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Quillen’s plus construction and the D(2) problem

W H MANNAN

Given a finite connected 3–complex with cohomological dimension 2, we show it
may be constructed up to homotopy by applying the Quillen plus construction to the
Cayley complex of a finite group presentation. This reduces the D(2) problem to a
question about perfect normal subgroups.

57M20; 19D06, 57M05

1 Introduction

Given a finite cell complex one may ask what the minimal dimension of a finite cell
complex in its homotopy type is. If n¤ 2 and the cell complex has cohomological
dimension n (with respect to all coefficient bundles), then the cell complex is in fact
homotopy equivalent to a finite n–complex (a cell complex whose cells have dimension
at most n). Although this has been known for around forty years (for n> 2 it is proved
by Wall [13] and for nD 1 it follows from Swan [12] and Stallings [11]), it is an open
question whether or not this holds when nD 2. This question is known as Wall’s D(2)
problem:

Let X be a finite 3–complex with H 3.X Iˇ/ D 0 for all coefficient
bundles ˇ . Must X be homotopy equivalent to a finite 2–complex?

If X (as above) is not homotopy equivalent to a finite 2–complex, we say it is a
counterexample which solves the D(2) problem.

For connected X with certain fundamental groups, it has shown been shown that X

must be homotopy equivalent to a finite 2–complex (see for example Johnson [7],
Edwards [4] and Mannan [9]). However no general method has been forthcoming.

Also, whilst potential candidates for counterexamples have been constructed (see Beyl
and Waller [1] and Bridson and Tweedale [2]), no successful method has yet emerged
for verifying that they are not homotopy equivalent to finite 2–complexes.

In Section 2 we apply the Quillen plus construction to connected 2–complexes, resulting
in cohomologically 2–dimensional 3–complexes. These are therefore candidates for

Published: 5 July 2009 DOI: 10.2140/agt.2009.9.1399
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counterexamples which solve the D(2) problem. In Section 3 we show that in fact all
finite connected cohomologically 2–dimensional 3–complexes arise this way, up to
homotopy equivalence.

Finally, in Section 4 we use these results to reduce the D(2) problem to a question
about perfect normal subgroups. This allows us to generalize existing approaches to
the D(2) problem such as Johnson [8, Theorem I] and Harlander [6, Theorem 3.5].

Before moving on to the main argument we make a few notational points. All modules
are right modules except where a left action is explicitly stated. The basepoint of a
Cayley complex is always assumed to be its 0–cell.

If X is a connected cell complex with basepoint, we denote its universal cover by zX .
Given two based loops 
1; 
2 2 �1.X / their product 
1
2 is the composition whose
initial segment is 
2 and final segment is 
1 . With this convention, we have a natural
right action of �1.X / on the cells of zX . Let GD�1.X /. We can regard the associated
chain complex of zX as an algebraic complex of right modules over ZŒG�. We follow [8]
in denoting this algebraic complex C�.X /. Note that this differs from the convention in
other texts. Thus in particular C�.X / and C�. zX / have the same underlying sequence
of abelian groups, but the former is a sequence of modules over ZŒG� whilst the latter
is a sequence of modules over ZŒ�1. zX /�D Z.

If Y is a subcomplex of X then C�.Y / is a sequence of right modules over �1.Y /.
Let ED�1.Y /. The induced map E!G yields a left action of E on ZŒG�. Thus we
have an algebraic complex C�.Y /˝E ZŒG� over ZŒG�. The inclusion Y �X induces
a chain map C�.Y /˝E ZŒG��!C�.X /. The complex C�.X;Y / is defined to be the
relative chain complex associated to this chain map.

The basepoint allows us to interchange between coefficient bundles over X and right
modules over ZŒG�. Thus for a right module N we have:

H n.X IN /DH n.C�.X /IN /

A left module over ZŒG� may be regarded as a right module over ZŒG�, where right
multiplication by a group element is defined to be left multiplication by its inverse.
Hence a left module M may also be regarded as a coefficient bundle and we have:

Hn.X IM /DHn.C�.X /IM /; Hn.X;Y IM /DHn.C�.X;Y /IM /

Given a finitely generated Abelian group A we may regard it as a finitely generated
module over Z. Thus A˝Z Q is a finite dimensional vector space over Q. The
dimension of this vector space will be denoted rkZ.A/.

Finally given a group G and elements g; h 2G , we follow the convention that Œg; h�
denotes the element ghg�1h�1 .
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2 The plus construction applied to a Cayley complex

Let "D hg1; : : : ;gn jR1; : : : ;Rmi be a finite presentation for a group E . We say a
normal subgroup of E is finitely closed when it is the normal closure in E of a finitely
generated subgroup. Let K C E be finitely closed and perfect (so K D ŒK;K�). Let
K" denote the Cayley complex associated to ".

Theorem 2.1 (Quillen; see Rosenberg [10, Theorem 5.2.2]) There is a 3–complex
KC" , containing K" as a subcomplex, such that the inclusion K" ,! KC" induces the
quotient map E ! E=K on fundamental groups and H�.KC" ;K"IM / D 0 for all
left modules M over ZŒE=K�. Further, given another such 3–complex X , there
is a homotopy equivalence KC" ! X extending the identity map of the common
subspace K" .

In fact we may construct KC" explicitly, using the fact that K is finitely closed to
ensure that we end up with a finite cell complex. Let k1; : : : ; kr 2 K generate a
subgroup of E whose normal closure (in E ) is K . As K D ŒK;K�, each ki may be
expressed as a product of commutators ki D

Qmi

jD1
Œaij ; bij � with each aij ; bij 2K .

Then each aij ; bij may be represented by words Aij ;Bij in the gl , l D 1; : : : ; n. For
each i D 1; : : : ; r attach a 2–cell Ei to K" whose boundary corresponds to the wordQmi

jD1
ŒAij ;Bij �. Denote the resulting chain complex K0" .

The chain complex C�.K"/ may be written:

C�.K"/W C2.K"/
@2
�! C1.K"/

@1
�! C0.K"/

The boundary map @2 applied to a 2–cell is the Fox free differential @W Ffg1;:::;gng!

C1.K"/, applied to the word which the 2–cell bounds (see Johnson [8, Section 48] and
Fox [5]). Let ei denote the generator in C1.K"/ representing the generator gi . The
free Fox differential is then characterized by:

(i) @gi D ei for all i D 1; : : : ; n,
(ii) @.AB/D @.A/BC @.B/ for all words A;B .

Clearly the inclusion K" ,!K0" induces the quotient map E!E=K on fundamental
groups. There is a right action of ZŒE=K� on itself. Further there is a left action of E

on ZŒE=K�.

Lemma 2.2 As an algebraic complex of right ZŒE=K� modules C�.K0"/ may be
written:

C�.K0"/ W
C2.K"/˝E ZŒE=K�˚ZŒE=K�r

@2˚0
���! C1.K"/˝E ZŒE=K�

@1
�! C0.K"/˝E ZŒE=K�
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Proof The boundary of Ei is given by the free Fox differential @, applied to the wordQmi

jD1
ŒAij ;Bij �. However,

@

miY
jD1

ŒAij ;Bij �D

miX
jD1

Œ@Aij C @Bij � @Aij � @Bij �D 0

as each Aij ;Bij represents an element of K and hence is trivial in �1.K0"/DE=K .

Each Ei therefore generates an element of H2.fK0" IZ/. By the Hurewicz isomorphism
theorem we have isomorphisms H2.fK0" IZ/ Š �2.fK0" / Š �2.K0"/ coming from the
Hurewicz homomorphism and the covering map respectively. Let  i W S

2 ! K0"
represent the element of �2.K0"/ which corresponds to Ei under these isomorphisms.

For each i 21; : : : ; r we then attach a 3–cell Bi to K0" via the attaching map  i W @Bi!

K0" . Let K00" denote the resulting 3–complex. Then we have that C�.K00" / is

C�.K00" / W
ZŒE=K�r

@3
�! C2.K"/˝E ZŒE=K�˚ZŒE=K�r

@2˚0
���! C1.K"/˝E ZŒE=K�

@1
�! C0.K"/˝E ZŒE=K�

where @3 is inclusion of the second summand.

Hence we have:

Lemma 2.3 H�.K00" ;K"IM /D 0 for all left modules M over ZŒE=K�.

Proof We have the following relative complex:

C�.K00" ;K"/ W ZŒE=K�r
�
�! ZŒE=K�r ! 0! 0

Thus by Theorem 2.1 we may conclude that K00" has the homotopy type of KC" .

Lemma 2.4 The complex K00" is cohomologically 2–dimensional.

Proof The inclusion �W K" ,!K00" induces a chain homotopy equivalence:

C�.K"/˝E ZŒE=K�! C�.K00" /

Corollary 2.5 We may choose KC" to be the cohomologically 2–dimensional finite
3–complex K00" .

Algebraic & Geometric Topology, Volume 9 (2009)



Quillen’s plus construction and the D(2) problem 1403

3 Cohomologically 2–dimensional 3–complexes

Let X be a finite connected 3–complex with H 3.X Iˇ/D 0 for all coefficient bun-
dles ˇ . In this section we will show that up to homotopy, X arises as the Quillen plus
construction applied to a finite Cayley complex.

Let T be a maximal tree in the 1–skeleton of X . The quotient map X !X=T is a
homotopy equivalence. Hence we may assume without loss of generality that X has
one 0–cell. We take this to be the basepoint of X and any complexes obtained from X

by adding or removing cells. Also we set G D �1.X / with respect to this basepoint.

Let C�.X / be denoted by

F3

@3
�! F2

@2
�! F1

@1
�! F0

where the Fi , i D 0; 1; 2; 3, are free modules over ZŒG� and the @i are linear maps
over ZŒG�.

We have H 3.X IF3/D 0 so in particular there exists � such the following diagram
commutes:

F3

1
��

@3 // F2

�~~}}
}}

}}
}}

@2 // F1

@1 // F0

F3

Hence @3 is the inclusion of the first summand @3W F3 ,! @3.F3/˚S DF2 , where S

is the kernel of � . Let X 0 denote the wedge of X with one disk for each 3–cell in X .
Then the inclusion of cell complexes X ,!X 0 is a homotopy equivalence and:

C�.X
0/ W F3

@0
3
�! F2˚F 03

@0
2
�! F1˚F 03

@0
1
�! F0

Here F 0
3
Š F3 and the maps are defined as follows:

@01 restricts to @1 on F1 and restricts to 0 on F 03,

@02 D

�
@2 0

0 1

�
;

@03 is @3W F3! F2 composed with the natural inclusion: F2 ,! F2˚F 03.

Thus @0
3

is the inclusion into the first summand @0
3
W F3 ,! @0

3
F3˚S ˚F 0

3
.

Let m denote the number of 2–cells in X . The submodule S˚F 0
3
� .@0

3
F3˚S/˚F 0

3

is isomorphic to S ˚F3 Š F2 and hence has a basis x1; : : : ;xm 2 F2˚F 0
3

.
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The cell complex X 0 has one 0–cell, so F0 Š ZŒG�. Let n denote the number of
1–cells in X 0 . Then each 1–cell corresponds to a generator gi ; i 2 Œ1; : : : ; n� of G .
Let fe1; : : : ; eng form the corresponding basis for F1˚F 0

3
.

Let r denote the number of 2–cells in X 0 . The attaching map for each 2–cell maps
the boundary of a disk round a word in the gi . For each 2–cell let Rj ; j 2 Œ1; : : : ; r �

denote this word. Let fE1; : : : ;Erg form the corresponding basis for F2˚F 0
3

. Thus
we have a presentation G D hg1; : : : ;gn jR1; : : : ;Rr i.

We may therefore express each xi as a linear combination of the Ej . Thus for some
integers vi and sequences ji1; : : : ; jivi

2 f1; : : : ; rg we have

xi D

viX
lD1

Ejil
�il�il

with each �il 2 G and �il 2 f1;�1g. For each i 2 Œ1; : : : ;m�, l 2 Œ1; : : : ; vi � let wil

be a word in the gk ; k D 1; : : : ; n, representing �il . Now for each i D 1; : : : ;m, let:

Si D

viY
lD1

w�1
il R

�il

jil
wil

For each i 2 f1; : : : ;mg, attach a 2–cell ai to X 0 by mapping the boundary of the
disk around the path in the 1–skeleton of X 0 corresponding to the word Si . Let Z

denote the resulting finite cell complex. Note that each word Si corresponds to a trivial
element of G , so the inclusion X 0 � Z induces an isomorphism �1.X

0/ Š �1.Z/.
Hence we may write C�.Z/:

C�.Z/ W F3

@00
3
�! .F2˚F 03/˚F 02

.@0
2
@00

2
/

�����! .F1˚F 03/
@0

1
�! F0

where @00
3

is understood to be @0
3
W F3! .F2˚F 0

3
/ composed with the natural inclusion

.F2˚F 0
3
/ ,! .F2˚F 0

3
/˚F 0

2
.

For i D 1; : : : ;m let Ai be the basis element of F 0
2

corresponding to the 2–cell ai .
Recall the Fox free differential, @. We have:

@002Ai D @Si D

viX
lD1

@.w�1
il R

�il

jil
wil/D

viX
lD1

@02Ejil
�il�il D @

0
2xi

Thus Ai �xi represents a class in H2.
eZ.2/IZ/ which is isomorphic to �2.Z

.2// via
the Hurewicz isomorphism composed with the map �2.

eZ.2//! �2.Z
.2// induced

by the covering map. Let  i W S
2 ! Z.2/ represent the corresponding element of

�2.Z
.2//.
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Then for each i D 1; : : : ;m we may attach a 3–cell bi to Z via the map  i . We
denote the resulting complex X 00 .

Lemma 3.1 The inclusion �W X 0 �X 00 is a homotopy equivalence.

Proof Starting with X 0 , for each i we attached a 2–cell ai with contractible boundary
in X 0 , and then attached a 3–cell bi with ai as a free face. Thus X 00 is obtained
from X 0 through a series of cell expansions and the inclusion X 0 � X 00 is a simple
homotopy equivalence.

Let Y denote the subcomplex of X 00 consisting of the 1–skeleton, X 00.1/ , together with
the ai , i D 1; : : : ;m. Let " denote the group presentation hg1; : : : ;gn jS1; : : : ;Smi

and let E denote the underlying group. By construction we have Y DK" .

Let k1; : : : ; kr 2 E denote the elements represented by the words R1; : : : ;Rr . Let
K denote the normal closure in E of k1; : : : ; kr . By construction then, K is finitely
closed and we have a short exact sequence of groups:

1!K!E!G! 1

Lemma 3.2 K is a perfect group.

Proof Clearly ZŒG� is a right module over itself and there is a left action of E on
ZŒG�. The algebraic complex C�.K"/˝E ZŒG� is given by:

F 02
@00

2
�! .F1˚F 03/

@0
1
�! F0

Now consider C�.X
0/:

F3

@0
3
�! F2˚F 03

@0
2
�! F1˚F 03

@0
1
�! F0

As zX 0 is simply connected, we have ker.@0
1
/D Im.@0

2
/.

Recall that F2 ˚ F 0
3
D @0

3
.F3/˚ S ˚ F 0

3
and that S ˚ F 0

3
has basis x1; : : : ;xm .

Clearly @0
2

restricts to 0 on @0
3
.F3/, so ker.@0

1
/D Im.@0

2
/ which is generated by the

@0
2
.xi /.

Also recall that @0
2
xi D@

00
2
Ai . Hence ker.@0

1
/D Im.@00

2
/ and H1.C�.K"/˝EZŒG�/D0.

However by restricting coefficients C�.K"/ may be regarded as an algebraic complex
of free modules over ZŒK�. Hence we have

K=ŒK;K�DH1.KIZ/DH1.C�.K"/˝K Z/DH1.C�.K"/˝E ZŒG�/D 0

where Z is regarded as having a trivial left K–action.
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Lemma 3.3 X 00 DKC" where C is taken with respect to K .

Proof We may identify K" with the subcomplex Y �X 00 . The inclusion `W K" ,!X 00

then induces the quotient map E!E=K on fundamental groups. By Theorem 2.1 it
is sufficient to show that H�.X

00;Y IM /D 0 for all left coefficient modules M .

Let `�W C�.K"/ ˝E ZŒG� ! C�.X
00/ be the chain map induced by the inclusion

`W K" ,!X 00 . We have the following commutative diagram:

F 0
2

@00
2 //

`2

��

.F1˚F 0
3
/

@0
1 //

`1

��

F0

`0

��
F3˚F 00

2

.@00
3
@000

3
/

// .F2˚F 0
3
/˚F 0

2

.@0
2
@00

2
/

// .F1˚F 0
3
/

@0
1 // F0

where F 00
2

has a basis D1; : : : ;Dm corresponding to the 3–cells b1; : : : ; bm , so for
i D 1; : : : ;m we have @000

3
.Di/DAi �xi . Here `0 and `1 are the identity maps and

`2 is the inclusion of the second summand.

We have that .F2 ˚ F 0
3
/ D @00

3
F3 ˚ .S ˚ F 0

3
/. Hence we have .F2 ˚ F 0

3
/˚ F 0

2
D

@00
3
F3˚ .S ˚F 0

3
/˚F 0

2
.

The submodule .S ˚ F 0
3
/ has basis x1; : : : ;xm . The submodule F 0

2
has basis

A1; : : : ;Am . Also @000
3

F 00
2

has basis A1 � x1; : : : ;Am � xm . Hence we have the
following equality of submodules: .S ˚F 0

3
/˚F 0

2
D @000

3
F 00

2
˚F 0

2
.

Thus: .F2˚F 03/˚F 02 D @
00
3F3˚ @

000
3 F 002 ˚F 02

The relative chain complex C�.X
00;Y / is therefore given by

F3˚F 002
�
�! @003F3˚ @

000
3 F 002 �! 0 �! 0

and H�.X
00;Y IM /D 0 for all left coefficient modules M as required.

As X �X 00 , we have proved the following theorem:

Theorem 3.4 Let X be a finite connected 3–complex with H 3.X Iˇ/ D 0 for all
coefficient bundles ˇ . Then X has the homotopy type of KC" for some finite presen-
tation " of a group E , where C is taken with respect to some perfect finitely closed
normal subgroup K C E .
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4 Implications for the D(2) problem

The D(2) problem asks if every finite cohomologically 2–dimensional 3–complex
must be homotopy equivalent to a finite 2–complex. Clearly a counterexample must
have a connected component which is also cohomologically 2–dimensional but not
homotopy equivalent to a finite 2–complex. By Theorem 3.4 this component must
have the homotopy type of KC" for some finite presentation " of a group E , where C
is taken with respect to some perfect finitely closed normal subgroup K C E .

Conversely, by Corollary 2.5, given any finite presentation " of a group E together
with some perfect finitely closed normal subgroup K C E we have a cohomologically
2–dimensional finite 3–complex, KC" . It follows that the D(2) problem is equivalent to:

Given a finite presentation � for a group E , and a finitely closed perfect
normal subgroup K C E , must KC" be homotopy equivalent to a finite
2–complex?

Suppose that we have a homotopy equivalence KC" � Y for some finite 2–complex Y .
Let T be a maximal tree in the 1–skeleton of Y . The quotient map Y ! Y=T

is a homotopy equivalence so Y � KG for some finite presentation G of �1.Y / D

�1.KC" /DE=K .

Hence the affirmative answer to the D(2) problem would be equivalent to:

For all finitely presented groups E and all perfect finitely closed normal
subgroups K C E and all finite presentations " of E , there exists a finite
presentation G of E=K and a homotopy equivalence KC" �KG inducing
the identity 1W E=K!E=K on fundamental groups.

Lemma 4.1 The following are equivalent:

(i) There exists a homotopy equivalence KC" �KG inducing the identity 1W E=K!

E=K on fundamental groups.

(ii) There exists a chain homotopy equivalence C�.KC" /� C�.KG/ over ZŒE=K�.

Proof (i) ) (ii) is immediate. Conversely, from (ii) we have a chain homotopy
equivalence between the algebraic complexes associated to a finite cohomologically
2–dimensional 3–complex and a finite 2–complex (with respect to an isomorphism of
fundamental groups). To show that (ii)) (i) we must construct a homotopy equivalence
between the spaces, inducing the same isomorphism on fundamental groups. For finite
fundamental groups this is done in [8, Proof of Theorem 59.4]. The same argument
holds for all finitely presented fundamental groups [8, Appendix B, Proof of Weak
Realization Theorem].
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From the proof of Lemma 2.4, C�.K"/˝E ZŒE=K�� C�.KC" /. Hence we have:

Theorem 4.2 The following two statements are equivalent:

(i) Let X be a a finite 3–complex with H 3.X Iˇ/D 0 for all coefficient bundles ˇ .
Then X is homotopy equivalent to a finite 2–complex.

(ii) Let K be a perfect finitely closed normal subgroup of a finitely presented
group E . For each finite presentation " of E , there exists a finite presentation G
of E=K , such that we have a chain homotopy equivalence over ZŒE=K�:

C�.K"/˝E ZŒE=K�! C�.KG/

Suppose we have a short exact sequence

1!L! F !G! 1

where G is a finitely presented group and F is a free group generated by elements
g1; : : : ;gn . Let R1; : : : ;Rm be elements of L.

Definition 4.3 hg1; : : : ;gn jR1; : : : ;Rmi is called a finite partial presentation for G

when the normal closure NF .R1; : : : ;Rm/ surjects onto L=ŒL;L� under the quotient
map L!L=ŒL;L�.

Note that a finite partial presentation " D hg1; : : : ;gn j R1; : : : ;Rmi as above is an
actual finite presentation of some group E , so it has a well defined Cayley complex K" .

Let K denote the kernel of the homomorphism E ! G sending each gi to the
corresponding element in G . If G is finitely presented then it is finitely presented on
the generators in " [3, Chapter 1, Proposition 17]. As K is the normal closure in E of
the images of this finite set of relators we have that K is finitely closed.

Further K is perfect as every k 2 K may be lifted to an element of L which may
be written in the form ab where a 2 ŒL;L� and b 2 NF .R1; : : : ;Rm/. Thus k is
equal to the image of a in E , so k 2 ŒK;K�. Thus a finite partial presentation " of a
finitely presented group G may be viewed as a presentation satisfying the hypothesis’
of statement (ii) in Theorem 4.2.

Conversely, given " as in statement (ii) of Theorem 4.2, we have that " is a finite partial
presentation of E=K (as K D ŒK;K�), and E=K is finitely presented (as K is finitely
closed).
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Thus statement (ii) is equivalent to:

(ii)’ Given a finite partial presentation " of a finitely presented group G , there exists
a finite presentation G of G , such that we have a chain homotopy equivalence

C�.K"/˝E ZŒG�! C�.KG/

where E is the group presented by " and each x 2 E acts on ZŒG� by left
multiplication by its image in G .

One approach to the D(2) problem is to use Euler characteristic as an obstruction. That
is, given a finite cohomologically 2–dimensional 3–complex X , if we can show that
every finite 2–complex Y with �1.Y /D �1.X / satisfies �.X / < �.Y / then clearly
X cannot be homotopy equivalent to any such Y . It has been shown that certain
constructions involving presentations of a group would allow one to construct such
a space [6, Theorem 3.5]. A candidate for such a space is given in [2]. In light of
Corollary 2.5 and Theorem 3.4 we are able to generalize this approach.

The deficiency Def.G/ of a finite presentation G is the number of generators minus the
number of relators. We say a presentation of a group is minimal if it has the maximal
possible deficiency. A finitely presented group G always has a minimal presentation,
because an upper bound for the deficiency of a presentation is given by rkZ.G=ŒG;G�/.
The deficiency Def.G/ of a finitely presented group G is defined to be the deficiency
of a minimal presentation.

Again let K C E be a perfect finitely closed normal subgroup. Then if " is a finite
presentation of E and G is a finite presentation for E=K we have:

�.KC" /D �.K"/D 1�Def."/; �.KG/D 1�Def.G/

Lemma 4.4 If Def.E/ > Def.E=K/ then given a minimal presentation " of E we
have that �.KC" / < �.KG/ for any finite presentation G of E=K .

Proof �.KG/D 1�Def.G/� 1�Def.E=K/> 1�Def.E/D 1�Def."/D�.KC" /.

Suppose we have a short exact sequence of groups

1!K!E!G! 1

with E , G finitely presented. Then given a finite presentation for E , the images in G

of the generators will generate G . We may present G on these generators with a finite
set of relators [3, Chapter 1, Proposition 17]. Let k1; : : : ; kr denote the elements of K

represented by these relators. Then K is the normal closure in E of k1; : : : ; kr and so
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K is finitely closed in E . In particular K=ŒK;K� is generated by the k1; : : : ; kr as
a right module over ZŒG� (where G acts on K=ŒK;K� by conjugation). Let rkG.K/

denote the minimal number of elements required to generate K=ŒK;K� over ZŒG�.

Theorem 4.5 The following statements are equivalent:

(i) There exists a connected finite cohomologically 2–dimensional 3–complex X ,
such that for all finite connected 2–complexes Y with �1.Y /D �1.X / we have
�.X / < �.Y /.

(ii) There exists a short exact sequence of groups 1!K!E!G! 1 with E ,
G finitely presented and:

rkG.K/CDef.G/ < Def.E/

Proof (i)) (ii) By Theorem 3.4, X is homotopy equivalent to KC" for some finite
presentation " of some group E and some perfect finitely closed normal subgroup K .
Let G DE=K . We have a short exact sequence:

1!K!E!G! 1

As K is finitely closed, G is finitely presented. As K is perfect we have rkG.K/D 0.
Let G be some finite presentation of G . We have:

1�Def."/D �.KC" / < �.KG/D 1�Def.G/

Thus Def.G/ < Def."/. As G was chosen arbitrarily, we have Def.G/ < Def."/ �
Def.E/. Hence 0CDef.G/ < Def.E/ as required.

(ii) ) (i) We start with the short exact sequence 1 ! K ! E ! G ! 1. Let
k1; : : : ; kr 2 K generate K=ŒK;K� over ZŒG�, where r D rkG.K/. Let K0 denote
the normal closure in E of k1; : : : ; kr . Then we have a short exact sequence:

1!K=K0!E=K0!G! 1

Then K DK0ŒK;K� so K=K0 is perfect. From the discussion preceding this theorem
we know that K is finitely closed in E , so K=K0 must be finitely closed in E=K0 .
Also E=K0 may be presented by taking a minimal presentation of E and adding r

relators (representing to k1; : : : ; kr ). Hence:

Def.E=K0/� Def.E/� rkG.K/ > Def.G/

Take a minimal presentation " of E=K0 and let X DKC" , where C is taken with respect
to K=K0 . Any finite connected 2–complex Y with �1.Y / D �1.X / is homotopy
equivalent to KG for some finite presentation G of G . Therefore by Lemma 4.4 we
have �.X / < �.Y / as required.
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We note that Michael Dyer proved (ii)) (i) in the case where H 3.GIZŒG�/D 0 and
E is a free group whose generators are the generating set for some minimal presentation
of G [6, Theorem 3.5].
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