Volume 9, issue 2 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Stabilization, amalgamation and curves of intersection of Heegaard splittings

Ryan Derby-Talbot

Algebraic & Geometric Topology 9 (2009) 811–832
Abstract

We address a special case of the Stabilization Problem for Heegaard splittings, establishing an upper bound on the number of stabilizations required to make a Heegaard splitting of a Haken 3–manifold isotopic to an amalgamation along an essential surface. As a consequence we show that for any positive integer n there are 3–manifolds containing an essential torus and a Heegaard splitting such that the torus and splitting surface must intersect in at least n simple closed curves. These give the first examples of lower bounds on the minimum number of curves of intersection between an essential surface and a Heegaard surface that are greater than one.

Keywords
Heegaard splitting, incompressible surface
Mathematical Subject Classification 2000
Primary: 57M99
References
Publication
Received: 22 July 2008
Revised: 21 December 2008
Accepted: 18 March 2009
Published: 26 April 2009
Authors
Ryan Derby-Talbot
Department of Mathematics
The American University in Cairo
113 Sharia Kasr El Aini
PO Box 2511
Cairo, 11511
Egypt