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Quillen’s plus construction and the D(2) problem

W H MANNAN

Given a finite connected 3—complex with cohomological dimension 2, we show it
may be constructed up to homotopy by applying the Quillen plus construction to the
Cayley complex of a finite group presentation. This reduces the D(2) problem to a
question about perfect normal subgroups.

57M20; 19D06, 57MO05

1 Introduction

Given a finite cell complex one may ask what the minimal dimension of a finite cell
complex in its homotopy type is. If n # 2 and the cell complex has cohomological
dimension n (with respect to all coefficient bundles), then the cell complex is in fact
homotopy equivalent to a finite 7—complex (a cell complex whose cells have dimension
at most 7). Although this has been known for around forty years (for n > 2 it is proved
by Wall [13] and for n = 1 it follows from Swan [12] and Stallings [11]), it is an open
question whether or not this holds when » = 2. This question is known as Wall’s D(2)
problem:

Let X be a finite 3—complex with H3(X;B) = 0 for all coefficient
bundles 8. Must X be homotopy equivalent to a finite 2—complex?

If X (as above) is not homotopy equivalent to a finite 2—complex, we say it is a
counterexample which solves the D(2) problem.

For connected X with certain fundamental groups, it has shown been shown that X
must be homotopy equivalent to a finite 2—complex (see for example Johnson [7],
Edwards [4] and Mannan [9]). However no general method has been forthcoming.

Also, whilst potential candidates for counterexamples have been constructed (see Beyl
and Waller [1] and Bridson and Tweedale [2]), no successful method has yet emerged
for verifying that they are not homotopy equivalent to finite 2—complexes.

In Section 2 we apply the Quillen plus construction to connected 2—complexes, resulting
in cohomologically 2—dimensional 3—complexes. These are therefore candidates for
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1400 W H Mannan

counterexamples which solve the D(2) problem. In Section 3 we show that in fact all
finite connected cohomologically 2—dimensional 3—complexes arise this way, up to
homotopy equivalence.

Finally, in Section 4 we use these results to reduce the D(2) problem to a question
about perfect normal subgroups. This allows us to generalize existing approaches to
the D(2) problem such as Johnson [8, Theorem I] and Harlander [6, Theorem 3.5].

Before moving on to the main argument we make a few notational points. All modules
are right modules except where a left action is explicitly stated. The basepoint of a
Cayley complex is always assumed to be its 0—cell.

If X is a connected cell complex with basepoint, we denote its universal cover by X.
Given two based loops ¥y, y» € m1(X) their product y;y, is the composition whose
initial segment is y, and final segment is y; . With this convention, we have a natural
right action of 71 (X) on the cells of X.Let G = 1 (X). We can regard the associated
chain complex of X asan algebraic complex of right modules over Z[G]. We follow [8]
in denoting this algebraic complex C«(X). Note that this differs from the convention in
other texts. Thus in particular Cx (X)) and Cix (X~ ) have the same underlying sequence
of abelian groups, but the former is a sequence of modules over Z[G] whilst the latter
is a sequence of modules over Z[m; ()? )N=27.

If Y is a subcomplex of X then C«(Y) is a sequence of right modules over 7{(Y).
Let E =m1(Y). The induced map E — G yields a left action of E on Z[G]. Thus we
have an algebraic complex C«(Y) ® g Z[G] over Z[G]. The inclusion ¥ C X induces
achain map C«(Y) ® g Z[G] —> C«(X). The complex Cx(X,Y) is defined to be the
relative chain complex associated to this chain map.

The basepoint allows us to interchange between coefficient bundles over X and right
modules over Z[G]. Thus for a right module N we have:

H"(X:N) = H"(C«(X): N)

A left module over Z[G] may be regarded as a right module over Z[G], where right
multiplication by a group element is defined to be left multiplication by its inverse.
Hence a left module M may also be regarded as a coefficient bundle and we have:

Hy(X; M) = Hy(Co(X); M),  Hp(X,Y; M) = Hy(Cs(X,Y): M)

Given a finitely generated Abelian group 4 we may regard it as a finitely generated
module over Z. Thus A ®z Q is a finite dimensional vector space over Q. The
dimension of this vector space will be denoted rkz (A).

Finally given a group G and elements g,/ € G, we follow the convention that [g, /]
denotes the element ghg~'h~!.
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2 The plus construction applied to a Cayley complex

Let e = (g1,...,8n| R1,..., Ryy) be a finite presentation for a group £ . We say a
normal subgroup of E is finitely closed when it is the normal closure in E of a finitely
generated subgroup. Let K <1 E be finitely closed and perfect (so K =[K, K]). Let
K¢ denote the Cayley complex associated to €.

Theorem 2.1 (Quillen; see Rosenberg [10, Theorem 5.2.2]) There is a 3—complex
K}, containing KC; as a subcomplex, such that the inclusion K¢ < K7 induces the
quotient map E — E /K on fundamental groups and Hy (K}, Kg; M) = 0 for all
left modules M over Z[E/K]. Further, given another such 3—complex X, there
is a homotopy equivalence K} — X extending the identity map of the common
subspace ;.

In fact we may construct K explicitly, using the fact that K is finitely closed to
ensure that we end up with a finite cell complex. Let kq,...,k, € K generate a
subgroup of E whose normal closure (in E)is K. As K =[K, K], each k; may be
expressed as a product of commutators k; = H;.";l[ai i, bij] with each a;;,b;j € K.
Then each a;;, b;; may be represented by words A4;;, B;j inthe g;, / =1,...,n. For
each i =1,...,r attach a 2—cell E; to K, whose boundary corresponds to the word
H;";l[A,- i, Bij]. Denote the resulting chain complex K.

The chain complex Cyx(K;) may be written:

CulKe): C2(Ke) 2 C1(Ke) 2 Colie)

The boundary map 0, applied to a 2—cell is the Fox free differential 9: Fig, o, —
C1(K¢), applied to the word which the 2—cell bounds (see Johnson [8, Section 48] and
Fox [5]). Let e; denote the generator in C;(K;) representing the generator g;. The
free Fox differential is then characterized by:

(i) odgi=e; foralli=1,...,n,

(i) d(AB)=0(A)B + d(B) for all words A, B.

Clearly the inclusion ICg < K, induces the quotient map E — E /K on fundamental
groups. There is a right action of Z[E /K] on itself. Further there is a left action of E
on Z[E/K].

Lemma 2.2 As an algebraic complex of right Z[E /K] modules C«(K,) may be
written:
C2(Ke) ® ZIE/ K] ® Z[E/ K]

Cy(K}) : 9> ®0 G
——> C1(Ke) Qg Z[E/ K] — Co(Ke) ®F Z[E /K]
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Proof The boundary of E; is given by the free Fox differential d, applied to the word
HT;I[Aij, Bij]. However,

d H[A,'j, Bij]l = Z[aAij + 0B;j —0A4;; —0B;j] =0
j=1 j=1

as each A;;, B;j represents an element of K and hence is trivial in 71 (K,) = E/K. O
Each E; therefore generates an element of HZ(I’Q; Z). By the Hurewicz isomorphism
theorem we have isomorphisms H,(K.:Z) = 7,(K.) = m,(K}) coming from the

Hurewicz homomorphism and the covering map respectively. Let vy;: S? — K
represent the element of 7, (K}) which corresponds to E; under these isomorphisms.

Foreachi €l,...,r we then attach a 3—cell B; to K, via the attaching map y;: dB; —
K. Let K denote the resulting 3—complex. Then we have that Cy(KY) is

Cory. TUE/KY 25 Gk @ 21E/ K| @ ZIE /KT
: 20 €1(Ke) 8 £ ZIE/K] 2> Co(Ke) @5 ZIE/K]

where 03 is inclusion of the second summand.

Hence we have:
Lemma 2.3 H, (K], K¢; M) =0 for all left modules M over Z[E / K].

Proof We have the following relative complex:

Ce(K! . Ke): Z[E/K) = Z[E/K]" - 0—0 O
Thus by Theorem 2.1 we may conclude that K has the homotopy type of ;.
Lemma 2.4 The complex K is cohomologically 2—dimensional.

Proof The inclusion ¢: K¢ < K induces a chain homotopy equivalence:

Cx(Ke) ® Z[E /K] — Ci(KY) O

Corollary 2.5 We may choose K to be the cohomologically 2—dimensional finite
3—complex K.
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3 Cohomologically 2—dimensional 3—complexes

Let X be a finite connected 3—complex with H3(X;8) = 0 for all coefficient bun-
dles B. In this section we will show that up to homotopy, X arises as the Quillen plus
construction applied to a finite Cayley complex.

Let T be a maximal tree in the 1-skeleton of X . The quotient map X — X /T is a
homotopy equivalence. Hence we may assume without loss of generality that X has
one O—cell. We take this to be the basepoint of X and any complexes obtained from X
by adding or removing cells. Also we set G = 1 (X') with respect to this basepoint.

Let C«(X) be denoted by

03 02 01
F3 —)F2—>F1 —>F0

where the F;, i =0, 1,2, 3, are free modules over Z[G] and the d; are linear maps
over Z[G].

We have H3(X; F3) = 0 so in particular there exists ¢ such the following diagram
commutes:

F3

Hence 03 is the inclusion of the first summand d3: F3 < d5(F3) ® S = F,, where S
is the kernel of ¢. Let X’ denote the wedge of X with one disk for each 3—cell in X .
Then the inclusion of cell complexes X <> X’ is a homotopy equivalence and:

4 4

8/
Ci(X): F3=>F@F, > F @ F,—F

Here F} = F3 and the maps are defined as follows:

9’ restricts to d; on F; and restricts to 0 on Fj,

dy 0
/I 2

5= 1):

d5 is d3: F3 — F, composed with the natural inclusion: F, < F, & Fj.
Thus 9} is the inclusion into the first summand 05: F3 < 0, F3 ® S @ F;.

Let m denote the number of 2—cells in X . The submodule S @ F; C (35 F3 D S) @ F;
is isomorphic to S @ F3 = F, and hence has a basis x1,...,X, € Fr, ® F;
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The cell complex X’ has one 0—cell, so Fy = Z[G]. Let n denote the number of
1—cells in X’. Then each 1—cell corresponds to a generator g;, i €[1,...,n] of G.
Let {eq,...,en} form the corresponding basis for F; @ F;.

Let r denote the number of 2—cells in X”. The attaching map for each 2—cell maps
the boundary of a disk round a word in the g;. For each 2—cell let Rj, j €[1,...,7]
denote this word. Let {EYy, ..., E,} form the corresponding basis for F» & F. g . Thus
we have a presentation G = (g1,...,8&n| R1,..., Ry).

We may therefore express each x; as a linear combination of the Ej . Thus for some
integers v; and sequences jji,..., jiy; €{1,...,r} we have

Vi
xi =Y Ej, ko
I=1

with each A;; € G and 0;; € {1,—1}. Foreach i €[l,...,m], [ €[1,...,v;] let w;;
be a word in the gz, k = 1,...,n, representing A;;. Now foreach i = 1,...,m, let:

Vi
Si = 1_[ Wig Rjilll Wit
=1

For each i € {1,...,m}, attach a 2—cell @; to X’ by mapping the boundary of the
disk around the path in the 1-skeleton of X’ corresponding to the word S;. Let Z
denote the resulting finite cell complex. Note that each word S; corresponds to a trivial
element of G, so the inclusion X’ C Z induces an isomorphism 71 (X’) = 7{(Z).
Hence we may write Cx(Z):
9y ) @ 05) L
Cu(Z2): F3—=>(ReFR)er —— (F1®F)—F

where 07 is understood to be 05: F3 — (F, @ F;) composed with the natural inclusion
(F2 ¥ Fé) — (F2 ¥ Fé) ® Fé.

For i =1,...,m let A; be the basis element of F} corresponding to the 2—cell ;.
Recall the Fox free differential, . We have:

v; ]
0,4; =0S; = Z 3(wl~_llR;iill wip) = Z 8/2Ejil)‘ilail = dyx;
Thus A; — x; represents a class in H; (2?5); 7)) which is isomorphic to 5 (Z @) via

the Hurewicz isomorphism composed with the map 7,(Z®) — 7,(Z (2)) induced

by the covering map. Let ¥;: S? — Z @ represent the corresponding element of
12 (Z®).
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Then for each i = 1,...,m we may attach a 3—cell b; to Z via the map ;. We
denote the resulting complex X”.

Lemma 3.1 The inclusion t: X’ C X" is a homotopy equivalence.

Proof Starting with X, for each i we attached a 2—cell @; with contractible boundary
in X', and then attached a 3—cell b; with a; as a free face. Thus X" is obtained
from X’ through a series of cell expansions and the inclusion X’ C X" is a simple
homotopy equivalence. |

Let Y denote the subcomplex of X" consisting of the 1—skeleton, X”’(1) | together with
the a¢;, i = 1,...,m. Let ¢ denote the group presentation (g,...,2x|S1....,Sm)
and let E denote the underlying group. By construction we have ¥ = ;.

Let kq,...,k, € E denote the elements represented by the words Ry,..., R,. Let
K denote the normal closure in E of kq,...,k,. By construction then, K is finitely
closed and we have a short exact sequence of groups:

l > K—>FE—->G—1
Lemma 3.2 K is a perfect group.

Proof Clearly Z[G] is a right module over itself and there is a left action of £ on
Z|[G]. The algebraic complex C«(K:) ® g Z[G] is given by:

4 /

a
F, > (F, ® F}) = Fy
Now consider Cyx(X):

4 4 4

F3 > FeF, > F&F,—F
As X’ is simply connected, we have ker(d}) = Im(d?,).

Recall that F, & Fg = 8/3(F3) dS e Fé and that S @ Fé has basis x1,...,Xm.
Clearly 9, restricts to 0 on 9% (F3), so ker(d}) = Im(d,) which is generated by the
95 (xi).

Also recall that d',x; = 9 4; . Hence ker(d') =Im(9%) and H;(C«(K¢)® g Z[G]) = 0.

However by restricting coefficients Cx(KC;) may be regarded as an algebraic complex
of free modules over Z[K]. Hence we have

K/[K.K]= Hy(K:Z) = H(C«(K¢) ®k Z) = Hi(Cx(Ke) @ Z[G]) =0

where Z is regarded as having a trivial left K—action. O
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Lemma 3.3 X" =K/ where + is taken with respect to K .

Proof We may identify /C; with the subcomplex ¥ C X”. The inclusion £: g < X
then induces the quotient map £ — E /K on fundamental groups. By Theorem 2.1 it
is sufficient to show that Hy (X", Y; M) = 0 for all left coefficient modules M .

Let £x: C«(Ke) ® g Z[G] — Cx(X") be the chain map induced by the inclusion
{: K¢ < X”. We have the following commutative diagram:

a// a/
F : (F1 @ F}) —— Fy
lez iél J{eo
(a// 8/// (a/ a// 8/
FReF] 2> (RLoF)eF, 2> (FeF) ——F
where Fé’ has a basis D1, ..., Dy corresponding to the 3—cells by, ..., by, so for
i=1,...,m wehave 07 (D;) = A; —x; . Here £y and £, are the identity maps and

{5 is the inclusion of the second summand.

We have that (F, @ F;) = 03 F3 @ (S @ F;). Hence we have (F, @ F}) ® F; =
NS (SO F;)SF,.

The submodule (S & F;) has basis x1,...,Xm,m. The submodule Fé has basis
Ay.....Am. Also 05'F) has basis A1 —x1,..., Am — Xm. Hence we have the
following equality of submodules: (S @ F3) @ F, = 07 F) @ F).

Thus: (F,® F})) @ F, = 0 F3 &} F} @ F}
The relative chain complex Cyx(X”,Y) is therefore given by
F3@F S F@d/Fl —0—0

and Hx(X",Y; M) = 0 for all left coefficient modules M as required. O
As X ~ X", we have proved the following theorem:

Theorem 3.4 Let X be a finite connected 3—complex with H3(X;B) = 0 for all
coefficient bundles . Then X has the homotopy type of K} for some finite presen-
tation ¢ of a group E, where + is taken with respect to some pertect finitely closed
normal subgroup K < E'.

Algebraic € Geometric Topology, Volume 9 (2009)
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4 TImplications for the D(2) problem

The D(2) problem asks if every finite cohomologically 2—dimensional 3—complex
must be homotopy equivalent to a finite 2—complex. Clearly a counterexample must
have a connected component which is also cohomologically 2—dimensional but not
homotopy equivalent to a finite 2—complex. By Theorem 3.4 this component must
have the homotopy type of K for some finite presentation ¢ of a group E, where +
is taken with respect to some perfect finitely closed normal subgroup K <1 E.

Conversely, by Corollary 2.5, given any finite presentation ¢ of a group E together
with some perfect finitely closed normal subgroup K <1 £ we have a cohomologically
2—dimensional finite 3—complex, K. It follows that the D(2) problem is equivalent to:

Given a finite presentation € for a group £, and a finitely closed perfect
normal subgroup K <1 E, must K be homotopy equivalent to a finite
2—complex?

Suppose that we have a homotopy equivalence X} ~ Y for some finite 2—complex Y .
Let T be a maximal tree in the 1-skeleton of Y. The quotient map ¥ — Y /T
is a homotopy equivalence so ¥ ~ Kg for some finite presentation G of 7;(Y) =
n(KF) = E/K.

Hence the affirmative answer to the D(2) problem would be equivalent to:

For all finitely presented groups E and all perfect finitely closed normal
subgroups K <1 E and all finite presentations ¢ of E, there exists a finite
presentation G of E/K and a homotopy equivalence K ~ K¢ inducing
the identity 1: £/K — E /K on fundamental groups.

Lemma 4.1 The following are equivalent:

(i) There exists a homotopy equivalence K} ~ Kg inducing the identity 1: E/K —
E /K on fundamental groups.

(ii) There exists a chain homotopy equivalence Cx(K) ~ C«(Kg) over Z[E/K].

Proof (i) = (ii) is immediate. Conversely, from (ii) we have a chain homotopy
equivalence between the algebraic complexes associated to a finite cohomologically
2—dimensional 3—complex and a finite 2—complex (with respect to an isomorphism of
fundamental groups). To show that (ii) = (i) we must construct a homotopy equivalence
between the spaces, inducing the same isomorphism on fundamental groups. For finite
fundamental groups this is done in [8, Proof of Theorem 59.4]. The same argument
holds for all finitely presented fundamental groups [8, Appendix B, Proof of Weak
Realization Theorem]. O
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From the proof of Lemma 2.4, Cy(K¢) ® g Z[E /K] ~ C«(K]). Hence we have:

Theorem 4.2 The following two statements are equivalent:

(i) Let X be a a finite 3—complex with H3(X; ) = 0 for all coefficient bundles 3.
Then X is homotopy equivalent to a finite 2—complex.

(i) Let K be a perfect finitely closed normal subgroup of a finitely presented
group E . For each finite presentation ¢ of E, there exists a finite presentation G
of E/K, such that we have a chain homotopy equivalence over Z[E / K]:

Ce(Ke) ®E ZIE/ K] — Ci(Kg)

Suppose we have a short exact sequence
l-L—>F—>G-—1

where G is a finitely presented group and F' is a free group generated by elements
g1,---,8n. Let Rq,..., R;; be elements of L.

Definition 4.3 (g;,....gn| R1,..., Ry) is called a finite partial presentation for G
when the normal closure Ng(R;,..., Ry) surjects onto L /[L, L] under the quotient
map L — L/[L, L].

Note that a finite partial presentation ¢ = (g1,...,gxn | R1,..., Ry) as above is an
actual finite presentation of some group E, so it has a well defined Cayley complex /C;.

Let K denote the kernel of the homomorphism £ — G sending each g; to the
corresponding element in G. If G is finitely presented then it is finitely presented on
the generators in ¢ [3, Chapter 1, Proposition 17]. As K is the normal closure in E of
the images of this finite set of relators we have that K is finitely closed.

Further K is perfect as every k € K may be lifted to an element of L which may
be written in the form ab where a € [L, L] and b € Nrp(Ry,..., Ry). Thus k is
equal to the image of « in E, so k € [K, K]. Thus a finite partial presentation ¢ of a
finitely presented group G may be viewed as a presentation satisfying the hypothesis’
of statement (ii) in Theorem 4.2.

Conversely, given ¢ as in statement (ii) of Theorem 4.2, we have that ¢ is a finite partial
presentation of £/K (as K =[K, K]), and E/K is finitely presented (as K is finitely
closed).

Algebraic € Geometric Topology, Volume 9 (2009)
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Thus statement (ii) is equivalent to:

(i1)’ Given a finite partial presentation € of a finitely presented group G, there exists
a finite presentation G of G, such that we have a chain homotopy equivalence

Cu(Ke) ®E Z[G] — Ci(Kg)

where E is the group presented by ¢ and each x € E acts on Z[G] by left
multiplication by its image in G.

One approach to the D(2) problem is to use Euler characteristic as an obstruction. That
is, given a finite cohomologically 2—dimensional 3—complex X, if we can show that
every finite 2—complex Y with 7 (Y) = w1 (X) satisfies x(X) < x(Y) then clearly
X cannot be homotopy equivalent to any such Y. It has been shown that certain
constructions involving presentations of a group would allow one to construct such
a space [6, Theorem 3.5]. A candidate for such a space is given in [2]. In light of
Corollary 2.5 and Theorem 3.4 we are able to generalize this approach.

The deficiency Def(G) of a finite presentation G is the number of generators minus the
number of relators. We say a presentation of a group is minimal if it has the maximal
possible deficiency. A finitely presented group G always has a minimal presentation,
because an upper bound for the deficiency of a presentation is given by tkz (G/[G, G]).
The deficiency Def(G) of a finitely presented group G is defined to be the deficiency
of a minimal presentation.

Again let K < E be a perfect finitely closed normal subgroup. Then if ¢ is a finite
presentation of E and G is a finite presentation for £/K we have:

X(KT) = x(Ks) =1-Def(e), x(Kg) =1-Def(G)

Lemma 4.4 If Def(E) > Def(E/K) then given a minimal presentation ¢ of E we
have that x(K}) < x(Kg) for any finite presentation G of E/K .

Proof x(Kg)=1-Def(G)>1-Def(E/K)>1—Def(E)=1-Def(e) = x(K}). O
Suppose we have a short exact sequence of groups

1 K—FE—->G—1

with £, G finitely presented. Then given a finite presentation for E, the images in G
of the generators will generate G. We may present G' on these generators with a finite
set of relators [3, Chapter 1, Proposition 17]. Let kq, ..., k, denote the elements of K
represented by these relators. Then K is the normal closure in E of kq, ..., k, and so
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K is finitely closed in E. In particular K/[K, K] is generated by the kq,...,k, as
a right module over Z[G] (where G acts on K/[K, K] by conjugation). Let rkg (K)
denote the minimal number of elements required to generate K/[K, K] over Z[G].

Theorem 4.5 The following statements are equivalent:

(i) There exists a connected finite cohomologically 2—dimensional 3—complex X,
such that for all finite connected 2—complexes Y with w1(Y) = m1(X) we have

x(X) < x(¥).
(i) There exists a short exact sequence of groups | - K — E — G — 1 with E,
G finitely presented and:

kG (K) + Def(G) < Def(E)

Proof (i) = (ii) By Theorem 3.4, X is homotopy equivalent to X~ for some finite
presentation ¢ of some group E and some perfect finitely closed normal subgroup K.
Let G = E/K. We have a short exact sequence:

1 K—-F—->G—=>1

As K is finitely closed, G is finitely presented. As K is perfect we have rkg(K) = 0.
Let G be some finite presentation of G. We have:

1 —Def(e) = X(IC:) < x(Kg) = 1—Def(G)

Thus Def(G) < Def(e). As G was chosen arbitrarily, we have Def(G) < Def(e) <
Def(E). Hence 0+ Def(G) < Def(E) as required.

(i) = (i) We start with the short exact sequence | - K - F — G — 1. Let
ki.....k, € K generate K/[K, K] over Z[G], where r = rkg(K). Let K’ denote
the normal closure in £ of kq,...,k,. Then we have a short exact sequence:

l1-K/K' - E/K -G —1

Then K = K'[K, K] so K/K' is perfect. From the discussion preceding this theorem
we know that K is finitely closed in E, so K/K’ must be finitely closed in E/K’.
Also E /K’ may be presented by taking a minimal presentation of E and adding r
relators (representing to k1, ..., k,). Hence:

Def(E/K') > Def(E) — kg (K) > Def(G)

Take a minimal presentation ¢ of £/K’ andlet X =K}, where + is taken with respect
to K/K’'. Any finite connected 2—complex Y with 7{(Y) = 71(X) is homotopy
equivalent to g for some finite presentation G of G. Therefore by Lemma 4.4 we
have y(X) < x(Y) as required. m]

Algebraic €& Geometric Topology, Volume 9 (2009)
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We note that Michael Dyer proved (ii) = (i) in the case where H3(G;Z[G]) = 0 and
E is a free group whose generators are the generating set for some minimal presentation
of G [6, Theorem 3.5].
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