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The first cohomology of the mapping class group
with coefficients in algebraic functions
on the SL,(C) moduli space

JORGEN ELLEGAARD ANDERSEN
RASMUS VILLEMOES

Consider a compact surface of genus at least two. We prove that the first cohomology
group of the mapping class group with coefficients in the space of algebraic functions
on the SL;(C) moduli space vanishes. In the genus one case, this cohomology group
is infinite dimensional.

20J06; 57M07, 57TM60

1 Introduction

Let ¥ be a compact surface, possibly with boundary, of genus at least 2, and let
M = Mgy, (c) denote the moduli space of flat SL,(C) connections over X. Since M
may be identified with the space of SL,(C) representations of the fundamental group
of ¥ modulo conjugation, M has the structure of an affine algebraic variety. The
mapping class group I' acts on M and hence on the space O = O(M) of algebraic
functions on M, making O a module over I'. The purpose of the present paper is to
prove:

Theorem 1.1 The first cohomology group H'(T", ©) vanishes.

The proof relies crucially on the I"'—equivariant identification of O with another vector
space on which the action of I" is more transparent. Based on Goldman’s idea of using
curves in the surface to represent functions on the moduli space, Bullock, Frohman
and Kania-Bartoszynska [5] (see also Skovberg [11]) proved that O is I"'—equivariantly
isomorphic to the complex vector space spanned by the set of multicurves on X. This
allows one to decompose O into smaller I'-modules indexed by the mapping class
group orbits of multicurves.

Letting O* denote the algebraic dual of O, the above identification of O with the
complex vector space spanned by the set of multicurves, an application of Shapiro’s
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Lemma gives a description of H'(I", ©*) in terms of stabilizers of multicurves. Using
the set of multicurves as a basis also yields an inclusion map ¢: O — O*, which
induces a map on cohomology, tx: H!(I',©0) — H(I", O*). The proof of Theorem
1.1 essentially consists of two steps. The first uses the description of the target to
prove that ¢4 is the zero map; this is the contents of Proposition 6.1. The second step
consists of proving that ¢ is injective. This is done by introducing the notion of almost
invariant colorings of a G —set, and then proving that no such almost invariant colorings
exist in the case of a mapping class group orbit of a multicurve.

By a result of Goldman, the restriction map from O to continuous functions on the
SU(2) moduli space is injective. This follows from the fact that the SU(2) moduli
space is a real slice inside the SL,(C) moduli space and the fact that the latter is
irreducible. For further details, see the proof of Theorem 1.1 in Goldman [8]. See also
Charles and Marche [6] for an alternative argument for this fact. Hence we get that O
is a mapping class group invariant submodule of the continuous functions on the SU(2)
moduli space, whose first cohomology group of course vanishes by our main theorem.

This paper is organized as follows. In the next section, we describe the background
for this result. In Section 3, we describe the isomorphism of the ring of algebraic
functions with the complex vector space spanned by multicurves and how this gives a
splitting of the cohomology group into components indexed by mapping class group
orbits. Section 4 introduces the dual coefficient module, and it is described how a
standard result from group cohomology allows us to compute the cohomology with
these coefficients in terms of stabilizers of multicurves. In Section 5 we recall certain
standard facts about the mapping class group, relations between Dehn twists and their
action on multicurves. The first part of the proof of Theorem 1.1 is done in Section 6.
The notion of almost invariant colorings is introduced in Section 7, where we also
prove that a mapping class group orbit of a multicurve admits no such (nontrivial)
coloring. Combining these results, we finally prove Theorem 1.1 in Section 8.

In Section 9, we treat the case of a closed genus 1 surface. In that case, the cohomology
group H'!(T", ©) turns out to be of infinite dimension. This is the only place where we
consider g = 1; in all other sections the genus is assumed to be a least 2.

We thank the referee for valuable comments.

2 Motivation

The motivation for studying the first cohomology group of the mapping class group
with coefficients in the space of functions on the moduli space came from [1]. In
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Mapping class groups and algebraic functions 1179

that paper, the first author studied deformation quantizations, or star products, of the
Poisson algebra of smooth functions on the moduli space M of flat G —connections,
where G = SU(n). The construction uses Toeplitz operator techniques and produces a
family of star products parametrized by Teichmiiller space. One step towards turning
this family into one mapping class group invariant star product is taken by the first
author and Gammelgaard in [2], where the existence to first order of a mapping class
group equivariant formal trivialization of the so-called formal Hitchin connection is
proved. The extent to which a mapping class group invariant star product is unique is
also interesting. One result [1, Proposition 6] is that, provided the cohomology group
H' (', C*®(Mg)) vanishes, one may find a I"—invariant equivalence between any two
equivalent star products. Since it is easy to see that the only I"—invariant equivalences
are the multiples of the identity, this immediately implies that within each equivalence
class of star products, there is at most one I'—invariant star product.

Theorem 1.1 is clearly a step towards verifying the assumption above in the case of
G = SU(2), since the SU(2)—moduli space is included in the SL,(C) moduli space.

3 Splitting the coefficient module

A multicurve is the isotopy class of a finite collection of pairwise disjoint, simple closed
curves on X. Let B denote the set of multicurves on X, and let B = B(X) = CB
denote the complex vector space spanned by B. In Skovberg [11] one finds a complete
proof of the following:

Theorem 3.1 There exists a I —equivariant isomorphism v: B — O.

If D=| | ; vj 1s the disjoint union of simple closed curves y;, v(D) issimply [ | i f];], ,
where y; denotes any of the oriented versions of y;, and f);j is Goldman’s holonomy
function on the moduli space.

Theorem 3.1 allows us to split O according to the mapping class group orbits of
multicurves. More precisely, for a multicurve D, let Mp = C(I" D) denote the complex
vector space spanned by the I'—orbit through D. Then we have a decomposition as
I'—modules

(1) O=B=@ Mp
D

where the sum is over a set of representatives of the mapping class group orbits of
multicurves. Since the mapping class group is known to be finitely generated, this
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induces a corresponding decomposition of the cohomology

) H'(T.B) =P H'(T. Mp).
D

Hence it suffices to show that each summand on the right-hand side of (2) vanishes in
order to prove Theorem 1.1.

4 The dual module

It turns out to ease the computation of H!(I", Mp) if one introduces a larger module.
Let B* denote the algebraic dual of B. Using the set of multicurves as a basis, there
is a I'—equivariant inclusion B — B*. In fact, we may identify B* with the space
Map(B, C) of all formal linear combinations of multicurves. There is a decomposition
of B* similar to (1) into a direct product of I'-modules,

3) B* =[] Mp,
D

where M p =Map(I' D, C) denotes the set of all formal linear combinations of elements
of the orbit through D, and the product is over the same set of representatives as in (1).

The I'—equivariant inclusion ¢: Mp — Mp induces a long exact sequence in coho-
mology, the first part of which is

4) 0— HT, Mp)— H°(T'. Mp) — H(T, Mp/Mp)
— HY(T, Mp) — H'(T, Mp).

In [3], we computed H!(T, M p) for any multicurve D, and showed that for any
surface there exists a multicurve such that H'(I", Mp) is nonzero.

We need the description of H r, M p) given in [3], so let us recall the most important
facts. Let I'p € I' denote the stabilizer of D in ' (permutation of the components
of D are allowed). Then the I'—equivariant identification of the set I'/ I'p of left
cosets with the orbit I'D induces an isomorphism of M p = Map(I'D, C) with the
space Homyzr,, (ZI", C) of ZI'p-homomorphisms ZI"' — C.

This I'-module is also known as the coinduced module CoindII:DC, and Shapiro’s
Lemma (see Brown [4]) yields an isomorphism

5) H'(T, Mp) = H'(T, Coind. €)= H'(I'p. C)
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where C is a trivial I'p-module. Hence H (T, M p) is simply the space of homomor-
phisms from (the abelianization of) I'p to C.

Explicitly, the isomorphism (5) is given as follows: An element of H'(T, M D)
is represented by a cocycle u: I' — M D, which can also be considered as a map
u: I'xI'D — C. Restricting to the subset I'p x {D} = I'p we obtain a map
u;: 'p — C, which is easily seen to be a homomorphism. In other words, u(g)
is given by picking out the coefficient of D in u(g).

4.1 Isomorphisms of modules

If D is a multicurve, let D" denote the multicurve obtained from D by replacing
each component by n parallel copies. Clearly, there are I"'—isomorphisms Mp —
Mpn and M D — M pn. Also, if y is a simple closed curve parallel toa boundary
component of X, we have I"'—isomorphisms Mp — Mpy, and M D — M puy - These
observations imply that we may without loss of generality only consider multicurves
without boundary parallel components, and satisfying that the multiplicities of the
different components are relatively prime. Using nonstandard terminology, such a
multicurve will be called reduced.

5 Dehn twists and multicurves

Before starting actual computations leading to a proof of Theorem 1.1, we need to
record a few facts regarding Dehn twists, multicurves and the modules Mp, Mp.

5.1 Presentations and relations

It is well-known that the mapping class group is generated by Dehn twists. In fact,
there exists a finite set of curves such that the Dehn twists on these curves generate I".
Furthermore, one may choose these curves so that any pair of them intersect in at most
two points (see Gervais [7]); if ¥ has at most one boundary component, the curves
may be chosen so that each pair intersect in at most one point (see Wajnryb [12]).

For later use, we mention a few relations between Dehn twists.
Lemma 5.1 Dehn twists on disjoint curves commute.

Lemma 5.2 If « and B are simple closed curves intersecting transversely in a single
point, the associated Dehn twists are braided. That is, T4 TgTe = TaTaTg.
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(a) A two-holed torus (b) A more schematic picture.

The opposite sides of the square
are identified in the usual way
to obtain a torus.

Figure 1: The chain relation

Lemma 5.3 (Chain relation) Let «, B and y be simple closed curves in a two-holed
torus as in Figure 1, and let §, & denote curves parallel to the boundary components of
the torus. Then (ty rﬂry)4 = T§Te.

Lemma 5.4 When g > 2, a twist on a separating curve can be written as a product of
twists on nonseparating curves.

Corollary 5.5 The mapping class group is generated by a finite set of twists in non-
separating curves (though we may not necessarily choose this set so that each pair of
curves intersect in at most two points).

5.2 The action of twists on multicurves

There is a simple way to parametrize the set of all multicurves which was found by
Dehn. For details, we refer to Penner and Harer [9]. Essentially one cuts the surface
into pairs of pants using 3g + r — 3 simple closed curves yy, and then for each pants
curve i one records the geometric intersection number n1 (D) =i (Y, D) (whichis a
nonnegative integer) and a “twisting number” #; (D), which can be any integer. This de-
fines a (6g+2r—6)—tuple of integers (m1(D),t1(D), ..., m3g1,-3(D),1344,—3(D))
(satisfying certain conditions), and, conversely, from any such tuple satisfying these
conditions one may construct a multicurve.
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The important fact is that in this parametrization, the action of the twist in the curve yy
on a multicurve D is given by

(6) te (v D) = tx (D) £ my (D),

all other coordinates being unchanged. The formula (6) is intuitive in the sense that it
says that for each time D intersects yj essentially, the action of 7, on D adds 1 to
the twisting number of D with respect to yj . This can be used to prove a number of
important facts.

Lemma 5.6 Let y be a simple closed curve and D a multicurve. Then the following
are equivalent:

(1) The twist Ty, acts trivially on D.
(2) The twist Ty, acts trivially on each component of D.
(3) The geometric intersection number between y and D is zero.

(4) One may realize y and D disjointly.
Conversely, if t,, acts nontrivially on D, all the multicurves rJ’}D, n € Z, are distinct.

Proof All of the above assertions can be proved from (6) by letting y be part of a pants
decomposition of the surface. This is clearly possible if y is nonseparating, while if y
is separating, observe that both connected components resulting from cutting along y
must have negative Euler characteristic (otherwise y would be trivial or parallel to a
boundary component, in which case the twist on y clearly acts trivially on D). O

To find a twist acting nontrivially on a multicurve, we need only find a curve which
has positive geometric intersection number with the multicurve. This is possible if and

only if the multicurve has a component which is not parallel to a boundary component
of X.

On a surface with negative Euler characteristic, there exist complete hyperbolic metrics
of constant negative curvature. Within each free homotopy class of simple closed
curves, there is a unique geodesic representative with respect to such a metric. If a
and b are the geodesic representatives of distinct homotopy classes «, §, then ¢ and
b realizes the geometric intersection number between « and 8, ie #a Nb =i(x, B).
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6 The map to the cohomology with dual coefficients
Let D be a reduced multicurve. The purpose of the section is to prove:
Proposition 6.1 The map t: H' (T, Mp) — H' (T, Mp) is zero.

The proof uses the description of H!(T, M p) as Hom(I'p, C) given at the end of
Section 4. Let u: I' = Mp be a cocycle. Since I' is generated by Dehn twists, it is
natural to study to which extent #(ty) can contain nonzero terms on which t, acts
trivially for simple closed curves «.

Lemma 6.2 Let o be a simple closed curve on X, and let E € I'D be a multicurve
such that 1o E = E. Assume that E contains at least one component which is not a
parallel copy of «. Then the coefficient of E in u(ty) is zero.

Proof Let ¢ be a component of £ which is not parallel to «. Then since every
component of £ is disjoint from «, and since we assumed that D (and hence E)
is a reduced multicurve, ¢ is not parallel to a boundary component of the (possibly
disconnected) surface X, obtained by cutting ¥ along «. Hence we may find a curve j
disjoint from « such that 7ge # ¢ and thus 7g E # E. Then 74 and 74 commute, and
u(tqtg) = u(tte). Using the cocycle condition this becomes

u(tq) + tu(tg) = u(rg) + tpu(te),
which we may rewrite as

O (I=1p) - u(ta) = (1 - 7a) - u(zp).

Now since 7o E = E, the coefficient of £ on the right-hand side of (7) is clearly 0.
Assuming that u(7y) contains some nonzero term x £, (7) then implies that it must
also contain the term xrﬁ_lE . But since 74 and T4 commute, 7o also acts trivially on
171 E, so we may repeat the above argument with 7, ! E instead of E and conclude
that u(ty) then also contains the term xrﬂ_zE . Continuing in this way, u(t,) contains
infinitely many nonzero terms (since the multicurves ng are all distinct), which is
impossible since we assumed that u took values in Mp. O

In other words, 7, acts nontrivially on “most” of the nonzero terms occurring in u#(ty);
the possible exception is when D consists of a single component and the curve « is in
the orbit of D (eg if D and « are nonseparating curves). But this possibility is easily
ruled out.
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Proposition 6.3 Let ¢ be any simple closed curve. Then t. acts nontrivially on any
nonzero term occurring in u(t.).

Proof By the previous lemma, we only need to prove that u(7,) does not contain some
nonzero term x¢&, where ¢ is considered as a 1—component multicurve. To see this,
observe that any curve ¢ can be realized as the & occurring in the chain relation (Lemma
5.3); that is, there exists a genus 1 subsurface of ¥ with two boundary components,
one of which is ¢: If ¢ is separating, one of the connected components obtained by
cutting along ¢ has genus > 1, and we may if necessary choose & to be null-homotopic.
If ¢ is nonseparating, it is always possible to find a § such that the two curves together
bound a genus 1 subsurface.

Applying the cocycle u to the chain relation, we obtain

u((vatpty)*) = u(zs) + tsu(te).

But the left-hand side can be expanded (via the cocycle condition) to a sum of various
actions of 74, 78, T) on the values of u on these twists; since they all act trivially on &
the coefficient of & on the left-hand side is 0 by Lemma 6.2. Similarly, § acts trivially
on ¢, so also the coefficient of ¢ in u(zs) is 0, and hence the coefficient of ¢ in u(z,)
is 0. O

Proof of Proposition 6.1 Let u: ' — Mp be a cocycle. By the isomorphism (5) it suf-
fices to prove the following: For any diffeomorphism f € I'p fixing the multicurve D,
the coefficient of D in u( f) is zero.

Since u|: I'p — C is a homomorphism, we may consider any power of /. Choose
n sufficiently large so that f™ fixes each component of D and each side of each
component. Then f” may be realized as a diffeomorphism of the surface X p obtained
by cutting X along D. This implies that /" can be written as a product of Dehn twists
in curves not intersecting D. Hence, by Proposition 6.3, the coefficient of D in u(f")
is zero, and so is the coefficient of D in u(f). |

7 Almost invariant colorings

Let G be a group and X an infinite set on which G acts. We define a coloring (or
C —coloring) of X to be any map c: X — C into some set C of “colors”. We will use
the following terminology:

e A coloring c is invariant if ¢(gx) = c¢(x) foreach g € G and x € X.
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e A coloring is almost invariant if, for each g € G, the identity c¢(x) = ¢(gx)
fails for only finitely many x € X .

e Two colorings are equivalent if they assign different colors to only finitely many
elements of X; this is clearly an equivalence relation on the set of C —colorings.

e A coloring is trivial if it is equivalent to a monochromatic (constant) coloring.

We will only deal with the case where the action of G is transitive. Then clearly
the only invariant colorings are the constant ones, and hence we are only interested
in studying the question of existence of almost invariant colorings. If two colorings
are equivalent and one is almost invariant, so is the other, which explains the above
definition of a trivial coloring. If one wants to classify all almost invariant colorings,
this can clearly not be done better than up to the equivalence defined above.

A simplification of ¢ is a coloring obtained by postcomposing ¢ with some map
i: C — C’ (one “identifies” some of the colors). Clearly a simplification of an almost
invariant coloring is almost invariant. Now, if there exists an almost invariant, nontrivial
C —coloring c, there also exists an almost invariant coloring where exactly two colors
are used. To see this, partition C into Cy LI C; such that ¢! (Cr), k =0,1, are both
infinite, and define a {0, 1}—coloring by composing ¢ with the map i: C — {0, 1}
determined by z € Cj(;). Hence, if one wants to prove the nonexistence of almost
invariant, nontrivial colorings, it suffices to consider colorings where two colors are
used.

If S C G is a set of generators for G, a coloring is almost invariant if and only if for
each g € S we have c(x) = c(gx) for all but finitely many x € X . This observation
is of course particularly useful when G is finitely generated, which is the case when G
is the mapping class group. Hence both G and X are countable. Also, it is easy to see
that any almost invariant coloring of X can at most use finitely many colors: Assume
without loss of generality that ¢: X — C is surjective, and for z € C let X, = ¢~ 1(2);
then X =| |, X- is the partition of X associated to ¢. Next, choose some finite set
of generators gy, ..., gx of G. The almost invariance of the coloring implies that each
gi acts as a permutation of all but finitely many X, hence G acts as a permutation on
all but finitely many of the subsets. If the partition consists of infinitely many subsets,
this contradicts the assumption that G acts transitively on X .

Theorem 7.1 Let D be a (nonempty) multicurve on X, and let X = I'D be the
mapping class group orbit of D. There are no nontrivial almost invariant colorings
of X.
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This is essentially the last ingredient in the proof of Theorem 1.1, and the proof will
occupy the remaining part of this section. The assumption that ¥ has genus at least 2
is essential. In Section 9, it is proved that when X is a closed torus and X is the set
of all nonseparating simple closed curves, there exist almost invariant colorings using
arbitrarily many colors.

Referring to [10], we see that Theorem 7.1 can also be formulated as follows: The pair
(I, Tp) has only one end, where I'p is the stabilizer of D in I'.

7.1 Interesting pairs

We will assume that the elements of X have been colored red and blue, and then prove
that one of these colors has only been used a finite number of times. To this end, an
interesting pair is a pair (ty,, D) where ), is a Dehn twist in a curve y and D € X is
a multicurve such that 7, D # D (equivalently, i(y, D) > 0). Since 7, changes the
color of only finitely many multicurves, the multicurves 7, D all have the same color
for all sufficiently large values of n. This color is called the future of the interesting
pair (1, D), denoted fut(zy,, D). Similarly, we may consider the past pas(t,, D) of
an interesting pair; the common color of all multicurves 7,,” D for sufficiently large 7.
We will also need to consider pairs of the form (ry_ 1. D); the same definition of future
and past applies to these, and clearly fut(r;—Ll, D)= pas(t;F ! D).

Lemma 7.2 For any interesting pair (to, D), we have
(8) pas(z, !, D) = fut(tg, D) = pas(ty, D) = fut(z; ', D)

Proof It suffices to prove the middle identity. We may find a nonseparating simple
closed curve g different and disjoint from « such that (g, D) is also interesting. To
see this, let § be a component of D for which 7,6 # §, and assume that « and § are
represented by geodesics with respect to some choice of hyperbolic metric. Cutting
% along « then yields a (possibly nonconnected) surface with geodesic boundary,
in which § is a number of properly embedded hyperbolic arcs. At least one of the
connected components of the cut surface has genus at least 1, so in this component we
may find a closed geodesic 8, not parallel to a boundary component, intersecting one
of the §—arcs. In the original surface, § is still a geodesic intersecting the geodesic §;
hence 746 # 6 and (7, D) is interesting.

Next, since 74 and T4 commute, we see that tgtg’D is an Z x Z—indexed family
of distinct multicurves. By assumption, both 74 and tg change the color of finitely
many multicurves. Hence, outside some bounded region in Z x Z, moving from one
multicurve to a neighbour does not change the color, and since we can connect the
future of (ty, D) to its past using such moves, the claim follows. O
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From now on, we will only consider the future.

Lemma 7.3 Assume that @ and B are simple closed curves with i («, ) < 1, and that
D is a multicurve such that (zq, D), (tg, D) are interesting pairs. Then fut(zy, D) =
fut(zg, D).

Proof If i(«, B) = O the result follows from the proof of Lemma 7.2.

Now assume i («, 8) = 1. Then a U B is contained in a subsurface ¥’ of genus 1 with
one boundary component y. If D can not be isotoped to be contained entirely in X',
either some component of D intersects y essentially, or some component of D lives
in the complement of X’. In the former case, it is clear that (z,, D) is interesting, so
the i = 0 case implies fut(zy, D) = fut(z),, D) = fut(zg, D). In the latter case, use
the fact that the complement of X’ has genus at least 1 to find a simple closed curve
intersecting D essentially.

Otherwise, D lives entirely in X’. Let D, denote any component of D on which
Ty acts nontrivially. Then D, is a simple closed curve in a torus with one boundary
component. Since Dy is not a parallel copy of the boundary component, it must be
a nonseparating curve not parallel to «. Using (oriented versions of) o and § as a
basis for Hq(X’), the coordinates of (an oriented version of) D, must be a pair (p, )
with (p, q) # (1,0). Clearly, any other component of D is forced to be either parallel
to the boundary component of ¥’ or to Dy . The only way that 7g can act on some
component of D is then that 7g acts on Dy ; hence also (p,q) # (0,1).

Consider the schematic picture of ¥’ on Figure 2, where the boundary component is

p

E/
Y1

V2

()
N

Figure 2: A torus with one boundary component

the circle in the center and o and § are the sides of the square.
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We construct two disjoint simple closed curves y;, y» as follows: Draw two essential,
disjoint arcs in X" with the endpoints on the boundary component, and use the fact that
the complement of X’ has genus at least 1 to close them up in such a way that they
are disjoint and not homotopic to a curve contained in X’. By the above description of
Dy, (ty,, D) are both interesting pairs. Now the i = 0 case implies that

fut(zg, D) = fut(zy,, D) = fut(zy,, D) = fut(zg, D). |

The next proposition extends the above lemma to i («, 8) < 2, but its proof is rather
technical. Also, as explained in the comments following the proof, it is in fact not
needed when one is only interested in surfaces with at most one boundary component.

Proposition 7.4 Assume that « and B are simple closed curves with i («, ) = 2, and
that D is a multicurve such that (ty, D) and (tg, D) are interesting. Then fut(ty, D) =
fut(zg, D).

Proof Let N be a regular neighbourhood of o U 8. We distinguish four cases.

(1) Atleast one of o and S is nonseparating in N .
(2) Both « and B are separating in NV, but nonseparating in X.
(3) Both « and S are separating in N, but one is nonseparating in X.

(4) Both o and § are separating in X.

In case (1), assume without loss of generality that o is nonseparating. This means that
when cutting N along «, there is at least one arc b of  connecting the two sides of «.
Now construct two curves Y1, y» as follows: Make two parallel copies of » and close
them up using arcs going in opposite directions along «. Applying small isotopies in a
tubular neighbourhood of o we obtain a situation as depicted in Figure 3. We observe
that each y, intersects o in exactly one point, and also they intersect each other in
exactly one point p. Furthermore, since i («, 8) = 2, the arc b does not start and end
at the same point of «, so we have i(y,,8) =1 forn=1,2.

Now let D, be some component of D on which 7, acts nontrivially. We claim that
at least one of y; and y;, intersects D, essentially. Assume the contrary, and orient
y1 and y, oppositely along b. Choose geodesic representatives y;, y, and Dy, of
these three curves. Then y,, is disjoint from Dy, and necessarily y; and y, intersect
transversally in a single point p’. But then (y;y;), € m1(X, p’) is a representative
of the free homotopy class of (an oriented version of) o which does not intersect D,
implying that i (D, ®) = 0. This contradicts the choice of Dy .
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My
Y1 b

-
/V2

Figure 3: When « is nonseparating in N , the two sides of « are connected
by an arc of f.

So one of the pairs (ty,, D) is interesting, and by Lemma 7.3 we have
fut(zg, D) = fut(ty,, D) = fut(zg, D).
This ends case (1).

In cases (2)—(4), notice that N is necessarily a sphere with four holes, and « and
B divide N into two pairs of pants in two different ways. Denote the boundary
components of N by y;, i = 0,1,2,3, such that yq, y, are on one side of « and
0, Y3 on the other, and such that g, y; are on one side of B and y,, y3 on the other.
Schematically we have Figure 4(a).

Throughout the rest of the proof, we assume that «, 8, y;, i = 0,1,2,3, denote
geodesic representatives for their isotopy classes. Also, we let § be the geodesic
representative of some component of D on which t, acts nontrivially. If § does not
live entirely in NV, a twist in one of the boundary components acts nontrivially on &,
and since this boundary component is disjoint from « and § we are done by Lemma
7.3. Otherwise, § is a separating curve in N which is not parallel to a boundary
component. Clearly § can not be parallel to 8, since in that case D could not consist of
any component on which tg acts nontrivially. Thus § is different from both o and .

In case (2), it is not hard to see that at least one of the “opposite” pairs y;, y3 and
Y0, V2 can be connected by an arc in the complement of N . Take two parallel copies
of this arc, and close them up by arcs intersecting each other, @ and § exactly once
as in Figure 4(b) (the two connecting arcs are related by a twist in «). We may then
argue exactly as in case (1) to see that the twist in at least one of these simple closed
curves acts nontrivially on the multicurve in question.

In case (3), assume without loss of generality that 8 is separating and « is nonseparating.
This means that it is impossible to connect any of yy and y; to any of ), and y3 in the
complement of N . But then, since « is nonseparating, one may connect either yg to y;
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(a) N is asphere with four holes. (b) In case (2), two opposite
boundary components are con-
nected in the complement of N .

Yo Yo

) @)

B
(c) In case (3), two “neighbour- (d) In case (4), there exists an
ing” boundary components are essential arc in the complement
connected in the complement of N starting and ending at the
of N. same boundary component.

Figure 4: There are four different topological cases when two curves intersect
in two points.

or y; to y3 in the complement of N . Assume without loss of generality that the latter is
the case, and construct a simple closed curve y disjoint from S intersecting y», & and
y3 exactly once each by composing the arc in the complement of N with an arc in N,
as in Figure 4(c). Observe that the geodesic representative of ¢ necessarily intersects
y2, o and y3 exactly once and is disjoint from f, so this representative contains a
subarc in NV starting at y, and ending at y3. We now claim that this arc intersects &
(recall that § has been chosen to be a geodesic). Assume the contrary. Then § is a
simple closed curve in the surface obtained by cutting N along this arc, which is a pair
of pants. The “legs” are y( and y;, whereas the “waist” is composed of four segments;
two copies of the connecting arc and the remaining boundary components (cut open).
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Since § is simple, it is parallel to one of the boundary components of the pair of pants.
But § is certainly not parallel to any of the original boundary components, nor is it
parallel to the “waist”, since the latter is parallel to B. This contradiction implies that
(ty, D) is an interesting pair, and since y is disjoint from B and intersects « in a
single point, Lemma 7.3 yields the desired result,

fut(zy, D) = fut(zy,, D) = fut(zg, D).

Finally, in case (4), none of the four boundary components of N can be connected in the
complement of N . This means that at least one of the connected components of ¥ — N
must have positive genus. Assume without loss of generality that the component X
bounded by y, has positive genus. Now take some nonseparating, essential arc in X
with its endpoints on yy and compose it with some essential arc in N disjoint from
B and intersecting « in exactly two points (cf Figure 4(d)) to obtain a nonseparating
curve y in X. We claim that 7,, acts nontrivially on §, ie that the arc in N intersects
§ essentially. To see this, we argue as in case (3) above. Observe that y has geometric
intersection number 2 with o and Y. Hence, the geodesic representative of y intersects
a and yy exactly twice, so this geodesic contains a subarc in N looking as the one
depicted in Figure 4(d). We claim that this arc intersects &. If this were not the case, we
may cut N along this arc to obtain a cylinder (bounded by one of the original boundary
components and a curve coming from the cut) and a pair of pants (bounded by two of
the original boundary components and a curve from the cut), and § lives completely
in one of these. Since § is not parallel to any of the boundary components of N, we
conclude that § is parallel to the third boundary component of the pair of pants. But
this third boundary component is clearly parallel to 8, which contradicts the fact that
D does not contain any component parallel to 8. Hence (7, D) is interesting, and
since y is nonseparating and intersects « in two points, by case (3) and Lemma 7.3
we have

fut(re, D) = fut(ry, D) = fut(zg, D),

which finishes the last case. O

Now we turn to the (finite) presentation of the mapping class group given by Gervais [7],
where the generators are twists in certain curves. A key property of this presentation
is that any two curves involved intersect each other in at most two points. It should
be pointed out, however, that if one is only interested in surfaces with at most one
boundary component, a much earlier result by Wajnryb [12] yields a presentation where
each pair of curves intersect in at most one point. In this case, one does not need the
rather technical Proposition 7.4 above in the following (simply replace all references to
[7] by [12] and all occurences of “at most two points” by “at most one point”).
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Proposition 7.5 Let S denote the set of curves from [7] such that {t, | 0 € S}
generate I'. Let a, B € S be two of these curves, and let D1, D, € X be multicurves
such that (o, D1) and (tg, D5) are interesting. Then

fut(zy, D1) = fut(zg, D>).

Proof We may find a sequence of curves 11,73,...,1, €S and exponents ¢; = 1
such that, writing 7; = ff;j , Tn+ Tty D1 = D;,. Foreach 1 <i <n we may assume
that (z;, tj—; - -- T1 D7) is interesting; otherwise we may simply omit the corresponding
7; . Now using alternately the fact that n; and n;4; intersect in at most two points and
the obvious fact that fut(z,, D) = fut(t,, t, D) for any interesting pair (7, D), we
obtain a sequence of identities
fut(ty, D) = fut(zy, 1y Dy) = fut(zz, 71 Dy)
= fut(ty, 1p71 D1) = fut(zrs, 17p71 D1)

= fut(ty—1, ty—1 - 1271 D1) = fut(ty, ty—1 -+ - 1271 D1)

= fut(ty, ty - - 1271 D1) = fut(zy,, D))
which may be augmented by the identities fut(zy, D) = fut(zry, D1) and fut(z,, D,) =
fut(zg, D5) to obtain the desired result. |

Lemma 7.6 Let f €I be any ditfeomorphism, and (ty, D) an interesting pair. Then
(tr(a). /D) is also interesting and fut(zy, D) = fut(zy(y). /D).

Proof Recall that forgo f~! = Tr@)- Hence trq)(fD) = f(zaD) # fD, so
(tf(a). /D) is interesting. Also we have

Ty =T otof .
SO T}l(a)(fD) = f(zg D).
Since the different multicurves t D have the same color for all sufficiently large 7,

and since f changes the color of only finitely many multicurves, the result follows. O

Proposition 7.7 All interesting pairs (t,,, D) where y is a nonseparating curve have
the same future.

Proof Let 7, be a twist on a nonseparating curve which is part of the generating

set for I' from [7]. Then Proposition 7.5, with « = B, implies that the future is a
property of 7, alone, and not of the particular multicurve on which t, acts. If y is
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any nonseparating curve, choose a diffeomorphism of ¥ carrying y to o and apply
Lemma 7.6. O

Now we are ready to prove the nonexistence of almost invariant colorings.

Proof of Theorem 7.1 Choose a finite set «q, ..., o) of nonseparating curves such
that the twists in these curves generate I" (we do not require that these intersect
pairwise in at most two points). To be concrete, assume that the common future (cf
Proposition 7.7) of all interesting pairs (z;,, D) with y nonseparating is red. We must
then prove that only finitely many multicurves are blue. Let B C X be the set of
blue multicurves. For each blue multicurve D € B, choose a generator 7y, such
that (74, , D) is interesting (this must be possible since the action is transitive and the
Tq, generate I'). This defines amap f: B — {1,2,..., N}. We claim that for each
ke{l,...,N}, the preimage f~'(k) is finite.

To see this, for each D € f~!(k) consider the “t4, —string through D”, ie the set
(D) ={ty, D |n €Z}. Let By be the union of the blue multicurves occurring in
these strings, ie

By= |J (D)nB,

Def~1(k)

so that f~!(k) C By. There are only finitely many blue multicurves in each string by
Proposition 7.7 and Lemma 7.2. Since 74, changes the color of at least one multicurve
in each string (since the strings contain both blue and red multicurves), there can be
only finitely many strings by the almost invariance of the coloring. Hence, there are
only finitely many blue multicurves. O

8 Proof of the main theorem
Now we have all the tools we need.

Proof of Theorem 1.1 By the isomorphism (1) and the splitting (2), it suffices to
prove that each summand H'(I", Mp) vanishes. By Proposition 6.1, we need only
show that the map ¢, is injective. By the exact sequence (4), this is equivalent to
proving that H(T', Mp) — H°(T, Mp/Mp) is surjective.

Now, an invariant element of M p/Mp is represented by an element v € M D =
Map(I"'D, C) such that for each g € I" we have v —gv € Mp. Since (v—gv)(E) =
v(E)—v(g™'E) for E € T'D, we see that this must be zero for all but finitely many
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E € I'D. In other words, v must be an almost invariant C—coloring of I'D in the
above language, and since by Theorem 7.1 no nontrivial almost invariant colorings
of I'D exist, we conclude that v is almost constant, ie all but finitely many elements
of I'D is mapped to the same complex number z. But then v represents the same
clement of M p/Mp as the constant linear combination ) p.pp zE, and hence
HO(T, A?D)—>H°(I‘, ]\/JD/MD) is in fact surjective. O

9 The genus one case

When X is a closed torus, it is well-known that " 2 SL,(Z). A multicurve necessarily
consists of some number of parallel copies of the same nonseparating simple closed
curve. Hence, a reduced multicurve is simply a nonseparating simple closed curve, and
H(T', O(M)) is a countable direct sum

©) H'(T,0(M) = @ H'(T, Mp,),

neZ

where each summand is isomorphic to H (T, M), where y is some fixed nonsepa-
rating curve.

Let X =TI'y be the mapping class group orbit of . We may identify X with the set
of unoriented torus knots, ie the set P of pairs (p,q), p,q € Z and gcd(p,q) =1,
where we identify the pairs (p,q) and (—p, —q) (since the curves are not oriented).
The action of the mapping class group is then simply given by the usual action of
SL,(Z) on pairs of relatively prime integers, and the central element —/ acts trivially,
so we are really dealing with an action of PSL;(Z).

As generators for SL,(Z) we choose

0 1 0 —1
S—[_l 0} and R—[l 1].
Then S? = R?® =1 in PSL,(Z). Letting
Xi={(p.9)|p=1.9=0}

Xo={p.9)1qg>-p=0}
Xs={(p.¢)|—p=q>0}

it is easy to see that X1 U X, U X3 = X, and one also verifies that SX; = X, U X3,
RX1 =X,, RX; = X;3.
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Proposition 9.1 Any point (p,q) € X with p,q > 0, can be reached from (1, 1) by
applying a unique sequence of elements of SL,(Z) of the form S~ R¥ | where k is 1
or2.

Proof For existence, we will use induction on max(p, ¢). For max(p,q) = 1 we
have p = ¢ =1, in which case the claim is obvious (choose the empty sequence). If
max(p,q) > 1, p and ¢ are different since ged(p,gq) = 1. If p > ¢, put

»'.d)=R"'S(p.9) =R ' (—¢.p)=(p—q.9)

while if ¢ > p, put

(»'.¢')=R2S(p.q) = R *(—q.p) = (p.q— p).

In both cases, clearly 1 < p’, ¢’ and max(p’,q’) < max(p,q), so there exists y’ =
S—URkn—1... =1 Rkt with y/(1,1) = (p’.¢’). Then y = S~ Rkny’ where k, = 1
if p>¢q and k, =2 if p < q is an element of PSL,(Z) of the desired form.

To prove uniqueness, choose (p, ¢) with max(p, g) minimal such that there are two
different strings

Y= S—lenS—len_l "'S_lel
Y2 = S—lems—lRem_1 "'S_IRZ]

satisfying y;(1,1) = (p,q). Then S(p,q) is a point in X, U X3 which is obtained
by applying R to some point of X and also by applying R to some (possibly
other) point of X7. But since S(p, ¢) is an element of exactly one of X, = RX; and
X3 = R? X, this implies that k, = £,,. Continuing this way, we only need to show
that there is no nontrivial string

y = S—lens—len_l S—lel

such that y(1,1) = (1, 1). But this is trivial by observing that each element of the
form S~! R strictly increases the max—norm of any point (p, ¢) with p,q > 1 (since

S™'R(p.q)=(p+q.9) and ST'R*(p,q) = (p. p+q)). O

This proposition allows us to label the vertices of an infinite binary tree 7' as follows.
The root is labelled by (1, 1), and all remaining vertices are labelled according to the
rule: If a vertex v is reached by going “left” from the immediate predecessor, the label
of v is obtained by applying S™! R to the label of its predecessor; otherwise the label
is obtained by applying S™! R? (see Figure 5).
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NN NS
(3,4) (5,3) (2,5)

(4,1)

Figure 5: An infinite binary tree labelled by the points of X

Now add a single vertex below the root and label this by (1,0). This gives, by
Proposition 9.1, a 1-1 correspondence between the vertices of 7' and the points in
X1, and from now on we shall refer to a vertex and its label interchangeably.

By the level of a vertex of 7" we mean its distance from (1, 1) (the level of (1,0) may
be taken to be —1); there are 2k vertices at level k for each k > 0, and also exactly
2k vertices at level < k.

Proposition 9.2 For each k > 0, there is an almost invariant coloring of X using 2k
different colors.

Proof We start by coloring the subset X7 by coloring the vertices of the tree. Assign
different colors to the 2% vertices at level k, and for each of these vertices assign
the same color to all descendants. The remaining 2k points of X; may be colored
arbitrarily.

To obtain a coloring of all of X', we insist that the coloring is completely invariant
under R. This gives a well-defined coloring, since X is a complete set of represen-
tatives of the R—orbits of X'. In order to see that this coloring is almost invariant
under PSL,(Z), it suffices to check that the other generator S changes the color of
only finitely many points of X . Since S has order two in PSL,(Z), S changes the
color of p if and only if it changes the color of Sp. Hence we need only check that S
changes the color of finitely many elements of X7 . But for any vertex v of 7' of level
k 41 or higher, applying S to the label of v yields by construction a point of X, or
X3 which has the same color as the predecessor of v; hence S does not change the
color of labels placed at level k + 1 or higher, and thus S changes the color of at most
2.0k+1 points of X . O
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We are also able to give a classification of all almost invariant colorings.

Proposition 9.3 Any almost invariant coloring of X is equivalent to (a coloring which
is a simplification of) a coloring of the form constructed in Proposition 9.2.

Proof Let c: X — C be some almost invariant coloring of X. Since R changes
the color of only finitely many points of X, it changes the color of only finitely
many points x1,...,xy of X;. Now we change ¢ into an equivalent coloring ¢’ by
putting ¢/(Rx;) = ¢’(R?x;) = ¢(x;), and ¢’ = ¢ otherwise. Then ¢’ is by construction
completely invariant under R. Now since ¢’ is almost invariant, there are only finitely
many points of X; whose ¢’—color changes under S. Choose K such that the color
of any label placed at level k > K is unchanged under S'. This, together with the
R—invariance of ¢’, implies that each label at level K has the same color as any of
its descendants, and hence ¢’ is (a simplification of) a coloring using 2K different
colors. O

Theorem 9.4 The cohomology group H'(I", O(M)) is infinite-dimensional.

Proof By the isomorphism (9), it suffices to prove that H!(T, M) is nonzero.
By Proposition 9.2, the space H°(T, ]\2,, /M) is infinite-dimensional, and since
H(T, ]\2,,) >~ C is 1-dimensional, the exact sequence (4) implies that H! (T, M) is
in fact infinite-dimensional. O

It is not hard to give an explicit example of a nonzero cohomology class [u] €
H'(I', O(M)). Consider two simple closed curves a, 8 intersecting transversely
in a single point. Then 7474 corresponds to R above, and 74747, corresponds to S'.
We put

u(ta) =~ p
u(tg) = p—a,

and by expanding using the cocycle condition, one checks that u(tqTg7¢) = (1874 7p)
and u((ty ‘[ﬂ‘[a)4) = 0. This means that u extends to a well-defined cocycle u: I' —
M, . Clearly, for any element m € M, , the coefficient of o in 6m(ty) = (1 —1)m is
0, so u defines a nonzero element of H!(T, M,)).
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