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Limit groups for relatively hyperbolic groups. I.
The basic tools

DANIEL GROVES

We begin the investigation of � –limit groups, where � is a torsion-free group which
is hyperbolic relative to a collection of free abelian subgroups. Using the results
of Druţu and Sapir [17], we adapt the results from the author’s paper [24]. Specifi-
cally, given a finitely generated group G and a sequence of pairwise nonconjugate
homomorphisms fhnW G ! �g , we extract an R–tree with a nontrivial isometric
G –action.

We then provide an analogue of Sela’s shortening argument.

20F65; 20F67, 20E08, 57M07

In his remarkable series of papers [40; 42; 44; 43; 45; 46; 47], Z Sela has classified
those finitely generated groups with the same elementary theory as the free group of
rank 2 (see also Sela [41] for a summary). This class includes all nonabelian free
groups, most surface groups and certain other hyperbolic groups. In particular, Sela
answers in the positive some long-standing questions of Tarski (Kharlampovich and
Myasnikov [31] have another approach to these problems).

In [40], Sela begins with a study of limit groups. Sela’s definition of a limit group
is geometric, though it turns out that a group is a limit group if and only if it is a
finitely generated fully-residually free group. He then produces Makanin–Razborov
diagrams, which give a parametrisation of Hom.G;F/, where G is an arbitrary finitely
generated group and F is a nonabelian free group (such a parametrisation is also given
by Kharlampovich and Myasnikov [30]). Over the course of his six papers, two of the
main tools Sela uses are the theory of isometric actions on R–trees and the shortening
argument.

Sela’s work naturally raises the question of which other classes of groups can be
understood using this approach. Many of Sela’s methods (and, more strikingly, some
of the answers) come from geometric group theory. Thus, when looking for classes
of groups to apply these methods to, it seems natural to consider groups of interest in
geometric group theory. In [48], Sela considers an arbitrary torsion-free hyperbolic
group � and characterises those groups with the same elementary theory as � . Of
particular note is Sela’s result that any group which has the same elementary theory as
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1424 Daniel Groves

a torsion-free hyperbolic group is itself a torsion-free hyperbolic group. This result
exhibits a deep connection between the logic of groups and geometric group theory.
In [2], Alibegović constructs Makanin–Razborov diagrams for limit groups. In [24]
the author began this study for certain torsion-free CAT.0/ groups.

This paper serves two purposes. First, we generalise the results of [24] to the context of
torsion-free groups which are hyperbolic relative to a collection of abelian subgroups1.
We construct a space closely related to the Cayley graph (see Section 4) and use the
results of Druţu and Sapir from [17] to analyse an asymptotic cone of this space. We
then follow [24] to extract an R–tree from this asymptotic cone. Armed with this
R–tree, we then develop an analogue of Sela’s shortening argument in this context.

The following result is a straightforward application of the shortening argument (see
Section 7 for a definition of Mod.�/).

Theorem 0.1 Suppose that � is a torsion-free group which is hyperbolic relative to a
collection of free abelian subgroups. Then Mod.�/ has finite index in Aut.�/.

The true context of this paper is as the beginning of the study of � –limit groups where
� is torsion-free and hyperbolic relative to free abelian subgroups. In a continuation
paper [23] we use the results of this paper and of [48] to construct Makanin–Razborov
diagrams for such a group � . It is our hope that much, possibly all, of Sela’s program
can be carried out for these groups.

The outline of this paper is as follows: In Section 1 we recall the concepts of limit
groups and � –limit groups. In Section 2 we recall the definition of relatively hyperbolic
groups and the basic results required for this paper. In Section 3 we recall the concept of
asymptotic cones and some results of Druţu and Sapir from [17]. In Section 4 we define
a space X , closely related to the Cayley graph of the relatively hyperbolic group � .
The space X , equipped with a natural � –action, seems to be an appropriate space
with which to study � –limit groups. In Section 5 a particular asymptotic cone X! is
extracted from a sequence of nonconjugate homomorphisms fhnW G! �g, where G

is an arbitrary finitely generated group and the limiting action of G on X! is studied.
In Section 6 we extract an action of G on an R–tree with no global fixed point. In
Section 7 we state a version of Sela’s shortening argument in the context of this paper.
In Section 8 we recall some of the theory of groups acting isometrically on R–trees.
In Sections 9–11 we present the proof of Theorem 7.5 (the shortening argument).

This paper relies heavily on the results of Druţu and Sapir [17], and also on the
paper [24] of the author. We have stated the results from [17] which are required, but

1See Section 2 below for a definition and discussion of relatively hyperbolic groups.
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the reader who is not familiar with [17] may find it hard going. The construction of the
space X in Section 4 is carefully designed so that many of the proofs from [24] go
through without change. In particular, many of the results of the later part of Section 4
and also of Section 5 and Section 6 have proofs almost identical to results in [24], and
we mostly refer the reader to that paper for details. Therefore, a full understanding of
this paper will be difficult without some knowledge of [24].

Remark 0.2 This paper subsumes the results which were in the first version of this
paper, and also in the author’s preprint [22]. The exception to this is the proof that
the groups under consideration are Hopfian. This result follows immediately from the
author’s paper [23, Theorem 5.2] (and the proof there does not depend on anything left
out of this version of this paper). Since the proof of the Hopf property is technical, and
no more enlightening than the proof of [23, Theorem 5.2], we chose to leave this result
out of this paper. Leaving this proof out made it natural to take the results of [22] and
the first version of this paper and merge them into this single paper.

Subsequent to the first version of this paper appearing on the ArXiv, the paper [18] of
Druţu and Sapir appeared. In this, they take a finitely generated group G acting on an
arbitrary tree-graded metric space and produce an isometric action of G on an R–tree.

In this paper, we require that the tree-graded metric space has pieces isometric to
Euclidean spaces and that the stabilizers of these pieces act by translations. However,
there are substantial benefits to the construction in this paper over that of [18]. Namely,
as we see in this paper and in [23], with our tree we are able to prove the appropriate
analogue of Sela’s shortening argument. There still does not exist a shortening argument
for general actions on tree-graded spaces.

The construction in this paper has been used in [23] and by Dahmani and the author [14].
It will also be crucial in future work of the author on the elementary theory of relatively
hyperbolic groups.
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at Caltech. The author was supported in part by the NSF. Both of these organisations
are thanked for their support. Finally, thanks to the anonymous referee, whose careful
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1 Limit groups and � –limit groups

Recall the following two definitions, due to Bestvina and Feighn [4].

Definition 1.1 [4, Definition 1.5] Let G and „ be finitely generated groups, and let
fhnW G!„g be a sequence of homomorphisms. The stable kernel of fhng, denoted
Ker
�!

.hn/, is the set of all elements g 2G so that g 2 ker.hn/ for all but finitely many n.

The sequence fhng is stable if for all g 2G , either (i) g 2Ker
�!

.hn/; or (ii) g 62 ker.hn/

for all but finitely many n.

Definition 1.2 [4, Definition 1.5] A „–limit group is a group of the form G=Ker
�!

.hn/

where G is a finitely generated group and fhnW G ! „g is a stable sequence of
homomorphisms.

Remark 1.3 If each of the hn is equal to h, a single homomorphism, then the sequence
fhng is certainly stable and the associated „–limit group is just h.G/. In particular,
all finitely generated subgroups of „ are „–limit groups.

A limit group is an F –limit group, where F is a finitely generated free group. This
terminology is due to Sela [40], although the definition that Sela gave was in terms on
an action of G on an R–tree induced by the sequence fhnW G! Fg. Sela’s geometric
definition also makes sense for ı–hyperbolic groups (see Sela [48]). In this paper,
we achieve a geometric definition of � –limit groups, where � is a torsion-free group
which is hyperbolic relative to free abelian subgroups.

In case „ D F , the geometric and algebraic definitions of „–limit groups are the
same [40, Lemma 1.3]. The two definitions are also the same when „ is a torsion-free
ı–hyperbolic group [48, Lemma 1.3]. When „ is a torsion-free CAT.0/ group with
isolated flats whose flat stabilisers are abelian, a geometric definition of „–limit group
was given in [24, Definition 3.21] and it was proved [24, Theorem 5.1] that these two
definitions are the same.

Suppose that � is a torsion-free group hyperbolic relative to free abelian subgroups. In
this paper, we provide an appropriate geometric definition of � –limit group, in analogy
with the definition from [24] (see Definition 5.8 below). It is proved in Theorem 6.7
that this definition is equivalent to Definition 1.2. As in Sela’s definition, along with the
geometric definition comes a faithful action of a (strict) � –limit group on an R–tree.

The utility of the algebraic Definition 1.2 is that it has implications for the logic of � .
In the case of Sela’s limit groups, the nonabelian limit groups are exactly those that have
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the same universal theory as a nonabelian free group. In general, if T8.H / denotes
the universal theory of a group H then we have the following result. See Champetier
and Guirardel [9] for a detailed discussion of this issue.

Lemma 1.4 Let „ be a finitely presented group and suppose that L is a „–limit
group. Then T8.„/� T8.L/.

The utility of Sela’s geometric definition is that it allows the application of the (Rips)
theory of isometric actions on R–trees, and Sela uses this to make a very deep study
of limit groups (and of � –limit groups, where � is a torsion-free hyperbolic group). It
turns out that the class of limit groups is exactly the class of finitely generated fully
residually free groups, which has been widely studied in the past.

2 Relatively hyperbolic groups

Recently there has been a large amount of interest in relatively hyperbolic groups. Rel-
atively hyperbolic groups were originally defined by Gromov in his seminal paper [21],
and an alternative definition was given by Farb [19]. Bowditch [6] gave two definitions,
equivalent to Gromov’s and Farb’s, respectively (see Dahmani [11] for a proof of
the equivalence of the definitions). Druţu and Sapir [17] gave a characterisation of
relatively hyperbolic groups in terms of their asymptotic cones.2

The idea behind relatively hyperbolic groups is to generalise hyperbolic groups (those
admitting a proper and cocompact action on a ı–hyperbolic space) to proper, “geomet-
rically finite” actions of on ı–hyperbolic spaces. There are four basic approaches; the
first is to mimic the action of a the fundamental group of a finite-volume hyperbolic
manifold on Hn ; the second to mimic its action on “electrified hyperbolic space”; the
third to study the intrinsic (path metric) geometry of the Cayley graph; and the fourth to
study (relative) isoperimetric functions. The first approach was Gromov’s, the second
Farb’s. Bowditch used both the first and the second. Druţu and Sapir’s approach is the
third, whereas the fourth has been very successfully followed by Osin [34].3

Examples of relatively hyperbolic groups include: (i) geometrically finite Kleinian
groups (which are hyperbolic relative to their maximal parabolic subgroups); (ii)
fundamental groups of hyperbolic manifolds of finite volume (hyperbolic relative
to their cusp subgroups); (iii) hyperbolic groups (relative to the trivial group, or
a finite collection of almost malnormal quasi-convex subgroups with pairwise finite

2As noted in the introduction, the results of this paper rely heavily on the results of [17].
3It is worth remarking that Osin’s theory allows infinitely generated groups. We will focus entirely on

finitely generated groups in this paper.
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intersections); (iv) free products (relative to the factors); and (v) limit groups (relative to
their maximal noncyclic abelian subgroups). See Farb [19], Bowditch [6], Dahmani [12]
and Szcaepański [49] for details.

For further recent work on relatively hyperbolic groups, see Alibegović [1], Yaman [50],
Druţu and Sapir [17; 16; 18], Dahmani [13], Groves and Manning [25], Osin [34] and
Chatterji and Ruane [10] (among others).

Definition 2.1 (Coned-off Cayley graph) Suppose that � is a finitely generated
group, with finite generating set A, and that fH1; s : : : ;Hmg is a collection of finitely
generated subgroups of � . Let X be the Cayley graph of � with respect to A. We
form the coned-off Cayley graph, zX , by adding to X a vertex c;Hi

for each coset
Hi of a parabolic subgroup, and for each coset Hi , an edge from c;Hi

to  0 for
each  0 2 Hi .

Definition 2.2 We say that � is hyperbolic relative to fH1; : : : ;Hmg (a collection of
finitely generated subgroups) if

(1) the coned-off Cayley graph zX is ı–hyperbolic for some ı ;

(2) for each edge e 2 zX , and each n � 1, there are only finitely many loops of
length at most n which contain e .

The above definition of relatively hyperbolic is a hybrid of Farb’s definition and [6,
Definition 2] of Bowditch. Condition (2) of Definition 2.2 is the essence of Bowditch’s
definition, though he allows actions on spaces other than the coned-off Cayley graph.
Farb’s definition [19] is that the coned-off Cayley graph be ı–hyperbolic, but he also
required that it satisfied the “Bounded Coset Penetration” (BCP) Property. It follows
from [6] and [11, Theorem 6.1] that our definition is equivalent to the usual definitions
(such as Farb’s or Bowditch’s).

Terminology 2.3 Suppose that � is a group which is hyperbolic relative to the collec-
tion fH1; : : : ;Hmg of subgroups. The subgroups Hi are called parabolic subgroups.4

In this paper we are concerned with torsion-free relatively hyperbolic groups � where
all the parabolic subgroups are free abelian.

Definition 2.4 A subgroup K of a group G is malnormal if for all g 2 G XK we
have gKg�1\K D f1g.

A group G is CSA if any maximal abelian subgroup of G is malnormal.

4Alternative terminology for these subgroups is peripheral subgroups. Sometimes, all conjugates of
the Hi are also called parabolic subgroups.
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Lemma 2.5 Suppose that � is a torsion-free group which is hyperbolic relative to a
collection of free abelian subgroups. Then � is CSA.

Proof Let A be a maximal abelian subgroup of � .

Since � is torsion-free, any conjugate of a parabolic subgroup is malnormal (see
Farb [19, Example 1, page 819]). This implies that if M is a conjugate of a parabolic
subgroup and A intersects M nontrivially then ADM , which is malnormal.

Suppose that A is a maximal abelian subgroup of � and that g 2AX f1g. If g is not
contained in a conjugate of a parabolic subgroup then a result of Osin [34, Theorem
1.14, page 10] and the comment thereafter) implies that the centraliser of hgi is virtually
cyclic. Since � is torsion-free, this centraliser is cyclic. Therefore, in this case ADhhi

for some h. Note that A is maximal cyclic in � . Suppose now that  2 � is such that
hk�1 D hj for some k; j 2 ZX f0g. Then [34, Corollary 4.21, page 83] implies
that jkj D jj j. Thus,  2 commutes with hj . This implies that  2 2 hhi, which in turn
implies that  2 hhi, so A is malnormal.

3 Druţu and Sapir’s results

In [17], Druţu and Sapir find a characterisation of relatively hyperbolic groups in terms
of their asymptotic cones. In this section, we recall the definition of asymptotic cones
and then briefly summarise those of Druţu and Sapir’s results necessary for this paper.

3.1 Asymptotic cones

Asymptotic cones were introduced by van den Dries and Wilkie in [15] in order to
recast Gromov’s Polynomial Growth Theorem from [20]. See Druţu and Sapir [17] for
a discussion of other results about asymptotic cones. We briefly recall the definition of
asymptotic cones.

Definition 3.1 A nonprincipal ultrafilter is a f0; 1g–valued finitely additive measure
on N defined on all subsets of N so that any finite set has measure 0.

The existence of nonprincipal ultrafilters is guaranteed by Zorn’s Lemma. We fix once
and for all a nonprincipal ultrafilter ! .5 Given any bounded sequence fang �R there
is a unique number a 2 R so that for all � > 0 we have !.fan j ja� anj < �g/ D 1.

5A different choice of ultrafilter can change the resulting asymptotic cone in interesting ways, but not
in a way that affects our results. Thus, we are unconcerned which ultrafilter is chosen.
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We denote a by !–limfang. This notion of limit exhibits most of the properties of the
usual limit (see van den Dries and Wilkie [15]).

Let .X; d/ be a metric space. Suppose that f�ng is a sequence of real numbers with
no bounded subsequence, and that fxng is a collection of points in X . Let .Xn; dn/

be the metric space which has set X and metric .1=�n/dX . The asymptotic cone of X

with respect to fxng; f�ng and ! , denoted X! , is defined as follows. First, define
the set fX! to consist of all sequences fyn j yn 2 Xng for which fdXn

.xn;yn/g is a
bounded sequence. Define a pseudo-metric zd on fX! by

zd.fyng; fzng/D !–limfdXn
.yn; zn/g:

The asymptotic cone X! is the metric space induced by the pseudo-metric zd on fX! :

X! WD fX! =�;
where the equivalence relation � on fX! is defined by: x�y if and only if zd.x;y/D0.
The pseudo-metric zd on fX! naturally descends to a metric on d! on X! .

3.2 Tree-graded spaces and relatively hyperbolic spaces

Definition 3.2 [17, Definition 1.10] Let Y be a complete geodesic metric space, and
let P be a collection of closed subsets of Y (called pieces). We say that the space Y

is tree-graded with respect to P if the following two conditions are satisfied:

.T1/ Each pair of distinct pieces intersect in at most a point.

.T2/ Every simple geodesic triangle (a simple loop composed of three geodesics) in
X is contained in a single piece.

In [24] it is proved that if Y is a CAT.0/ space with isolated flats and relatively thin
triangles then any asymptotic cone Y! of Y is tree-graded with respect to its collection
of maximal flats (the proof of this is essentially contained in [29]). Thus, it seemed
natural to generalise the results from [24] as has been done in this paper. In [28],
Hruska and Kleiner prove that if a cocompact CAT.0/ space has isolated flats then it
has relatively thin triangles.

One of the main results of [17] is the following.

Theorem 3.3 [17, Theorem 1.11] A finitely generated group G is relatively hyper-
bolic with respect to finitely generated subgroups H1; : : : ;Hn if and only if every
asymptotic cone of G (with respect to any nonprincipal ultrafilter, any sequence of
scaling constants, where the basepoints are the identity of G ) is tree-graded with respect
to !–limits of sequences of cosets of the subgroups Hi .
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We also need the following definition and results. In the definition below I! is the
ultrapower of the set I with respect to the ultrafilter ! .

Definition 3.4 [17, Definition 3.19] Let .Y; dist/ be a metric space and let QDfQi j

i 2 Ig be a collection of subsets of Y . In every asymptotic cone Y! , with choice of
basepoints fxng, we consider the collection of subsets

Q! D
�

lim!.Qin
/
ˇ̌̌
.in/

!
2 I! such that

n
dist.xn;Qin /

dn

o
is bounded

�
:

The space Y is asymptotically tree-graded with respect to Q if every asymptotic
cone Y! is tree-graded with respect to Q! .

Theorem 3.5 [17, Theorem 5.1] Let Y be a metric space and let Q be a collection of
subsets of Y . Let qW Y ! Y 0 be a quasi-isometry. If Y is asymptotically tree-graded
with respect to Q then Y 0 is asymptotically tree-graded with respect to q.Q/.

Theorem 3.6 [17, Theorem 4.1] Let .Y; dist/ be a geodesic metric space and let
Q D fQi j i 2 Ig be a collection of subsets of Y . The space Y is asymptotically
tree-graded with respect to Q if and only if the following properties are satisfied:

(˛1 ) For every � > 0, the diameters of the intersections N�.Qi/ \ N�.Qj / are
uniformly bounded for all i ¤ j .

(˛2 ) For every � 2 Œ0; 1
2
/ there exists M.�/>0 so that for every geodesic q of length l

and every Q 2Q with q.0/; q.l/ 2N�l.Q/ we have q.Œ0; l �/\NM .Q/¤∅.

(˛3 ) For every k � 2 there exists � > 0, � � 8 and � > 0 such that every k –gon P

in X with geodesic edges which is .�; �; �/–fat satisfies P �N�.Q/ for some
Q 2Q.

4 The space X

In this paragraph we define a space X , closely associated to the Cayley graph of a
relatively hyperbolic group, which will be the appropriate space for our analysis of
� –limit groups in the subsequent sections, and also in [23] and [14].

The space X is quasi-isometric to the Cayley graph. However, it has two advantages
(see Theorem 4.5 and Lemma 4.6 below), which we now explain. Let � be a group
hyperbolic relative to fH1; : : : ;Hmg (finitely generated subgroups). Let Y be the
Cayley graph of � with respect to some finite generating set A. It is convenient to
assume that A contains Bi , a generating set for Hi . Then the Cayley graph of Hi with
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respect to Bi naturally embeds in Y . This embedding is a quasi-isometric embedding.
In case each Hi is free abelian of rank ni and Bi is a basis, the space X contains
an isometric copy of Rni (with the standard Euclidean metric) on which Hi acts
properly with quotient a square torus. This is the first important property (upgrading
quasi-isometric embedding to isometric embedding). If a geodesic path in Y starts
and finishes near to a single coset of some Hi , then it cannot travel too far from this
coset. The second important property of our space X (Lemma 4.6) is that in X such
a path spends most of its time contained in the appropriate Euclidean space). Thus
we improve quasi-convex to “convex and attracting”. For each of these properties, an
appropriate picture to have in mind is the embedding of Euclidean space in “truncated
hyperbolic space” coming from a finite-volume hyperbolic manifold. Both properties
hold in this case. However, it is worth noting that away from the copies of Rni , the
space X is a graph (with varying edge lengths).

The space X should be considered as a hybrid of the Cayley graph of a relatively
hyperbolic group and a CAT.0/ space with isolated flats (although a CAT.0/ space with
isolated flats needn’t satisfy the second property discussed above). In particular, the
“flats” are Euclidean and convex. The space X has “relatively thin triangles” (Theorem
4.16) and “isolated flats” (appropriately interpreted; Lemma 4.13). Though we do
not need it here, it is worth remarking that geodesics in X satisfy a fellow-travelling
condition exactly analogous to hyperbolic groups (rather than merely to relatively
hyperbolic groups).

Suppose that � is a group which is hyperbolic relative to a collection fH1; : : : ;Hmg

of (finitely generated) subgroups.

Choose a generating set A for � which intersects each of the subgroups Hi in a
generating set Bi for Hi , for 1� i �m. Let B D

Sm
iD1 Bi . For each i 2 f1; : : : ;mg.

Let dA be the word metric on � induced by the generating set A of � , and let dBi
be

the word metric on Hi induced by Bi .

Let Y denote the Cayley graph of � with respect to A, where each edge is isometric to
the unit interval Œ0; 1�. The group � acts on itself by left multiplication, which induces
an isometric action on Y .

Let Hi be a coset of some parabolic subgroup of � . The set Bi also gives a metric
on Hi , which we denote by dBi

. Now, [17, Lemma 4.3] states that there is a constant
K � 0 so that for any x;y 2 Hi , any geodesic joining x and y in Y stays entirely
in the K–neighbourhood of Hi .

We now build a space Y k out of Y .
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Consider a coset Hi , along with the set of edges labelled by elements of Bi . The
resulting subgraph Z.;Hi/ of Y is exactly the Cayley graph of Hi . We now form
a new graph Z.Hi/

1 , which is another copy of Z.;Hi/, except that each edge is
isometric to the closed interval Œ0; 1=4�. Denote this new graph by Z.;Hi/

1 , and join
it to Z.;Hi/ by joining corresponding vertices by edges of length 1=4. Perform this
construction for each coset Hi of a parabolic subgroup.

We define Y j inductively, starting from Y j�1 . First, form Z.;Hi/
j with edges of

length 2�2j (but otherwise isomorphic to Z.;Hi/), and join it to Z.;Hi/
j�1 by

edges of length 2�2j .

Terminology 4.1 We call the edges of length 2�2j joining Z.;Hi/
j�1 to Z.;Hi/

j

vertical, and the edges which lie in some Z.;Hi/
j horizontal.

The space Y j is the union of Y j�1 along with Z.;Hi/
j , and the vertical edges

joining Z.;Hi/
j�1 to Z.;Hi/

j . Endow Y j with the natural path metric.

Indira Chatterji attributes a similar construction to David Epstein, who also proves an
analogue of Theorem 4.5.

For an integer k�1, let C.;Hi/
k be the union of the graphs Z.;Hi/;Z.;Hi/

1; : : : ;

Z.;Hi/
k , along with the sets of vertical edges that join successive graphs in this

sequence.

There is a natural space Y1 , the metric completion of
S1

sD1 Y s , (where we consider
Y s to be a subset of Y sC1 ). Each coset Hi inherits a “cone-point” w;i from this
completion process. In Y1 , the point w;i lies at distance � from the coset Hi ,
where �D

P1
sD1 2�2s < 1=2. It is clear that the space Y1 is quasi-isometric to the

coned-off Cayley graph of � . Let Y1 be ‡ –hyperbolic, and suppose without loss of
generality that ‡ > 1.

We consider Y1 to be a “coned” space, and each of the Y i to be “partially coned”
spaces.

Definition 4.2 Suppose that Hi is a parabolic subgroup of � and Hi is a coset
of Hi in � . The space P;i is formed from Y by performing the construction of Y1

to all cosets of all parabolic subgroups except the coset Hi .

Lemma 4.3 Suppose that Hi is a coset of a parabolic subgroup in � and that
x;y 2 Hi . Let Œx;y� be a geodesic between x and y in P;i and suppose that
Œx;y� does not intersect Hi except at its endpoints. Then Œx;y� lies entirely in the
35‡ –neighbourhood of Hi in P;i .
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Proof Let 1Œx;y� be the image of Œx;y� in the space Y1 , under the inclusion P;i �

Y1 . For any R, the R–neighbourhood of w;i in Y1 naturally corresponds to the
.R� �/–neighbourhood of Hi in P;i , and if R> � then outside of these balls the
two spaces are locally isometric (where the local isometry is induced by the inclusion
P;i � Y1 ).

Suppose that 1Œx;y� is not contained in the 10‡ neighbourhood of w;i in Y1 . That
part of 1Œx;y� which lies at least 10‡ from w;i is a 10‡ –local-geodesic. By [7,
Theorem III.H.1.13, page 405], outside the 10‡ ball around w;i in Y1 , the path
1Œx;y� is a .14‡=.6‡/; 2‡/–quasi-geodesic. However, the distance in Y1 which it
travels outside of the 10‡ ball around w;i is at most 20‡ (since the path starts and
finishes at distance � < 1

2
from w;i ).

Therefore, the total distance that 1Œx;y� travels outside the 10‡ ball about w;i is at
most �

7

3

�
20‡ C 2‡ < 50‡:

Thus 1Œx;y� is contained in the 35‡ ball around w;i in Y1 . As above, this implies
that Œx;y� is contained in the 35‡ –neighbourhood of Hi in P;i , as required.

Lemma 4.4 There exists a constant K1 , depending only on Y , and the set fHig, so
that for all x;y 2 Hi

dP;i .x;y/� dHi
.x;y/�K1dP;i .x;y/:

Proof Since Hi � P;i , and since dP;i is a path metric, the first inequality is
immediate.

Let x;y 2 Hi , and let Œx;y� be a geodesic between x and y in P;i . By Lemma 4.3
above, the path Œx;y� lies entirely within the 35‡ –neighbourhood of Hi .

Let c1; c2; : : : ; ck be points along Œx;y� which are such that � � dP;i .ci ; ciC1/ � 1

(this can be ensured if we choose each ci to be either a vertex from Y or a cone-point
w 0;j ). For each 1� i � k , let bi 2 Hi be a point in Hi as close as possible to ci ,
and choose a geodesic Œci ; bi � (which has length at most 35‡ ). Possibly ci D bi , and
so the path Œci ; bi � is a constant path Also, choose a path Œbi ; biC1�� Hi of shortest
length.

Consider the paths pi D Œbi ; biC1� and qi D Œbi ; ci ; ciC1; biC1�. The path qi has length
at most 70‡ C 1. Also, unless Œci ; ciC1�� Hi , the path qi intersects Hi only at its
endpoints.

The path qi corresponds to a path q0i � Y , where any part of qi which passes through
a cone-point is replaced by a (shortest) path through the corresponding coset. Now,
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q0i is a relative .70‡ C 1/–quasi-geodesic. Also, pi is a relative 2�–quasi-geodesic,
and can be considered as a path in Y . Note that pi penetrates Hi while q0i does not.
Therefore, Bounded Coset Penetration implies that there is a constant c D c.70‡ C 1/

so that pi travels distance at most c in Hi , which is to say that pi has length at
most c .

We have seen that each Œbi ; biC1� has length at most c . Therefore dHi
.x;y/ � ck .

However, dP;i .x;y/� �k , and it suffices to take K1 D c=�.

Now let P
.k/
;i be the space formed from Y by adding the spaces C. 0;Hj /

k for all
cosets of parabolic subgroups except Hi . Then for all x;y 2 Hi we have

dP;i .x;y/� d
P
.k/

;i

.x;y/;

and so by Lemma 4.4 we have

dHi
.x;y/�K1d

P
.k/

;i

.x;y/:

Theorem 4.5 There exists k � 0 so that each of the graphs Z.;Hi/
k is isometrically

embedded in Y k .

Proof It suffices to take k > .log2 K1/=2, where K1 is the constant from the conclu-
sion of Lemma 4.4.

Suppose that there exists u; v 2Z.;Hi/
k so that a geodesic Œu; v� between u and v

does not lie entirely within Z.;Hi/
k . Since Z.;Hi/

k is isometrically embedded in
C.;Hi/

k , the path Œu; v� cannot be contained in C.;Hi/
k .

Suppose that x is the point furthest along Œu; v� so that Œu;x�� C.;Hi/
k . Let y be

the point furthest along Œu; v� so that Œx;y� intersects C.;Hi/
k only in Z.;Hi/.

Because of the way C.;Hi/
k was built, that part of Œu; v� immediately before x

consists entirely of edges joining the different Z.;Hi/
i , from Z.;Hi/

k to Z.;Hi/.
Similarly, that part of Œu; v� immediately after y consists of a “vertical” path from y

to Z.;Hi/. Let x1 be the final point in Œu;x� contained in Z.;Hi/
k and let y1

be the first point in Œy; v� contained in Z.;Hi/
k . Then we have dHi

.x;y/ D

22kdZ.;Hi /k
.x1;y1/. Now let D D d

P
.k/

;i

.x;y/, and note that D � �.

DC
1

2
� dZ.;Hi /k

.x1;y1/

D 2�2K dHi
.x;y/

� 2�2kK1D:

Therefore, D C 1
2
� 2�2kK1D , which implies in particular that 2�2kK1 � 1 > 0,

contradicting our choice of k . This completes the proof.
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We now fix k so that Theorem 4.5 holds, and consider the space Y k .

Lemma 4.6 There exists a function f1W N!N so that if x;y 2 Y k are such x and
y lie in the N –neighbourhood of Hi and Œx;y� does not intersect Z.;Hi/

k then
d.x;y/� f1.N /.

Proof By Theorem 4.5, and the definition of Y k , it suffices to bound the length of
a geodesic Œw; z� where w; z 2NN .Hi/ and Œw; z� does not intersect C.;Hi/

k X

Z.;Hi/.

For such a pair we have
dY k .w; z/D d

P
.k/

;i

.w; z/:

Denote this distance by E . Let w1; z1 be points in Hi which are closest to w and z ,
respectively. Also, let w2; z2 be the points in Z.;Hi/

k which are closest to w1 and
z1 , respectively. Also, let �k D

Pk
iD1 2�2i be the distance from Hi to Z.;Hi/

k .
Then we have

E D dY k .w; z/

� dY k .w1; z1/C 2N

D dZ.;Hi /k
.w2; z2/C 2N C 2�k

D 2�2kdHi
.w1; z1/C 2N C 2�k

D 2�2kK1d
P
.k/

;i

.w1; z1/C 2N C 2�k

� 2�2kK1.dP
.k/

;i

.w; z/C 2N /C 2N C 2�k

D 2�2kK1.EC 2N /C 2N C 2�k ;

which implies (since the choice of k from Theorem 4.5 ensures that 1� 2�2kK1 > 0)
that

E �
2�2kK1N C 2N C 2�k

1� 2�2kK1

:

This completes the proof.

We now assume that � is torsion-free and that each of the parabolic subgroups of �
are free abelian.

Remark 4.7 Suppose that a group G is hyperbolic relative to a family P of subgroups,
and that some of the subgroups in P are hyperbolic. Let P 0 be the nonhyperbolic
groups in P . Then G is also hyperbolic relative to P 0 .
Therefore, we assume that all parabolic subgroups of our relatively hyperbolic groups
are not hyperbolic. In case parabolics are free abelian, as in this paper, this amounts to
assuming that none of the parabolics are infinite cyclic (or trivial).
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Suppose that the generating set for � intersects each parabolic subgroup in a basis (as a
free abelian group). Then each of the graphs Z.;Hi/

k is isomorphic to the “standard”
Cayley graph of Zni (with edge of length 2�2k . Fix an embedding �i W Z.;Hi/

k ,!

Rni which is isometric on each edge, and send the vertices adjacent to the identity to
(scaled) standard basis vectors in Rik (and their negatives).

Using the map �i , glue a copy of Rni onto each subspace Z.;Hi/
k of Y k where

ni is the rank of Hi , and Rni is equipped with the standard Euclidean (`2 –) metric.

Definition 4.8 The resulting space is denoted X , and Q is the collection of copies of
the Rni glued onto the cosets Hi (where i 2 f1; : : : ;mg and  2 � ).

The copies of Rn that have been glued to Y k to form the space X now play the
role of cosets. They are isometrically embedded, and Lemma 4.6 above holds for
these subspaces also, since lengths of paths are unchanged outside of Z.;Hi/

k , and
distances can only get shorter inside Z.;Hi/

k .

The action of � on X is defined in the obvious way. The stabiliser in � of any Q 2Q
is a conjugate of a parabolic subgroup, which acts by translations on Q.

4.1 Properties of X

Lemma 4.9 Suppose Q2Q is a copy of Rni in X as above. Then Q is isometrically
embedded and convex in X .

Given Lemma 4.9, it is natural to call the elements of Q “flats”.

Lemma 4.10 Left multiplication of � on itself induces an isometric action of � on X .
This action is proper and cocompact.

Lemma 4.11 X is asymptotically tree-graded with respect to the set Q.

Proof The inclusion map � ,!X is a quasi-isometry.

We know that � is asymptotically tree-graded with respect to the set of cosets Hi . By
the proof of [17, Theorem 5.1, page 44], X is asymptotically tree-graded with respect
to Q.

Note also that any asymptotic cone of � is bi-Lipschitz homeomorphic to the analogous
asymptotic cone of X (taking the same basepoints, and the same scaling factors). The
utility of using X rather than just � is the following:
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Lemma 4.12 Suppose that X! is an asymptotic cone of X . Then each piece of X!
is isometric to .Rk ; d/ for some k , where d is the standard Euclidean metric on Rk .

In analogy with Hruska’s definition of isolated flats for CAT.0/ spaces (see Hruska [27,
2.1.2]), we note the following:

Lemma 4.13 (Isolated flats) Let Q be the collection of flats in X . Then there is a
function �W RC! RC such that for every pair of distinct flats Q1;Q2 2Q and for
every k � 0, the intersection of the k –neighbourhoods of Q1 and Q2 has diameter
less than �.k/.

Proof Theorem 3.6 (˛1 ) provides such a � .

Convention 4.14 Let �W RC!RC be as in Lemma 4.13. We suppose that �.k/� k

for all k � 0 and that � is a nondecreasing function.

We now prove a quasi-convexity result for the metric on X .

Lemma 4.15 There exists a function N1W N!N so that for any K , if x1;x2;y 2X

so that dX .x1;x2/�K and Œx1;y� and Œx2;y� are geodesics, then Œx1;y� is contained
in the N1.K/–neighbourhood of Œx2;y� (and vice versa).

Proof Choose a geodesic Œx1;x2�. Then the path Œy;x1;x2�D Œy;x1�[ Œx1;x2� is a
.1;K/–quasi-geodesic.

By [17, Theorem 1.12] there are constants � and M so that

� Œy;x1;x2� is contained in the � –tubular neighbourhood of the M –saturation
of Œy;x2� (see Druţu and Sapir [17, Definition 8.9] for a definition of M –
saturations);

� the points at which Œy;x1;x2� enters and leaves the � –neighbourhood of flats in
the M –saturation of Œy;x2� are at bounded distance from Œa;x1�.

By Lemma 4.6, and the fact the flats are isometric to Rn , the path Œy;x1;x2� lies
in the D2 –neighbourhood of Œy;x2� for some constant D2 . A symmetric argument
on Œy;x2;x1� and Œy;x1� implies that Œy;x2;x1� lies in the D2 –neighbourhood of
Œy;x1�.

For our purposes, one of the most important properties of the space X is contained in
the following theorem, which shows that geodesic triangles in X satisfy the Relatively
Thin Triangles Property (see Hruska [27, Definition 3.1.1]).
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Theorem 4.16 Suppose that X is as constructed above. There exists ı > 0 so that
for any a; b; c 2 X , and any �.a; b; c/ is a geodesic triangle, either (i) �.a; b; c/ is
ı–thin in the usual sense; or else (ii) there is a unique flat E �X so that each side of
�.a; b; c/ is contained in the ı–neighbourhood of the union of E and the other two
sides.

Proof Choose a geodesic triangle �.a; b; c/ in X , with a choice of geodesics Œa; b�,
Œb; c� and Œa; c�.

By [17, Lemma 8.16] and [17, Lemma 8.17], there is a constant ˛ (independent of the
points a; b; c ) such that one of two possibilities occurs: either

(i) there is a point x 2 X whose ˛–neighbourhood intersects all three of the
geodesics Œa; b�, Œb; c� and Œa; c� nontrivially; or

(ii) there is a flat E 2Q so that the ˛–neighbourhood of E intersects each of the
three geodesics nontrivially.

In case (i), let x1 be a point on Œa; b� which is within ˛ of x , and let x2 be a point on
Œa; c� which is within ˛ of x . Then dX .x1;x2/� 2˛ .

In case (ii) let x1 be the point on Œa; b� which is closest to a subject to being in the
˛–neighbourhood of E , and similarly for x2 on Œa; c�. Then [17, Corollary 8.14]
implies that there is a constant D1 so that dX .x1;x2/�D1 . We assume that D1� 2˛ .

So in either case, there exist points x1 2 Œa; b� and x2 2 Œa; c� so that dX .x1;x2/�D1 .
Denote by Œa;x1� the subpath of Œa; b� from a to x1 , and similarly for Œa;x2�� Œa; c�.
By Lemma 4.15, there is a constant D2 so that Œa;x1� lies in the D2 –neighbourhood
of Œa;x2�, and vice versa.

We use a symmetric argument on the points b and c – finding points y1 2 Œc; a�,
y2 2 Œc; b� and z1 2 Œb; a�, z2 2 Œb; c� as with x1 and x2 .

Now, in case (i) above, we can take x1 D z1 , x2 D y1 and y2 D z2 , and we’re done.
In case (ii), we note that the path Œx1; z1� � Œa; b� lies in the N1.˛/–neighbourhood
of E , by Lemma 4.15, and similarly for Œx2;y1�� Œa; c� and Œz2;y2�� Œb; c�.

Therefore, it suffices to take ı DmaxfD2;N1.˛/g.

4.2 Projecting to flats

In this paragraph we record some results about projecting to flats which are required
for the proofs in the subsequent sections.
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Definition 4.17 [17, Definition 4.9] Let x 2X and A�X . The almost projection
of x onto A is the set of points y 2A so that dX .x;y/� dX .x;A/C 1.

The following results follows immediately from [17, Corollary 8.14] and Lemma 4.11.

Lemma 4.18 There exists a constant C1 so that if Q 2Q and x 2X then the almost
projection of x onto Q has diameter at most C1 .

Lemma 4.19 There exists a function N3W N ! N so that if x1;x2 2 X , Q 2 Q
and �.x1/; �.x2/ are in the almost projections of x1 and x2 to Q, respectively then
dX .�.x1/; �.x2//�N3.dX .x1;x2//.

Again, we suppose that N3.x/ � x for all x � 0 and that N3 is a nondecreasing
function.

Recall that ı is the constant from Theorem 4.16 and that �W N!N is the function
from Lemma 4.13.

Lemma 4.20 (cf [24, Lemma 2.11]) Suppose that � D �.a; b; c/ is a geodesic
triangle in X . If � is not .ıC�.ı/=2/–thin then � is ı–thin relative to a unique flat
Q 2Q.

Proof Given Lemma 4.13 and Theorem 4.16, the proof of [24, Lemma 2.11] applies
directly.

Lemma 4.21 (cf [24, Lemma 2.21]) Suppose that Q 2 Q, that x;y 2Q and that
z 2X . Let Œx; z� and Œy; z� be geodesics. Then there exist u 2 Œx; z� and v 2 Œy; z� that
both lie in the 2ı–neighbourhood of Q such that

dX .u; v/� �.ı/:

Proof Given Theorem 4.5 and Theorem 4.16 and Lemma 4.13, the proof of [24,
Lemma 2.21] applies directly.

Proposition 4.22 (cf [24, Proposition 2.22]) Suppose that Q 2 Q, that x;y 2 X

and that some geodesic Œx;y� does not intersect the 4ı–neighbourhood of Q. Let
�.x/; �.y/ be in the almost projections of x and y , respectively. Then

dX .�.x/; �.y//�N3.�.3ı/CN1.�.ı///:
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Proof By Lemma 4.21 there exist w1 2 Œ�.x/;y� and w2 2 Œ�.y/;y�, both in the
2ı–neighbourhood of Q such that dX .w1; w2/� �.ı/. By a similar argument as in
the proof of Lemma 4.21 (see Groves [24]), there are u1 2 Œ�.x/;x� and u2 2 Œ�.x/;y�

which lie outside the 2ı–neighbourhood of E so that dX .u1;u2/��.3ı/. Now Œw1;y�

is contained in the N1.�.ı//–neighbourhood of Œw2;y�, by Lemma 4.15. Therefore,
there exists u3 2 Œ�.y/;y� so that dX .u2;u3/�N1.�.3ı//.

We can choose �.u1/ and �.u3/ in the almost projections of u1;u3 so that �.u1/D

�.x/ and �.u3/D �.y/. Now, dX .u1;u3/� �.3ı/CN1.�.ı//, so by Lemma 4.19
we have

dX .�.x/; �.y//D dX .�.u1/; �.u3//

�N3.dX .u1;u3//

�N3.�.3ı/CN1.�.ı///:

The above result could also be easily proved for the Cayley graph of a relatively
hyperbolic group, and almost projections to cosets of parabolic subgroups.

5 Asymptotic cones and compactification

In this section we start with � , a finitely generated group which acts properly and
cocompactly by isometries on a metric space .X; dX /, a finitely generated group G and
a sequence fhnW �! Gg of homomorphisms. Using fhng we construct a particular
asymptotic cone X! , which is equipped with an isometric action of G with no global
fixed point.

In the case of ı–hyperbolic groups and spaces, the construction we describe in this
section is essentially due to Paulin [35; 37] (see also Bestvina [3] and Bridson and
Swarup [8]), though was not cast there in terms of asymptotic cones. For CAT.0/ spaces,
this construction is performed by Kapovich and Leeb [29]. The general construction is
similar. See Groves [24] for more details about this construction and van den Dries
and Wilkie [15] or Druţu and Sapir [17] for many properties about asymptotic cones.

Let G be a finitely generated group and � a torsion-free group which is hyperbolic
relative to a collection of free abelian subgroups. Let A be a finite generating set for G ,
let X be the space constructed from a Cayley graph of � in Section 4, and let x 2 X

correspond to the identity of � . If hW G! � is a homomorphism, define

khk WDmin
2�

max
g2A

dX .x; .h.g/�1/:x/;

and let h be an element of � which realises this minimum.
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Terminology 5.1 We say that a pair of homomorphisms h; h0W G! � are nonconju-
gate if there is no inner automorphism � W �! � so that h0 D � ı h.

Suppose that fhi W G! �g is a sequence of pairwise nonconjugate homomorphisms.
Then the sequence fkhnkg does not contain a bounded subsequence. Let X! be the
asymptotic cone, defined with respect to some nonprincipal ultrafilter ! , the sequence
of basepoints xn D x and the sequence of scaling factors �n D khnk.

The action of G on X! is defined by g :fyng D fhn
hn.g/

�1
hn
:yng.

Lemma 5.2 The action of G on X! has no global fixed point.

Proof See Lemma 3.9 of [24], where the proof does not use the CAT.0/ property.

5.1 The subspace C1 and the action of G

We now change our focus somewhat, and consider the Gromov–Hausdorff topology
rather than asymptotic cones. The reason we make this change is that it allows us to
replace various statements about “!–almost all i ” by the stronger “for all but finitely
many i ”. It is possible to make the entire construction in the context of Gromov–
Hausdorff convergence, avoiding asymptotic cones and ultrafilters entirely. However,
this approach requires considering “approximate convex hulls” as in [8], and is more
cumbersome. Thus, we preferred to start with asymptotic cones, and only now switch
to Gromov–Hausdorff convergence.

Definition 5.3 Define the subspace C1 � X! to be the union of (i) the geodesic
segments Œx! ;g :x! � for all g 2G ; and (ii) the flats Q! �X! which contain a simple
geodesic triangle contained in �.g1 :x! ;g2 :x! ;g3 :x!/ for some g1;g2;g3 .

Lemma 5.4 The space C1 is (i) separable; (ii) G –invariant; (iii) convex in X! ; and
(iv) tree-graded with pieces isometric to .Rn; `2/, for some n (where n may vary
according to the piece).

Suppose that f.Yn; �n/g
1
nD1

and .Y; �/ are pairs consisting of metric spaces, together
with actions �nW G! Isom.Yn/, �W G! Isom.Y /. Recall (cf [4, Section 3.4, page 16])
that .Yn; �n/! .Y; �/ in the G –equivariant Gromov topology if and only if: for any
finite subset K of Y , any � > 0 and any finite subset P of G , for sufficiently large n,
there are subsets Kn of Yn and bijections �nW Kn!K such that for all sn; tn 2Kn

and all g1;g2 2 P we haveˇ̌
dY .�.g1/:�n.sn/; �.g2/:�n.tn//� dYn

.�n.g1/:sn; �n.g2/: tn/
ˇ̌
< �:
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To a homomorphism hW G! � , we naturally associate a pair .Xh; �h/ as follows: let
XhDX , endowed with the metric .1=�h/dX ; and let �hD �ıh, where �W �! Isom.X /
is the fixed homomorphism.

Let �1W G! Isom.C1/ denote the action of G on C1 .

Proposition 5.5 [24, Lemma 3.15] If there is a separable G–invariant subspace C
of X! which contains the basepoint x! of X! then there is a subsequence ffig of
fhig so that .Xfi

; �fi
/! .C1; �1/ in the G –equivariant Gromov topology.

For the remainder of the section and the next, we assume that we have passed to the
convergent subsequence ffig of fhig. In this vein, we denote Xfi

by Xi , and �fi

by �i .

Lemma 5.6 [24, Corollary 3.17] Let F1 be the set of flats in C1 . For each E 2F1
there is a sequence fEi �Xig so that Ei!E in the G –equivariant Gromov topology.

Observation 5.7 The action of G on C1 has no global fixed point.

Definition 5.8 Suppose that G and � are finitely generated groups and fhi W G! �g

is a sequence of pairwise nonconjugate homomorphisms, leading to an isometric action
of G on C1 , where C1 is constructed from X! , the asymptotic cone of � , as above.
Let K1 be the kernel of the action of G on C1 :

K1 D fg 2G j 8y 2 C1;g :y D yg:

The strict � –limit group is L1 DG=K1 .

A � –limit group is a group which is either a strict � –limit group as above or else a
finitely generated subgroup of � .

The following result is clear from the definition of the Gromov topology.

Lemma 5.9 Suppose that the sequence of homomorphisms ffi W G! �g gives rise to
a sequence of actions converging to an action of G on C1 , and that K1 is the kernel
of the action of G on C1 . Then Ker

�!
.fi/�K1 .

The following results give information about the flats in C1 , and their stabilisers in G .

Proposition 5.10 (cf [24, Lemma 3.18]) Suppose g 2G leaves a flat E � C1 (set-
wise) invariant, and that fEj g converges to E . Then for all but finitely many i we
have fi.g/:Ei DEi .
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Proof The proof of [24, Lemma 3.18] applies directly.

Proposition 5.11 (cf [24, Lemma 3.19]) Suppose g 2 StabG.E/ for some flat E �

C1 . Then g acts (possibly trivially) by translation on E .

Proof The proof of [24, Lemma 3.19] applies directly, once we notice that an element
of  2 � which leaves a flat in X invariant lies in a conjugate of a parabolic subgroup
and acts by Euclidean translations on the flat.

6 The R–tree T

6.1 Constructing the R–tree

We now follow [24] to construct from C1 an R–tree T equipped with an isometric
G–action with no global fixed point. Given the construction of C1 in the previous
section, the construction of T is exactly the same as in [24]. We repeat the definition
of T here.

Let F1 be the collection of all pieces in C1 . By Definition 3.2, for any g 2G exactly
one of the following holds: (i) g :E DE ; (ii) jg :E \Ej D 1; or (iii) g :E \E D∅.
By Proposition 5.10 and Proposition 5.11, Stab.E/ is a countable abelian group, acting
by translations on E (possibly not faithfully).

Let DE be the set of directions of the translations of E by elements of Stab.E/.

For each element g 2GXStab.E/, let lg.E/ be the (unique) point where any geodesic
from a point in E to a point in g :E leaves E , and let LE be the set of all lg.E/�E .
Note that if g :E \E is nonempty (and g 62 Stab.E/) then g :E \E D flg.E/g.

Since G is finitely generated, and hence countable, both sets DE and LE are countable.
Given a (straight) line p � E , let �p

E
be the projection from E to p . Since LE is

countable, there is a line pE �E such that

(1) the direction of pE is not orthogonal to a direction in DE ;

(2) if x and y are distinct points in LE , then �pE

E
.x/¤ �

pE

E
.y/.

Project E onto pE using �
pE

E
. The action of Stab.E/ on pE is defined in the

obvious way (using projection) – this is an action since the action of Stab.E/ on E is
by translations. Connect C1 XE to pE in the obvious way – this uses the following:

Observation 6.1 Suppose S is a component of C1 XE . Then there is a (unique)
point xS 2E so that S is a component of C1 X fxSg.

Glue such a component S to pE at the point �pE

E
.xS /.
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Perform this projecting and gluing construction in an equivariant way for all flats
E � C1 – so that for all E � C1 and all g 2G the direction of the lines pg:E and
g :pE is the same (this is possible since the action of Stab.E/ on E is by translations,
so doesn’t change directions).

Having done this for all flats E � C1 , we arrive at a space T which we endow with
the (obvious) path metric.

An isometric action of G on T is naturally induced by the action of G on X! .

The space T has a distinguished set of geodesic lines, namely those of the form pE ,
for E 2 F1 . Denote the set of such geodesic lines by P .

The following lemma is [24, Lemma 4.2], and the proof there holds in the current
situation.

Lemma 6.2 The space T is an R–tree and has an isometric G –action with no global
fixed point.

Remark 6.3 Since K1 �G acts trivially on C1 , it also acts trivially on T , and the
action of G on T induces an isometric action of L1 on T .

6.2 The actions of G and L1 on T

Let G be a finitely generated group, and � a torsion-free group which is hyperbolic
relative to a collection of free abelian subgroups. Suppose that fhi W G ! �g is a
sequence of pairwise nonconjugate homomorphisms. Let X! , C1 and T be as in
Section 5 and Section 5.1 and Section 6.1, respectively. Let ffi W G ! �g be the
subsequence of fhig as in the conclusion of Proposition 5.5. Let K1 be the kernel of
the action of G on C1 and let L1 DG=K1 be the associated strict � –limit group.

Definition 6.4 [26, page 2] An action of a finitely generated group G on an R–
tree T is called superstable if whenever there are nontrivial arcs I ¨ J so that the
stabilizers of I and J in G are different, the stabilizer of J is trivial.

Theorem 6.5 (cf [40, Lemma 1.3; 24, Theorem 4.4]) In the above situation, the
following properties hold.

(1) Suppose that ŒA;B� is a nondegenerate segment in T . Then StabL1
ŒA;B� is

an abelian subgroup of L1 .

(2) If T is isometric to a real line then for all but finitely many n the group fn.G/

is free abelian. Furthermore, in this case L1 is free abelian.
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(3) If g 2G fixes a tripod in T pointwise then g 2 Ker
�!

.fi/.

(4) Let Œy1;y2� � Œy3;y4� be a pair of nondegenerate segments of T and assume
that StabL1

Œy3;y4� is nontrivial. Then

StabL1
Œy1;y2�D StabL1

Œy3;y4�:

In particular, the action of L1 on the R–tree T is superstable.

(5) Let g 2G XK1 . Then for all but finitely many n we have g 62 ker.fn/.

(6) L1 is torsion-free.

(7) If T is not isometric to a real line then ffig is a stable sequence of homomor-
phisms.

Proof The proof of [24, Theorem 4.4] relies on a number of different results. In each
case, we have an exact analogue in the setting of Theorem 6.5 here.

The results we need are: Proposition 5.10, Lemma 5.9, Lemma 5.6, Lemma 4.20,
Lemma 4.21, Proposition 5.5, Proposition 4.22 and the fact that stabilisers in � of flats
in X are malnormal (see Farb [19, Example 1, page 819]).

Given these results, the proof of [24, Theorem 4.4] applies directly.6 The only change
is that some of the constants have changed, so some of the counting has to be changed.
This is straightforward.

We need the following lemma later when we describe the shortening argument.

Lemma 6.6 [24, Lemma 4.5] Suppose ˛; ˇ 2X and g 2G are such that there is a
segment of length at least

6�.4ı/C 4 maxfdX .g˛; ˛/; dX .gˇ; ˇ/g

in a geodesic Œ˛; ˇ� which is within ı of a flat E 2Q. Then g 2 Fix.E/.

Proof Given Theorem 4.16 and Lemma 4.13, the proof of [24, Lemma 4.5] applies
without change.

The following are two immediate applications of the above construction of the R–
tree T , and of Theorem 6.5. See Groves [24] for proofs which apply without change
in the current setting.

6Note in particular that the analogue of [24, Lemma 4.5] holds in this setting. We state this separately
below.
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Theorem 6.7 (cf [24, Theorem 5.1]) Suppose that � is a torsion-free group which is
hyperbolic relative to a collection of free abelian subgroups. A group L is a � –limit
group in the sense of Definition 1.2 if and only if it is a � –limit group in the sense of
Definition 5.8.

Theorem 6.8 (cf [24, Theorem 5.9]) Suppose that � is a torsion-free group which
is hyperbolic relative to a collection of finitely generated free abelian subgroups, and
suppose that Out.�/ is infinite. Then � admits a nontrivial splitting over a finitely
generated free abelian group.

The results of [9] now imply the following result. (This is straightforward to prove
using Theorem 6.5; see Sela [40].)

Lemma 6.9 (cf [24, Corollary 5.7]) Suppose that � is a torsion-free group hyperbolic
relative to a collection of finitely generated free abelian subgroups, and suppose that L

is a � –limit group. Then

(1) any finitely generated subgroup of L is a � –limit group;

(2) L is torsion-free;

(3) L is commutative-transitive and CSA;

(4) every solvable subgroup of L is abelian.

7 The shortening argument

Definition 7.1 (Dehn twists) Let G be a finitely generated group. A Dehn twist is
an automorphism of one of the following two types:

(1) Suppose that G D A �C B and that c is contained in the centre of C . Then
define � 2 Aut.G/ by �.a/D a for a 2A and �.b/D cbc�1 for b 2 B .

(2) Suppose that G D A�C , that c is in the centre of C , and that t is the stable
letter of this HNN extension. Then define � 2 Aut.G/ by �.a/D a for a 2A

and �.t/D tc .

Definition 7.2 (Generalised Dehn twists) Suppose G has a graph of groups decompo-
sition with abelian edge groups, and A is an abelian vertex group in this decomposition.
Let A1�A be the subgroup generated by all edge groups connecting A to other vertex
groups in the decomposition. Any automorphism of A that fixes A1 elementwise
can be naturally extended to an automorphism of the ambient group G . Such an
automorphism is called a generalised Dehn twist of G .
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Definition 7.3 Let G be a finitely generated group. We define Mod.G/ to be the
subgroup of Aut.G/ generated by

(1) inner automorphisms;

(2) Dehn twists arising from splittings of G with abelian edge groups;

(3) generalised Dehn twists arising from graph of groups decompositions of G with
abelian edge groups.

Similar definitions are made in [40, Section 5] and [4, Section 1].

Suppose that � is a torsion-free group which is hyperbolic relative to abelian subgroups,
acting by isometries on the space X constructed in Section 4, with basepoint x 2X .
Suppose also that G is a finitely generated group, with finite generating set A. Let
hW G! � be a homomorphism. Recall that in Section 5 we defined the length of h by

khk WDmax
g2A

˚
dX .x; h.g/:x/

	
:

Definition 7.4 (cf [4, Definition 4.2]) We define an equivalence relation on the set of
homomorphisms hW G! � by setting h1 � h2 if there is ˛ 2Mod.G/ and  2 � so
that h1 D � ı h2 ı˛ , where � is the inner automorphism of � induced by  .

A homomorphism hW G!� is short if for any h0 such that h�h0 we have khk�kh0k.

The following is one of the main technical results of this paper.

Theorem 7.5 (Shortening argument) Suppose that � is a nonabelian, freely inde-
composable, torsion-free group which is hyperbolic relative to abelian subgroups, and
suppose that the sequence of automorphisms fhnW �!�g converges to a faithful action
�W �! Isom.C1/ as above. Then for all but finitely many n the homomorphism hn is
not short.

In order to “shorten” arbitrary homomorphisms, rather than just automorphisms, we
need to introduce two new “bending” moves. This is undertaken in [23] (using ideas
inspired by Alibegović [2]).

We now show how Theorem 7.5 implies Theorem 0.1.

Proof of Theorem 0.1 (assuming Theorem 7.5) If � is abelian then the theorem is
clear, since in this case Mod.�/D Aut.�/. Thus we assume that � is nonabelian.

For each coset Ci D �iMod.�/ of Mod.�/ in Aut.�/ choose a representative y�i

which is shortest amongst all representatives of Ci . That is to say, each of the automor-
phisms y�i is short.
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However, by Theorem 7.5 we cannot have an infinite sequence fy�nW � ! �g of
nonequivalent short automorphisms, since then some subsequence will converge to
a faithful action of � on a space C1 . Hence Mod.�/ has finite index in Aut.�/ as
required.

The remainder of this paper is devoted to proving Theorem 7.5. Before launching into
the proof of Theorem 7.5, we need to recall some of the theory of groups acting on
R–trees.

8 Isometric actions on R–trees

In this section we recall a result of Sela from [39]. Given a finitely generated group G

and an R–tree T with an isometric G –action, Theorem 8.1 below gives a decomposition
of T which induces a graph of groups decomposition of G . In the case that G is
finitely presented, this result follows immediately from Rips Theory; see Bestvina and
Feighn [5].

There are two sets of terminology in English for the components of the above-mentioned
decomposition7. Since we are quoting Sela’s result, we use his (Rips’) terminology.
However, we assume that all axial components are isometric to a real line. Using
Rips and Sela’s definition of axial [38, Section 10], one other case could arise in the
arguments that follow (where our group splits as A�Œa;b� ha; bi). Just as noted in [38,
Section 4, page 346], we can treat this case as an IET component. Thus, without further
mention, we consider all axial components to be isometric to a real line.

The following theorem of Sela is used to decompose our limiting R–trees. We remark
that Sela claimed the following result for stable actions (a weaker condition than
superstability). Guirardel [26] provided a counterexample to this, but pointed out that
Sela’s proof works under the assumption of superstability.

Theorem 8.1 ([39, Theorem 3.1]; see also [40, Theorem 1.5]) Let G be a freely
indecomposable finitely generated group which admits a superstable isometric action
on a real tree Y . Assume that the stabiliser in G of each tripod in T is trivial.

(1) There exist canonical orbits of subtrees of T , denoted T1; : : : ;Tk , with the
following properties:
(i) For each g 2 G and each i; j 2 f1; : : : ; kg with i ¤ j , the subtree g :Ti

intersects Tj in at most a single point.

7There is also the work in French by Gaboriau, Levitt and Paulin, with its attendant French terminology;
see Paulin [36], for example.
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(ii) For each g 2G and each i 2 f1; : : : ; kg, the subtree g :Ti is either equal to
Ti or intersects Ti in at most a single point.

(iii) The action of StabG.Ti/ on Ti is of axial or IET type.

(2) G is the fundamental group of a graph of groups with
(i) vertices corresponding to orbits of branching points with nontrivial stabiliser

in T ;
(ii) vertices corresponding to the orbits of the canonical subtrees T1; : : : ;Tk

which are of axial or IET type. The groups associated with these vertices
are conjugates of the stabilisers of these subtrees. To a stabiliser of an
IET component there exists an associated 2–orbifold, O . Any element of
�1.O/ which corresponds to a boundary component or branching point in
O stabilises a point in T . For each stabiliser of an IET subtree we add
edges that connect the vertex stabilised by it and the vertices stabilised by its
boundary components and branching points;

(iii) edges corresponding to orbits of edges between branching points with non-
trivial stabiliser in the discrete part of T (see Terminology 8.2 below) with
edge groups which are conjugates of the stabilisers of these edges;

(iv) edges corresponding to orbits of points of intersection between the orbits of
T1; : : : ;Tk .

Terminology 8.2 Let G and T be as in Theorem 8.1 above. The discrete part of T

is the union of the metric closures of the connected components of T n .
Sk

iD1 GTi/.

Remark 8.3 In the theory of stable isometric actions on R–trees, there is one further
type of component arising in the decomposition of T . This is called “thin” in [5]
and was discovered and investigated by Levitt [32]. However, in case G is freely
indecomposable and the stabiliser of any nondegenerate tripod is trivial (both of these
conditions hold in all cases considered in this paper), the limiting R–tree has no thin
components.

9 The shortening argument – Outline

In this section we outline the proof of Theorem 7.5 (the complete proof is contained in
this and the subsequent two sections):

Theorem 7.5 (Shortening argument) Suppose that � is a nonabelian, freely in-
decomposable, torsion-free relatively hyperbolic group with abelian parabolics, and
suppose that the sequence of automorphisms fhnW � ! �g converges to an action
�W �! Isom.C1/ as above. Then for all but finitely many n the homomorphism hn is
not short.
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Remark 9.1 Although we call the above theorem the “shortening argument”, at least
for hyperbolic groups the shortening argument is really a collection of ideas applicable in
myriad situations. The above theorem is enough to prove Theorem 0.1. In order to build
Makanin–Razborov diagrams in [23], we need to be able to shorten homomorphisms
which are not surjective. The difficulty is that the images of the homomorphisms may
not be “denser and denser” in the rescaled metric. In the general case, precomposition
by elements of Mod.�/ is not sufficient and extra “bending” moves are required to
shorten (see also Alibegović [2]). This is the reason why Theorem 10.2 and Theorem
11.1 below are stated for automorphisms.

Let fhnW �! �g be a sequence of pairwise nonconjugate automorphisms. Since � is
nonabelian, the action of � on the limiting space C1 is faithful, and the action of �
on the associated R–tree T is also faithful. We prove that for all but finitely many n,
the homomorphism hn is not short.

Since the action of � on T is faithful, � is a strict � –limit group, and by Theorem
6.5 (3) the stabiliser in � of any tripod in T is trivial.

The approach to proving Theorem 7.5 is as follows: we consider the finite generating
set A1 of � , and the basepoint y of T . We consider the paths Œy;u:y� where u 2A1 .
These paths can travel through various types of subtrees of T ; the IET subtrees, the
axial subtrees, and the discrete part of T .8 Depending on the types of subtrees which
have positive length intersection with Œy;u:y�, we need various types of arguments
which allow us to shorten the homomorphisms which “approximate” the action of �
on C1 .

Mostly, we follow the shortening argument as developed in [38]. There are two
main obstacles to implementing this strategy in the context of torsion-free relatively
hyperbolic groups with abelian parabolics. Note that the automorphisms hnW �! �

actually approximate the action of � on C1 , from which the action of � on T is
extracted. The two main impediments are: (i) those lines pE 2 P which correspond to
flats E 2 C1 ; and (ii) that triangles in the approximating spaces are only relatively
thin, not actually thin.

9.1 IET components

The following theorem of Rips and Sela deals with IET components.

Theorem 9.2 [38, Theorem 5.1, pages 346–347] Let G be a finitely presented freely
indecomposable group and assume that G �T ! T is a small stable action of G on

8By Remark 8.3, there are no thin components in the decomposition of T .

Algebraic & Geometric Topology, Volume 9 (2009)



1452 Daniel Groves

a real tree T with trivial stabilisers of tripods. Let U be a finite subset of G and let
y 2 T . Then there exists �I 2Mod.G/ such that for any u 2 U , if Œy;u.y/� has an
intersection of positive length with some IET–component of T then

dY .y; �I .u/:y/ < dT .y;u.y//;

and otherwise �I .u/D u.

It is worth noting that in [38] a more restrictive class of automorphisms is used to
shorten the homomorphisms. Since it is a more restrictive class, their results still hold
using our definition of Mod.G/.

Proposition 9.3 Suppose that Y is an IET subtree of T and that pE 2 P is a line
in T . Then the intersection Y \pE contains at most a point.

Proof Since Y is an IET subtree, if � is a nondegenerate arc in Y and � > 0 then
there exists  2 Stab.Y / so that  :� \ � has positive length and there is some x 2 �

such that dT .x;  :x/ < � .

Suppose that Y \pE contains more than a point. By the above remark there exists
 2 Stab.Y / for which  :pE \pE contains more than a point. Hence  :pE D pE ,
and pE � Y . This, combined with the above fact about IET components, implies that
the action of Stab.pE/ on pE is indiscrete. However, this implies that it contains a
noncyclic free abelian group, which cannot be a subgroup of Stab.Y / when Y is an
IET subtree. This contradiction proves the proposition.

Corollary 9.4 Let T be an R–tree arising from some C1 as above. Suppose Y is
an IET subtree of T and � � Y is a nondegenerate segment. Then there is a segment
y� � C1 , of the same length as � , which corresponds to � under the projection from
C1 to T .

9.2 Non-IET subtrees, technical results and the proof of Theorem 7.5

An entirely analogous argument to that of Proposition 9.3 proves:

Proposition 9.5 Suppose that a line l � T is an axial subtree and the line pE � T is
associated to a flat E � C1 . If l \pE contains more than a point then l D pE .

Corollary 9.6 Let T be an R–tree arising from some C1 as above. Suppose l is
an axial component of T so that l 62 P and � � l is a nondegenerate segment. Then
there is a segment y� � C1 , of the same length as � , which corresponds to � under the
projection from C1 to T .
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Lemma 9.7 If an edge e in the discrete part of T has an intersection of positive length
with some line pE then e � pE .

Proof Suppose that e contains a nontrivial segment from pE but that e 6� pE . Let
C be the edge stabiliser of e . Since � is freely indecomposable, C is nontrivial, and
since � is torsion-free, C is infinite. Let  2 C . Then  leaves more than one point
of pE invariant, so leaves all of pE invariant. Thus  leaves E � C1 invariant. Also,
since e 6� pE ,  leaves some point v 2 C1 XE invariant.

By Proposition 5.10, if fEig is a sequence of flats (Ei �Xi ) which converges to E ,
then for all but finitely many n the element hn. / leaves En invariant. By choosing
an n large enough, hn. /:En D En , and furthermore if fvig represents v , then
hn. / moves vn a distance which is much smaller than the distance from vn to
En . In particular, we can ensure that the geodesic Œvn; hn. /:vn� does not intersect
the 4ı–neighbourhood of En . Then by Proposition 4.22, if � W Xn ! En is the
projection map then dX .�.vn/; �.hn. /:vn// � N3.�.3ı/C N1.�.ı///. However,
since hn. /:En D En , we know that �.hn. /:vn/ D hn. /:�.vn/. Thus hn. /

moves �.vn/ a distance at most N3.�.3ı/CN1.�.ı///.

Repeating this argument with a large enough subset of C (a subset larger than the maxi-
mal size of an intersection of any orbit �:u with a ball of radius N3.�.3ı/CN1.�.ı///),
we obtain a (finite) bound on the size of C . However, C is infinite, as noted above.
This contradiction finishes the proof.

The following Theorems 10.1, 10.2 and 11.1 are the technical results needed to prove
Theorem 7.5.

Theorem 10.1 Let G be a finitely generated freely indecomposable group and assume
that G�T ! T is a small stable action of G on an R–tree T with trivial stabilisers of
tripods. Let U be a finite subset of G and let y 2 T . Then there exists �A 2Mod.G/
so that for any u 2 U , if Œy;u:y� has an intersection of positive length with some axial
component of T then

dT .y; �A.u/:y/ < dT .y;u:y/;

and otherwise �A.u/D u.

As far as I am aware, Theorem 10.1 has not appeared in print. However, its statement
and proof are very similar to those of Theorem 9.2, and it is certainly known at least to
Sela [40, Section 5] and to Bestvina and Feighn [4, Exercise 11].

Remark 9.8 Theorem 9.2 is stated for finitely presented groups. The only time in the
proof when it is required that G be finitely presented rather than just finitely generated
is when a result of Morgan from [33] is quoted.
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Specifically, Rips and Sela show that when G is freely indecomposable and finitely
presented and acts on an R–tree T with trivial tripod stabilisers then, for each g 2G

and any y 2 T , the path Œy;  :y� cuts only finitely many components of axial or IET
type in Y (see Rips and Sela [38, pages 350–351]).

However, this is also true when G is only assumed to be finitely generated, rather than
finitely presented (but all other assumptions apply). This follows from the arguments
in [39, Section 3]. The action of G on T can be approximated by actions of finitely
presented groups Gi on R–trees Yi . For large enough k , the IET and axial components
of Yk map isometrically onto the IET and axial components of T (see Sela [39,
Section 3] for details).

Therefore, Theorem 9.2 stills holds when G is assumed to be finitely generated, but not
necessarily finitely presented. Similarly, Theorem 10.1 above, whose proof mimics the
proof of Theorem 9.2, holds for finitely generated groups G . However, in this paper
we can assume G is finitely presented.

We now state the further technical results which are required for the proof of Theorem
7.5. These technical results are proved in the subsequent two sections.

Theorem 10.2 Let � be a freely indecomposable, torsion-free, nonabelian relatively
hyperbolic group with abelian parabolics. Suppose that hnW � ! � is a sequence of
automorphisms converging to a faithful action of � on a limiting space C1 and let T

be the R–tree associated to C1 . Let U be a finite subset of � . Let y 2 T , let yy 2 C1
project to y 2 T and let fyymg be a sequence representing yy . Let pE be an axial
component of T . There exists m0 so that: for all m�m0 there is �pE ;m 2Mod.�/
so that for any u 2 U , if Œy;u:y� has an intersection of positive length with a line in
the � –orbit of pE then

dXm
.yym; .hm ı�pE ;m/.u//: yym/ < dXm

.yym; hm.u/: yym/;

and otherwise �pE ;m.u/D u.

Theorem 11.1 Let � be a freely indecomposable torsion-free relatively hyperbolic
group with abelian parabolics. Suppose that hnW �!� is a sequence of automorphisms
converging to a faithful action � on a limiting space C1 with associated R–tree T .
Suppose further that U is a finite subset of � . Let y 2 T , let yy 2 C1 project to y 2 T

and let fyymg be a sequence representing yy . There exists m0 so that: for all m �m0

there is �D;m 2Mod.�/ so that for any u 2 U which does not fix y and with Œy;u:y�
supported only in the discrete parts of T we have

dXm
.yym; .hm ı�D;m/.u/: yym/ < dXm

.yym;u: yym/:
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Armed with Proposition 9.3, and assuming Theorems 10.1, 10.2 and 11.1, we now
prove Theorem 7.5.

Proof of Theorem 7.5 We have already noted that the action of � on T is faithful,
that T is not isometric to a real line, and that the stabiliser in � of any tripod in T is
trivial. Also, Ker

�!
.hn/D f1g.

We suppose (by passing to a subtree if necessary) that the tree T is minimal. As noted
in Remark 8.3 above, T contains no thin components.

Let U DA1 be the fixed generating set of � used to define kf k for a homomorphism
f W � ! � , let y be the image in T of the basepoint x! 2 C1 and let yym D x for
each m.

Let �I be the automorphism of � given by Theorem 9.2 and �A the automorphism
from Theorem 10.1.

Suppose that u 2 U is such that Œy;u:y� has an intersection of positive length with an
IET component of T . Then Theorem 9.2 and Corollary 9.4 guarantee that for all but
finitely many n we have khn ı �Ik < khnk so hn is not short. Similarly, if Œy;u:y�
has an intersection of positive length with an axial component which is not contained
in any pE 2 P then Theorem 10.1 and Corollary 9.6 imply that for all but finitely
many n we have khn ı�Ak< khnk so also in this case hn is not short.

Suppose then that Œy;u:y� has an intersection of positive length with a line in the
� –orbit of some pE , and suppose that pE is an axial component of T . Then by
Theorem 10.2 for all but finitely many n there exists an automorphism �pE ;n 2Mod.�/
so that khn ı�pE ;nk< khnk, so hn is not short.

Finally, suppose that all of the segments Œy;u:y� are entirely contained in the discrete
part of T . Then by Theorem 11.1 for all but finitely many n there exists �D;n2Mod.�/
so that khn ı�D;nk< khnk, and once again hn is not short.

This completes the proof of the theorem.

10 Axial components

The purpose of this section is to prove the following two theorems.

Theorem 10.1 Let G be a finitely generated freely indecomposable group and assume
that G�T ! T is a small stable action of G on an R–tree T with trivial stabilisers of
tripods. Let U be a finite subset of G and let y 2 T . Then there exists �A 2Mod.G/
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so that for any u 2 U , if Œy;u:y� has an intersection of positive length with some axial
component of T then

dT .y; �A.u/:y/ < dT .y;u:y/;

and otherwise �A.u/D u.

Theorem 10.2 Let � be a freely indecomposable, torsion-free, nonabelian relatively
hyperbolic group with abelian parabolics. Suppose that hnW � ! � is a sequence of
automorphisms converging to a faithful action of � on a limiting space C1 and let T

be the R–tree associated to C1 . Let U be a finite subset of � . Let y 2 T , let yy 2 C1
project to y 2 T and let fyymg be a sequence representing yy . Let pE be an axial
component of T . There exists m0 so that: for all m�m0 there is �pE ;m 2Mod.�/
so that for any u 2 U , if Œy;u:y� has an intersection of positive length with a line in
the � –orbit of pE then

dXm
.yym; .hm ı�pE ;m/.u//: yym/ < dXm

.yym; hm.u/:yym/;

and otherwise �pE ;m.u/D u.

To prove Theorem 10.1 we follow the proof of [38, Theorem 5.1] (which is Theorem
9.2 in this paper). First, we need the following result, the (elementary) proof of which
we include because of its similarity to Proposition 10.4 below.

Proposition 10.3 Suppose that �W P �R!R is an orientation-preserving, indiscrete
isometric action of P Š Zn on the real line R. For any finite subset W of P and any
� > 0 there exists an automorphism � W P ! P such that

(1) for every w 2W and every r 2R

dR.r; �.w/:r/ < �I

(2) for any k 2 ker.�/ we have �.k/D k .

Proof There is a direct product decomposition P D A˚B where A is the kernel
of the action of P on R, and B is a finitely generated free abelian group which has
a free, indiscrete and orientation preserving action on R. The automorphism � we
define fixes A elementwise, so we can assume that all elements of W lie in B (since
elements of A fix R pointwise). Thus, we need only prove the lemma in case the
action is faithful.

Since the action of B on R is indiscrete and free, the translation lengths of elements
of a basis of B are independent over Z. In particular, there is a longest translation
length amongst the translation lengths of a basis of B . Suppose that b1 2 B is the
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element of the basis with largest translation length, and that b2 has the second largest.
Denote these translation lengths by jb1j and jb2j, respectively. Since jb1j and jb2j

are independent over Z, there is n 2 Z so that 0< jb1C nb2j< jb2j. Replace b1 by
b1C nb2 . This is an automorphism of P , fixing A elementwise.

Proceeding in this manner, we can make each of the elements of a basis as small as we
wish, and so given W and � > 0, we can make each of the elements of W (considered
as a word in the basis of B ) have translation length less than � , as required.

Proof of Theorem 10.1 By Remark 9.8, each of the segments Œy;u:y� for u2U cuts
only finitely many components of T of axial or IET type. Let � be the minimum length
of a (nondegenerate) interval of intersection between Œy;u:y� and an axial component
of T , for all u 2 U .

The action of G on T induces a graph of groups decomposition ƒ of G as in Theorem
8.1. Let Ti be an axial component of T . There is a vertex group of ƒ corresponding
to the G –orbit of Ti , with vertex group a conjugate of Stab.Ti/. By Theorem 6.5 and
Lemma 6.9, Stab.Ti/ is a free abelian group. The vertex groups adjacent to Stab.Ti/

(those that are separated by a single edge) stabilise a point in the orbit of a branching
point in Ti with nontrivial stabiliser. Recall that G is freely indecomposable, so all
edge groups are nontrivial.

Let q1 be the point on Ti closest to y (if y 2 Ti then q1 D y ). Choose points
q2; : : : ; qm 2 Ti in the orbits of the branching points corresponding to the adjacent
vertex groups such that dT .qi ; qj / < �=20. We can do this since the action of Stab.Ti/

on Ti has all orbits dense, since Ti is an axial component.

The proof of Theorem 10.1 now proceeds exactly as the proof of [38, Theorem 5.1]
(start with Case 1 on page 351).

Proof of Theorem 10.2 Since pE 2 P is an axial component of T , there is a
vertex group corresponding to the conjugacy class of Stab.pE/ in the graph of groups
decomposition which the (faithful) action of � on T induces (see Theorem 8.1).

Now, the stabiliser in � of pE is exactly the stabiliser in � of E , when � acts (also
faithfully) on C1 . By [24, Corollary 3.17], there is a sequence of flats Ei in the
approximating spaces Xi so that Ei!E in the � –equivariant Gromov topology. By
Proposition 5.10, if  2 Stab�.E/ then for all but finitely i we have hi. / 2 Stab.Ei/.
For such an i , the element hi. / is contained in a unique noncyclic maximal abelian
subgroup Ai of � . However, hi is an automorphism, so  is contained in a unique
noncyclic maximal abelian subgroup A of � , and Ai D hi.A /.
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If  0 is another element of Stab�.E/, then Œ;  0� D 1, and it is not difficult to see
that A D A 0 . Also, if 0 2 A then 0 2 Stab�.E/. Hence A D Stab�.E/. We
denote the subgroup Stab�.E/ by AE .

We now prove Theorem 10.2 by finding an analogue of Proposition 10.3 in the flats Ei

and then once again following the proof from [38].

Proposition 10.4 Let W be a finite subset of AE . For any � > 0 there exists i0 so
that for all i � i0 , there is an automorphism �i W AE!AE so that

(1) for every w 2W , and every ri 2Ei ,

dXi
.ri ; hi.�i.w//:ri/ < �I

(2) for any k 2AE which acts trivially on E we have �i.k/D k .

Proof of Proposition 10.4 The group AE admits a decomposition AE DA0˚A1 ,
where A0 acts trivially on E , and A1 acts freely on E . Choose a basis B of AE

consisting of a basis for A0 and a basis for A1 . Let kW be the maximum word length
of any element of W with respect to the chosen basis.

Since the hi W �! � are automorphisms, for sufficiently large i and any a 2Ei , the
set hi.AE/:a�Ei forms an �=.20kW /–net in Ei (where distance is measured in the
metric 1=khik on Xi ). Choose a (possibly larger) i so that also the action of hi.B/
on Ei approximates the action of B on E to within �=.20kW / (note that since the
action of AE on E and the action of hi.AE/ on Ei are both by translations, and
translations of Euclidean space move every point the same distance, there are arbitrarily
good approximations for the action of any finite subset of AE on the whole of E ).

The remainder of the proof proceeds just as the proof of Proposition 10.3 above,
although in the step where we replace b1 by b1C nb2 , we cannot insist that b2 acts
nontrivially on E . However, we of course can insist that b1 acts nontrivially on E ,
since otherwise it moves all points of E a distance at most �=20. Therefore, such an
automorphism is nonetheless a generalised Dehn twist.

Given Proposition 10.4, the proof of Theorem 10.2 once again follows the proof of [38,
Theorem 5.1, pages 350–353], although in this case we have to choose approximations
to the action of � on C1 (the important point here is that the sets hi.AE/:a, for any
a2Ei , get denser and denser in Ei , when considered in the scaled metric .1=khik/dX

of Xi ). These small changes are straightforward, but do lead to the different shortening
automorphisms �pE ;m in the statement of Theorem 10.2.
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11 The discrete case

In this section we shorten the approximations to paths of the form Œyy;u:yy�, where
yy 2 C1 projects to y 2 T and Œy;u:y� is entirely supported in the discrete part of T .
The lengths of the limiting paths Œyy;u:yy� and Œy;u:y� are unchanged.

The purpose of this section is to prove the following:

Theorem 11.1 Let � be a freely indecomposable torsion-free relatively hyperbolic
group with abelian parabolics. Suppose that hnW �!� is a sequence of automorphisms
converging to a faithful action � on a limiting space C1 with associated R–tree T .
Suppose further that U is a finite subset of � . Let y 2 T , let yy 2 C1 project to y 2 T

and let fyymg be a sequence representing yy . There exists m0 so that: for all m �m0

there is �D;m 2Mod.�/ so that for any u 2 U which does not fix y and with Œy;u:y�
supported only in the discrete parts of T we have

dXm
.yym; .hm ı�D;m/.u/: yym/ < dXm

.yym;u: yym/:

The proof of Theorem 11.1 follows [38, Section 6].

By Lemma 9.7, if e is a discrete edge in T then either e 2 pE for some flat E � C1 ,
or C1 contains a well-defined, canonical, isometric image ye of e , so that ye projects
to e .

We have a sequence of automorphisms fhnW �! �g, converging to a faithful action
of � on a limiting space C1 , with associated R–tree T .

There are a number of different cases to consider:

Case 1 y is contained in the interior of an edge e .

Case 1a e is not completely contained in a line of the form pE and xe 2 T=� is a
splitting edge.

Note that because e is not contained in any pE , there is a single point yy 2 C1 which
corresponds to y 2 T .

This case is very similar to the Case 1a on pages 355–356 of [38]. In this case we
have a decomposition � DA�C B where C is a finitely generated free abelian group
properly contained in both A and B .

Given u 2 U we can write
uD a1

ub1
u � � � a

nu
u bnu

u ;
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where ai
u 2A and bi

u 2 B (possibly a1
u and/or b

nu
u are the identity). Let fz1; : : : ; zng

be a generating set for Z .

Let � be the minimum of

(1) the length of the shortest edge in the discrete part of T ;

(2) the distance between y and the vertices of e .

Recall that triangles in X are relatively ı–thin, and the function � comes from the
definition of isolated flats. Let C0 be the maximum size of an intersection of an orbit
� :z with a ball of radius 10ıC 2�.3ı/ in X (where distance is measured in dX ).

Now take F to be the finite subset of G containing 1 and

zai
uz�1; zbi

uz�1;

where z 2 C has word length at most 10C0 .

For large enough m we have, for all 1; 2 2 F ,

(1) jdXm
.hm.1/: yym; hm.2/:yym/� dC1

.1 : yy; 2 : yy/j< �1;

where �1 D �=.8000C0/.

Let wm 2 Œyym; hm.a
1
u/:yym� and w0m 2 Œyym; hm.b

1
u/:yym� satisfy

(2)
�

2
�

�

1000
� dXm

.wm; yym/D dXm
.w0m; yym/�

�

2
C

�

1000
:

Lemma 11.2 For some z 2C of word length at most 10C0 we have, for all but finitely
many m,

dXm
.yym; hm.z/:wm/ < dXm

.yym; wm/� 8ım;

dXm
.yym; hm.z/:w

0
m/ < dXm

.yym; w
0
m/C 8ım:and

Proof Let W be the set of all elements z 2 C of word length at most 10C0 in the
generators fz1; : : : ; zng and their inverses.

First suppose that for all but finitely many i we have hi.W /� Stab�.Ei/. Then since
the edge containing y is not completely contained in a single pE , we can assume that
each element of W fixes a point outside of E . Now, using Proposition 4.22, there
is a point in Ei which is moved at most N3.�.3ı/CN1.�.ı/// by each element of
hi.W /. This gives a bound on the size of hi.W / which does not depend on i (so long
as i is large enough). However, this contradicts the choice of W � � . Therefore it is
not the case that hi.W /� Stab�.Ei/ for all but finitely many i .
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By the argument in the paragraphs after the proof of [24, Lemma 4.5], for all but finitely
many k , the elements hi.z/ act approximately like translations. Since W is closed
under inverses, and we have chosen W large enough that some element “translates”
by at least 10ım , we can choose some z 2W which satisfies the conclusion of the
lemma.

In order to finish Case 1a, we follow the proofs of Proposition 6.3 and Theorem 6.4
from [38]. The only additional thing needed in this case is to force wm to lie close to
each Œyym; hm.a

i
u/:yym�. We do this by applying Lemma 6.6 and the arguments in the

paragraphs in [24] which follow the proof of [24, Lemma 4.5]. It is for this reason that
we left some flexibility as to the choice of wm and w0m in (2) above.

In this manner, we can ensure that wm lies within 2ı of each geodesic segment
Œyym; hm.a

i
u/: yym�, and similarly for w0m . We can now follow the proof [38, Proposition

6.3]. The proof of [38, Theorem 6.4] is not included in [38] (or in [39] as claimed in
[38]). However, it is straightforward, so we omit it here also.

The automorphism we use to shorten in this case is

8a 2A �.a/D zaz�1;

8b 2 B �.b/D z�1bz;

where a is as in Lemma 11.2. This completes the proof in Case 1a. It is worth noting
here that we are shortening the actions on Xi which approximate the action on C1 .
However, this does not affect the analogy between the proofs here and those in [38].

Case 1b e is not completely contained in a single pE and xe 2 T=� is not a splitting
edge.

In this case we have a decomposition � DA�C , where C is a finitely generated free
abelian group.

In the same way as we adapted the proof of Case 1a from [38] above, we may adapt
the proof of Case 1b from [38]. The key point is that we allow a small amount of
flexibility in the choice of wm and w0m . Doing this, we may ensure that even though
the approximating triangles we consider are only relatively thin, rather than actually
thin, all of the features we need to apply the proof from [38] still hold, because we can
make sure that we are not near the “fat” part of any triangle. Proceeding with this idea
in mind, the proof from [38] can be adapted without difficulty.

We now deal with the two cases where y is contained in the interior of the edge e and
e � pE for some pE 2 P . Using Lemma 4.21 and Proposition 4.22, the following
result is not difficult to prove:
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Proposition 11.3 Suppose that X is the space constructed in Section 4. There exists a
constant N4 , depending only on X so that if E1;E2 2Q are maximal flats in X then
there is a set JE1;E2

so that

(1) Diam.JE1;E2
/�N4 ;

(2) if x 2 E1 and u 2 E2 then any geodesic between x and y intersects JE1;E2

nontrivially.

Recall that Q is the family of maximal flats from the definition of X , that triangles
in X are relatively ı–thin (Theorem 4.16), and that � is the function from Lemma
4.13. Following Convention 4.14, we assume without loss of generality that for all
k � 0 we have �.k/� k and also that � is a nondecreasing function.

Choose compact fundamental domains for the action of Stab�.E/ on E , for each
conjugacy class of maximal flat in X , and let KF be the maximal diameter of these
fundamental domains. Also, let KX be the diameter of a compact set D for which
� :D DX . For the remainder of Case 1, we replace the constant ı by

max fı; 1000KF ; 1000KX ; 1000.7ıC 14�.4ı//g :

The stabiliser of the edge e is a subgroup of Stab�.E/. Since pE is not an axial
component, the action of Stab.E/ on E is either trivial or factors through a infinite
cyclic group. If xe 2 T=� is a splitting edge, then necessarily the action of Stab.E/
on E is trivial.

Case 1c e is completely contained in some pE , and xe 2 T=� is a splitting edge.

Let AE D Stab�.E/. Then, AE D A0˚A1 , where A0 acts trivially on E and A1

acts freely on E . Since pE is a splitting edge, A1 D f1g.

We have a decomposition � DH1 �AE
H2 .

The subgroup H1 fixes a point in pE , but does not fix all of pE . Thus, H1 fixes
a point v1 2 E . Similarly, H2 fixes a point v2 2 E , but does not fix all of E . We
choose points yym �Em so that (i) fyymg represents yy 2 C1 which projects to y 2 T ;
(ii) each yym lies in the orbit � :x ; and (iii) subject to the first two conditions, yym lies
as close as possible to the line Œvm

1
; vm

2
�, where fvm

i g ! vi , i D 1; 2.

We proceed as in Case 1a. However, this time we cannot find a single automorphism
to shorten the khik, but we use the fact that the sets hi.AE/:a�Ei are denser and
denser (when distance is measured in the metrics .1=khik/dX ) to find, for all but
finitely many i , a Dehn twist �e;i which shortens the action on Xi . This proceeds in
a similar way to Case 1a above, using the ideas in Proposition 10.4 and the proof of
Theorem 10.2 above.
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Case 1d e is completely contained in some pE and xe 2 T=� is not a splitting edge.

There are two cases here. As in Case 1b, we have a decomposition � DA�C , where
C is a finitely generated free abelian group. Let t be the stable letter of this HNN
extension, and suppose that C � Stab.E/, a maximal flat in C1 . The two cases are
where f 2 Stab.E/, and when f 62 Stab.E/.

Each of these cases follow the proof of Case 1b above (and therefore Case 1b from
[38]) in the same way as Case 1c followed the proof of Case 1a.

Case 2 y is a vertex of T .

In this case, we do not shorten the approximations to a particular edge, but each of the
edges adjacent to y . As before, we largely follow [38, Section 6].

There are four cases again, when the edge is splitting, and nonsplitting, coupled with
the cases where the edge is contained in some pE and when it is not.

These follow the proofs from [38] just as in Case 1 above. Note that the shortening
automorphisms fix elementwise Stab�.yy/.

Proof of Theorem 11.1 If y is contained in the interior of an edge, then apply Case 1
above to find a sequence of automorphisms which shorten the hn .

If y is a vertex in T , then we shorten the hn on each of the adjacent edges separately
using Case 2 and [38, Section 6].

This finally completes the proof of Theorem 7.5.
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