Volume 9, issue 3 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Homotopy groups and twisted homology of arrangements

Richard Randell

Algebraic & Geometric Topology 9 (2009) 1299–1308
Abstract

Recent work of M Yoshinaga [Topology Appl. 155 (2008) 1022-1026] shows that in some instances certain higher homotopy groups of arrangements map onto nonresonant homology. This is in contrast to the usual Hurewicz map to untwisted homology, which is always the zero homomorphism in degree greater than one. In this work we examine this dichotomy, generalizing both results.

Keywords
hyperplane arrangement, local system, twisted homology
Mathematical Subject Classification 2000
Primary: 55N25, 57N65
Secondary: 55Q52
References
Publication
Received: 30 December 2008
Revised: 5 May 2009
Accepted: 6 May 2009
Published: 1 July 2009
Authors
Richard Randell
Department of Mathematics
University of Iowa
Iowa City, IA 52242
USA