, are not amalgamations. There are many examples of 3–manifolds admitting
strongly irreducible Heegaard splittings. Moreover, a Heegaard splitting may be an
amalgamation along one surface but not necessarily along another. In light of these
observations, one can ask the following special case of the Stabilization Problem:

Problem 2.10 (The Stabilization–Amalgamation Problem) Determine the minimum
number of stabilizations required to make a Heegaard splitting of M and an amalga-
mation along F isotopic.

A solution to the Stabilization–Amalgamation Problem would provide a strategy for
addressing the Stabilization Problem for Haken 3–manifolds in the following way.
Let V [S W and P [† Q be Heegaard splittings of a 3–manifold M containing an
essential surface F . Suppose that V [S W and P [† Q require s stabilizations to
become isotopic to (stabilized) amalgamations along F . Then, the stabilized splittings
V 0[S 0 W 0 and P 0[†0 Q0 are constructed from Heegaard splittings of the components of
M cut along F via amalgamation. Moreover, assuming that V 0[S 0 W 0 and P 0[†0 Q0

partition @M in the same way, then the splittings of the components of M cut along F

forming the amalgamation can also be assumed to partition the boundary components
of the components of M cut along F in the same way. If it is known that the maximum
number of stabilizations required for two Heegaard splittings of the components of M

cut along F with the given boundary partitions to become isotopic is s0 , then at most
an additional s0� 1 stabilizations are needed (since the splittings are already stabilized
at least once) for the Heegaard splittings in a given component of M cut along F to
become isotopic. After being used for this isotopy, these stabilizations can then be
passed to the next component where the process is repeated, and so on. Thus V [S W

and P [† Q are isotopic after at most sC s0� 1 stabilizations.

This strategy is utilized by the author in [6], where it is shown that s D s0 D 1 for
strongly irreducible Heegaard splittings of totally oriented graph manifolds (assuming
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that one of the splittings has genus at least as large as a minimal genus amalgamation
along the JSJ tori of M ). More specifically, if ‚ denotes the canonical system of JSJ
tori of M , then it is shown that a strongly irreducible Heegaard splitting V [S W

of M and an amalgamation along ‚, P [† Q, become isotopic after at most one
stabilization of the larger genus splitting. This is done by first isotoping the stabilized
splitting V 0[S 0 W 0 to be an amalgamation along ‚ (this relies heavily on exploiting
the underlying structure of the graph manifold). Then V 0[S 0 W 0 and P 0[†0 Q0 can
be untelescoped into Heegaard splittings of the Seifert fibered components of M . The
splittings in each component can be made isotopic by appealing to the main result of
[23] which says that any two stabilized Heegaard splittings of a Seifert fibered space
are isotopic (assuming that they have the same genus, which can be assumed to be
true in this case). The stabilization(s) of each Heegaard splitting can be passed from
Seifert fibered component to Seifert fibered component to obtain this isotopy. Thus
this procedure can be applied to two strongly irreducible Heegaard splittings to obtain
the aforementioned result.

In light of this strategy, it becomes of interest to study the Stabilization–Amalgamation
Problem for Haken 3–manifolds. This is our undertaking in the next sections.

3 Stabilization versus amalgamation

In this section we establish a relationship between Heegaard splittings that are stabi-
lizations and those that are amalgamations.

3.1 Compressing structures on surfaces

Notation 3.1 For a surface F , let g.F / denote the genus of F . If G is an n–manifold,
then let jGj denote the number of components of G . We will be primarily concerned
with the case that G is a 1– or 2–manifold.

Definition 3.2 Let F0 be a surface with boundary. An embedded arc 
 in F0 is a
compressing arc (also called an essential arc) if 
 \ @F0 D @
 and 
 does not cut off
a disk from F0 .

Note that a disk admits no compressing arcs.

Definition 3.3 Let F0 be a surface with boundary. A complete system of compressing
arcs � for F0 is a disjoint union of compressing arcs in F0 such that F0 cut along �
is a disjoint union of jF0j disks.
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Remark 3.4 Note that if F0 is disconnected such that every component has boundary,
then a complete system of compressing arcs for each component zF0 of F0 has

2g. zF0/Cj@ zF0j � 1D 1��. zF0/

components. (Note that if a component zF0 is a disk, then it admits no compressing
arcs and so the above number is zero.) Since Euler characteristic is additive, a complete
system of compressing arcs for F0 has

jF0j ��.F0/

components.

Figure 6: A complete system of compressing arcs for a three-times punctured torus

Definition 3.5 Let F0 be a surface with boundary properly embedded in a 3–manifold
M . An embedded disk D is a boundary compressing disk (or @–compressing disk)
for F0 if @D D 
 [ ı where D\F0 D @D\F0 D 
 is a compressing arc of F0 , and
D\ @M D @D\ @M D ı . In this case we say that D is based at 
 .

An embedded disk D is a weak boundary compressing disk (or weak @–compressing
disk) for F0 if @DD
[ı where 
 is a compressing arc in F0 , D\@M D@D\@M Dı ,
and D� 
 intersects F0 transversely in compressing arcs of F0 that are not parallel
in F0 to 
 (see Figure 7). As before, we say D is based at 
 .

F0




D

Figure 7: A weak boundary compressing disk D for F0 based at 
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Note that a @–compressing disk based at 
 is a weak @–compressing disk with no
additional curves of intersection with F0 (other than 
 ).

Definition 3.6 Let F0 be a surface properly embedded in a 3–manifold M , and
assume that every component of F0 has boundary. Then a union � of disjoint (weak)
@–compressing disks for F0 is a complete system of (weak) @–compressing disks for
F0 if there is a complete system � of compressing arcs for F0 such that for each
component 
 of � there is exactly one component of � based at 
 .

We now state a lemma that will be useful in the next section.

Lemma 3.7 Let F0 be an incompressible surface properly embedded in a compression
body V so that every component of F0 has boundary, and assume that @F0 � @CV .
Then F0 admits a complete system of weak @–compressing disks � in V . Moreover,
at least one of the components of � is a @–compressing disk.

Proof Let D be a complete system of compressing disks for V , so that V cut along D
is a 3–ball if V is a handlebody, or is homeomorphic to @�V �I if @�V is nonempty.
In the latter case, let � be a collection of essential simple closed curves on @�V that
cut @�V into j@�V j disks. The curves in � can be chosen so that on each component
of @�V , the curves are disjoint except for a common basepoint, such as a set of curves
that generate a basis for the fundamental group. Now � � I forms a 2–complex in V

that can be assumed to be disjoint from the disk components in D , and that consists of
vertical annuli such that in each component of @�V � I the corresponding annuli in
� � I all intersect in a single vertical arc. Moreover, � � I cuts each component of
@�V � I into 3–balls. Thus, if V is a compression body, redefine D to be the disjoint
union of the complete system of compressing disks along with the 2–complex � � I .

By a standard innermost disk, outermost arc argument, we can assume that F0 intersects
each disk component only in compressing arcs of F0 . We claim that the same can be
done for each annulus .curve/� I in � � I . First, eliminate any inessential curves
of intersection of F0 with each .curve/� I by performing a standard innermost disk
argument. Now let † be a component of � � I , thus † consists of vertical annuli in a
component of @�V �I intersecting in a common vertical arc a. Then each component
of F0\† disjoint from a is an arc with both endpoints on @CV in one of the annuli
in †, and each component of F0\† intersecting a is a 1–complex consisting of arcs
and essential loops in the vertical annuli of †.

In the latter case, assume that a component of F0\† consists only of essential loops
on the annuli of † all meeting at a common basepoint on a. Let zF0 be the component
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of F0 meeting † in this way. Then zF0 cut along zF0 \† must be a disk as F0 is
incompressible. But this implies that zF0 has no boundary components, a contradiction.
Thus each component of F0\† that intersects a must meet at least one of the annuli
in † in an arc with both endpoints on @CV . It is now straightforward to perform
an isotopy in a neighborhood of † that moves an outermost such arc off of a. Such
an isotopy also turns any essential loops in the same component of F0 \† as the
aforementioned arc into arcs on annuli in † by removing the intersection point with a.
Thus by repeating this process we can assume that F0 intersects each of the annuli of †
in arcs that have both boundary components on @CV and are disjoint from a. Finally,
we can perform a standard outermost arc argument to eliminate any arcs of intersection
that are not compressing arcs of F0 . Thus F0 intersects D only in compressing arcs
of F0 .

Since each component of V cut along D is a 3–ball and since F0 is incompressible,
the arcs in D\F0 must cut F0 into disks. Therefore there is a subset � of D\F0

such that � is a complete system of compressing arcs for F0 . Moreover, we can
choose this subset to include at least one outermost arc of D\F0 , implying the last
conclusion of the lemma. Now, given an arc 
 in � , suppose D is the component of
D containing 
 and let D
 be a disk component of D cut along 
 . If .D
 \F0/� 


contains another arc 
 0 in F0 parallel to 
 , then take an outermost such arc and rename
it as the arc 
 in � . Doing this for all the components of � yields a complete system
of weak @–compressing disks for F0 in V .

3.2 Stabilizing to amalgamation

The following theorem establishes when a Heegaard splitting is an amalgamation along
an essential surface in M . It is a generalization of Lemma 3.1 in [7] (where F was
assumed to be a torus).

Theorem 3.8 Let M be a 3–manifold such that F is an essential mutually separating
surface cutting M into X and Y . A Heegaard splitting V [S W of M is an amalga-
mation along F if and only if S is isotopic to a surface intersecting F transversely
such that F \V admits a complete system of @–compressing disks in X and F \W

admits a complete system of @–compressing disks in Y (or vice versa).

Proof By Remark 2.9, V [S W is an amalgamation along F if and only if S can be
isotoped so that S \F D F �fopen disksg. If V [S W is an amalgamation along F

isotoped to meet F in this manner, then the open disks are where the 1–handles of
the corresponding compression bodies on either side of M are attached. Thus we can
label each disk with an “X ” or a “Y ”, depending on whether or not the 1–handle
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meeting F at the disk is in X or Y . There must be at least one disk each labeled “X ”
and “Y ” since F is essential and cannot be completely contained in either V or W .

F

S

X X

X

Y

Y

Figure 8: The Heegaard surface S for an amalgamation along F isotoped to
intersect F in F �fopen disksg

Let ƒ�F be a disjoint union of simple closed curves separating F into two (possibly
disconnected) subsurfaces FX and FY , such that all the disks labeled “X ” are in
FX and all the disks labeled “Y ” are in FY . Without loss of generality, assume that
the “X ” disks are in V and the “Y ” disks are in W . Moreover assume that every
component � of ƒ is such that every neighborhood of � intersects both FX and FY

(� is “mutually separating” in F ). Then holding ƒ fixed, isotope S \FX along with
any attached 1–handles into X and S\FY with 1–handles into Y so that after isotopy
F \V D FX and F \W D FY . Given complete systems of compressing arcs �X of
FX and �Y of FY disjoint from the original open disks corresponding to the attached
1–handles, the result of pushing S \FX into X and S \FY into Y gives respective
@–compressing disks in X based at components of �X and in Y based at components
of �Y (see Figure 9). This proves the forward direction of the lemma.

FX

FY

S X

Y

Figure 9: Isotoping S into X and Y by keeping ƒ (the black curves) fixed
yields a complete system of @–compressing disks for FX in X and for FY

in Y .
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Now assume that V [S W is a Heegaard splitting such that S is isotoped to be
transverse to F , and such that F \V has a complete system �V of @–compressing
disks in X , and F \W has a complete system �W of @–compressing disks in Y .
Let D be a @–compressing disk of F \ V (contained in X ) so that @D D 
 [ ı ,
where 
 is a compressing arc of F \ V and ı � S . Let N.D/ be a neighborhood
of D such that N.D/\S D @N.D/\S is a product neighborhood of ı in S , and
N.D/\F D @N.D/\F is a product neighborhood of 
 in F \V . Isotope S “along
D”, so that N.D/\S is replaced by @N.D/� .N.D/\S/ (this operation is known
as a boundary compression along D ). Doing this isotopy for every component of �V

in X and �W in Y (note that the @–compressing disks are all disjoint by assumption),
along with further isotopy of S onto F near S \F , shows that S can be isotoped to

D

ı


 


Figure 10: Isotoping S along D and then near S \F so that S intersects
F in F �fopen disksg . On the right is the corresponding intersection set on
F of S \F near 
 for each step.

intersect F in F �fopen disksg (see Figure 10). Hence V [S W is an amalgamation
along F .

Theorem 3.8 yields an answer to the Stabilization–Amalgamation Problem (Problem
2.10) based on a purely local construction near F .

Corollary 3.9 A Heegaard splitting V [S W is isotopic to an amalgamation along F

after at most
jF \V jC jF \W j ��.F /� 1

stabilizations.
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Proof Suppose that S is isotoped to intersect F transversely. We want to apply
Theorem 3.8 to some stabilization V 0[S 0 W 0 of V [S W , which means we want to
stabilize V [S W to obtain complete systems of boundary compressing disks for F\V 0

and F \W 0 in X and Y , respectively (or vice versa). By Lemma 3.7, there exist
complete systems of weak @–compressing disks �V and �W for F \V and F \W ,
respectively. Let �V and �W be the complete systems of compressing arcs of F \V

and F \W , respectively, corresponding to �V and �W . By the last conclusion of
Lemma 3.7, there must be some component of �V or �W for which the corresponding
weak @–compressing disk based at that component is actually a @–compressing disk in
X or Y . Without loss of generality, assume that this @–compressing disk is in X and
is based at a component of �V (note that we cannot also use the lemma to obtain a
boundary compressing disk based at a component of �W in this way, since it may not
necessarily be in Y ).

For each remaining component 
 of �V [�W , form V 0[S 0 W 0 by adding a 1–handle
to W if 
 is in �V and to V if 
 is in �W , so that 
 is its core. Each added 1–handle
is clearly a stabilization, since its cocore and the weak boundary compressing disk
component of �V or �W based at 
 intersect in a single point.

Now, isotope the 1–handles added to V slightly into Y and the 1–handles added to
W slightly into X . This immediately gives a complete system of @–compressing disks
for F \V 0 in X and also for F \W 0 in Y (see Figure 11). Thus Theorem 3.8 applies

S 0

F



Figure 11: Isotoping a stabilization (in green) into X or Y yields a boundary
compressing disk based at 
 .

to show that the stabilized splitting is an amalgamation along F . By Remark 3.4, the
number of stabilizations used is jF \V jC jF \W j ��.F /� 1.

The bound in Corollary 3.9 can be weakened slightly to give a bound in terms of the
number of components of S \F instead of the number of components of F cut along
S \F via the following lemma.
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Lemma 3.10 Let F be a surface and let C �F be a disjoint union of k simple closed
curves. Then F cut along C has at most kC 1 components.

Proof Let c1; : : : ; ck be the components of C . Now, F cut along c1 has either one or
two components, depending on whether c1 is nonseparating or separating. Proceeding
inductively, taking F cut along c1 [ : : : [ cj�1 and cutting along cj adds a new
component if and only if cj is separating in F cut along c1 [ : : :[ cj�1 . Thus, the
extreme situation is if every component of C is separating in F (eg C consists entirely
of inessential curves, like the resulting curves of intersection with F when a Heegaard
surface is isotoped to be close to a spine), in which case F cut along C has k C 1

components.

Theorem 1.1 now follows readily.

Proof of Theorem 1.1 Lemma 3.10 implies that if V [S W is a Heegaard splitting
intersecting a mutually separating essential surface F transversely in k simple closed
curves, then jF\V jCjF\W j�1� k: The result now follows from Corollary 3.9.

The main theorem in [7] states that if F is a torus and V [S W intersects F in
2k simple closed curves essential on both surfaces, then V [S W is isotopic to an
amalgamation along F after at most k stabilizations. This theorem can be seen to be
a special case of Theorem 1.1, by first applying the techniques of Lemma 4.6 in [7]
to construct an isotopy of S with a surface that intersects F in k inessential simple
closed curves.

3.3 Nonseparating surfaces and amalgamation

We conclude this section with a brief discussion of the situation where F is not assumed
to be mutually separating. We gave the example in Section 2.3 that a connected,
nonseparating surface in M is not mutually separating and thus cannot be used to form
an amalgamation using Definition 2.8. Every surface, however, can be made into a
mutually separating one.

Given a surface F in M , form the surface F 0 by adding to F parallel copies of
various components of F until F 0 becomes mutually separating. Note that for each
component zF of F for which we add a parallel copy to form F 0 , the manifold M cut
along F 0 has a component homeomorphic to zF � I . Following the language of [6],
the surface F 0 is called an amalgamatable modification of F . Theorem 1.1 can thus
be applied to a Heegaard splitting V [S W and the surface F 0 .
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Depending on how we form the surface F 0 and how the Heegaard surface S intersects
F 0 , we may actually be able to use fewer stabilizations than the numbers prescribed
by Corollary 3.9 and Theorem 1.1 to obtain the requisite boundary compressing disks
used in the proof of the corollary. As a general statement would be technical and
cumbersome, we illustrate this idea by considering the special case mentioned before,
that F is connected and nonseparating.

Theorem 3.11 Let M be a 3–manifold containing a connected nonseparating sur-
face F . Assume that V [S W is a Heegaard splitting such that S intersects F

in k inessential simple closed curves of intersection that bound disks in the same
compression body (achieved, for example, by isotoping S to be near a spine). Then
V [S W is isotopic to an amalgamation along two parallel copies of F after at most
kC 1��.F / stabilizations.

Note that F by itself is not mutually separating in M , hence we need to add a parallel
copy of F to make a surface F 0 to form an amalgamation. Theorem 1.1 applied to S

and F 0 would give nearly twice the bound obtained in the above theorem.

Proof The proof is similar to the proof of Corollary 3.9. Assume that F 0 is obtained
from F and a parallel copy so that in the component N homeomorphic to F � I

between F and its copy, S \N is a disjoint union of vertical annuli. By assumption,
S intersects each component of F 0 in inessential curves bounding disks in the same
compression body. Without loss of generality assume that the curves bound disks in V .
Let �W be a complete system of compressing arcs �W for F \W , and as in the
proof of Corollary 3.9 stabilize V [S W by adding 1–handles whose cores are the
arcs in �W . Pushing the 1–handles into N yields a complete system of boundary
compressing disks for both components of F 0 \W (see Figure 12). Thus Theorem
3.8 implies the stabilized splitting is an amalgamation along F 0 , and the number of
stabilizations added is kC 1��.F /.

4 Bounding curves of intersection

4.1 Upper bounds

Definition 4.1 Let S and F be surfaces in a 3–manifold M . Define the minimal
intersection number of S and F to be the minimum of jS \ F j over all possible
isotopies of S and F where S and F intersect transversely.
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N

F

Figure 12: Stabilizations (in green) of V [S W in F � I give a complete
set of boundary compressing disks for both F �fopen disksg and its parallel
copy.

In light of Theorem 1.1 it is of interest to bound above the minimal intersection number
of a Heegaard surface S and an essential surface F to address the Stabilization Problem.
There are examples where this can be done, for example Haken showed in [9] that
if M is reducible, the minimal intersection number of S with some set of essential
spheres F is bounded above by the number of components of F . Casson and Gordon
generalized this in [5] to include the case that F contains disks as well.

If F is connected and the genus of F is one, then [7] implies that the minimal
intersection number is bounded above by 4g.S/� 4, assuming that F is a JSJ torus
and S can be isotoped to intersect F in essential simple closed curves. If F has
genus greater than one, then Johannson has established upper bounds of 6g.S/� 11

after possible modification of F by annulus-compressions [11], and more generally
of �48g.S/�.F / if F is perhaps modified by Dehn twists along essential tori [12].
These last three bounds are not necessarily strict. Providing better upper bounds on the
minimal intersection number is an avenue for further research.

4.2 Lower bounds

We now consider the contrasting problem of finding lower bounds for the minimal
intersection number of a Heegaard surface S and an essential surface F . The surfaces
S and F must intersect in at least jF j simple closed curves. While there are several
examples where this is also an upper bound (such as those given by Haken), Johannson
writes in the introduction to his paper [11] that this upper bound “cannot be expected
to hold in general.” Here, using a result of Schultens and Weidmann [24], we prove
that Johannson’s speculation is indeed true.

Definition 4.2 Define the Heegaard genus of M , h.M /, to be the minimum of g.S/

where V [S W is a Heegaard splitting of M . If M is disconnected, then h.M / is
the sum of the Heegaard genera of the components of M .
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Definition 4.3 Let F be a mutually separating essential surface in M . Define the
amalgamation genus of M with respect to F , a.M;F /, to be the minimal genus of a
Heegaard splitting that is an amalgamation along F .

Note that if M has boundary, then a Heegaard splitting of M is really a Heegaard
splitting of M given some partition of the boundary components of M . In this case, we
can further restrict the definitions of h.M / and a.M;F / by requiring that the minimal
genus Heegaard splittings respect a given partition of the boundary components.

Remark 4.4 Suppose that F is a mutually separating essential surface separating
M into X and Y . Assume that M is closed and that F is connected. Then by
amalgamating minimal genus Heegaard splittings of the components of X and Y we
obtain the equation

a.M;F /D h.X /C h.Y /�g.F /:

If M is not closed or F is disconnected, then this same equation only holds if, given a
partition of @M , we take into account appropriate boundary partitions of X and Y in
defining h.X / and h.Y /. For example, the amalgamation of two “Type I” Heegaard
splittings [21] of two copies of .surface/�I along a single boundary component gives
a minimal genus splitting of .surface/�I , however the amalgamation of two “Type II”
splittings does not (here, the boundary components of .surface/� I are partitioned
into separate compression bodies in defining a.M;F /).

Note that h.M /� a.M;F / by definition. The situation where this is a strict inequality
is of special interest.

Definition 4.5 Let M be a 3–manifold containing an essential surface F such that
h.M / < a.M;F /. Then M is said to have degeneration of Heegaard genus.

See Bachman and Derby-Talbot [3] for a general discussion of the notion of degeneration
of Heegaard genus. Before proving Theorem 1.2, we establish a result about the minimal
intersection number of Heegaard surfaces and essential surfaces in 3–manifolds that
applies particularly in the case of degeneration of Heegaard genus.

Theorem 4.6 Suppose that a 3–manifold M contains an essential surface F , and
let d D a.M;F /� h.M /. Then the minimal intersection number of a minimal genus
Heegaard surface of M and the essential surface F is at least d C�.F /.

Proof Let V [S W be a minimal genus Heegaard splitting of M of genus gDh.M /,
and assume that the minimal intersection number of S and F is k . By Theorem 1.1,
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V [S W stabilizes to be an amalgamation along F after at most k��.F / stabilizations.
Hence,

a.M;F /� gC k ��.F /:

By assumption, dDa.M;F /�h.M /Da.M;F /�g , thus a.M;F /DgCd . Plugging
this into the first inequality, we obtain

gC d � gC k ��.F /;

which implies d C�.F /� k .

We now prove Theorem 1.2.

Proof of Theorem 1.2 Let n be a positive integer. By Theorem 27 in [24], there
exist 3–manifolds Xn and Yn with torus boundary (homeomorphic to a Seifert fibered
space over a disk with n exceptional fibers and a tunnel number n knot complement,
respectively) admitting minimal genus Heegaard splittings of genus n and nC 1,
respectively, such that an amalgamation of these splittings is an n–times stabilization
of a genus n Heegaard splitting Vn[Sn

Wn of Mn DXn[Yn . Thus h.Mn/� n, and
by Remark 4.4, a.Mn;Tn/ D h.Xn/C h.Yn/� 1 D 2n, where Tn D @Xn D @Yn in
Mn . Hence d D a.Mn;Tn/� h.Mn/� 2n� nD n.

Assume that Sn intersects Tn in a minimal number k of simple closed curves. By
Theorem 4.6, d � k , which implies n� k .
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