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The equivariant J –homomorphism for finite groups
at certain primes

CHRISTOPHER P FRENCH

Suppose G is a finite group and p a prime, such that none of the prime divisors
of G are congruent to 1 modulo p . We prove an equivariant analogue of Adams’
result that J 0 D J 00 . We use this to show that the G –connected cover of QGS0 ,
when completed at p , splits up to homotopy as a product, where one of the factors
of the splitting contains the image of the classical equivariant J –homomorphism on
equivariant homotopy groups.

19L20, 19L47, 55R91

1 Introduction

The study of the stable homotopy groups of spheres has dominated the attention of
homotopy theorists since the inception of the subject. The work of Adams in his series
of J.X / papers [1; 2; 3; 4] was a major early breakthrough in this study. There, Adams
developed a program for understanding the group J.X /, which is the quotient of the
group of virtual bundles over a space X by the group of such bundles whose underlying
spherical fibrations (obtained by compactifying fibers) are trivial. Thus, J.X / can be
thought of as the group of those stable spherical fibrations obtained from stable vector
bundles over a base space. Specializing the base space to spheres amounts to studying
the subgroups of the stable homotopy groups of spheres arising from the homotopy
groups of the stable orthogonal groups, or the image of the classical J homomorphism.

Adams proposed to study J.X / by defining two groups J 0.X / and J 00.X / equipped
with canonical epimorphisms J 00.X /! J.X /! J 0.X /. By showing the composite
of these epimorphisms to be an isomorphism, he could compute J.X / by computing
either J 00.X / or J 0.X /, both of which are more easily studied. Adams completed his
work modulo his eponymous conjecture, which was confirmed by Quillen [18].

The groups J 0.X / and J 00.X / can be described most easily after localizing at a given
prime p . Then J 00.X / is obtained by finding a collection of virtual bundles with trivial
underlying stable spherical fibrations. To be a little more precise, we let  k denote the
k –th Adams operation for an integer k . The Adams conjecture asserts then that for
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suitable choice of k , given a virtual bundle � , the underlying stable spherical fibrations
of  k� and � are equivalent. Thus, J 00.X / is taken to be the quotient of the group
eKO .X / of zero-dimensional virtual bundles over X by the image of  k �1, and one
immediately sees that there is an epimorphism from J 00.X / to J.X /.

The group J 0.X /, in turn, is obtained by finding a condition satisfied by all virtual
bundles with trivial underlying stable spherical fibrations. More precisely, Adams
showed that if � is a virtual bundle of virtual dimension 0, with trivial underlying
stable spherical fibration, then after applying a certain operation �k to � , the resulting
bundle could be written in the form . k=1/.1C �/, for some virtual bundle � of
virtual dimension 0. Thus, J 0.X / is taken to be the quotient of eKO .X / by all bundles
satisfying this very condition, and one sees that there is an epimorphism from J.X / to
J 0.X /.

Adams’ work was later rephrased in a geometric context by May [16], who considered
the J –theory diagram (see Figure 1), in which each row is a fiber sequence and each
space is implicitly localized away from an integer k .

J k
� //

˛

��

BO
 k�1 //




��

BSpin

SF
� // SF=Spin

q //

f

��

BSpin
Bj //

g

��

BSF

SF //

"

��

BO˝
� // B.SFI kO/

q //

c. k/

��

BSF

J k
˝

� // BO˝
 k=1 // BSpin˝

Figure 1: May’s J –theory diagram

In this diagram, the spaces BO , BSpin, and BSF are classifying spaces for stable
orthogonal bundles, stable bundles with spin structure, and stable spherical fibrations.
The space B.SFIKO/ classifies spherical fibrations � together with a KO –valued
orientation, ie an orientation class � 2 eKO .T �/, where T � is the Thom space of � .
These are all Hopf spaces, since such bundles and fibrations can be added by direct sum
or fiberwise smash product. The spaces BO˝ and BSpin˝ are equivalent as spaces to
BO and BSpin, but with Hopf space structure obtained from tensor products of bundles.
The map Bj represents replacing a stable bundle with its underlying spherical fibration,
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obtained by compactifying fibers. The space SF of stable degree 1 self-maps of spheres
is equivalent to �BSF. The map 
 is obtained from the Adams conjecture, which
gives an equivalence between Bj . k.�// and Bj .�/ for a stable vector bundle � . The
space BO˝ can be realized as the fiber of the map from B.SFIKO/ to BSF; the
map f is induced as a map of fiber sequences.

The map g comes from the Atiyah–Bott–Shapiro orientation of Spin–bundles [8]. To
obtain the map c. k/, one considers the difference between a KO –oriented spherical
fibration .�; �/ and the KO –oriented spherical fibration .�;  k.�//. Since these have
the same underlying spherical fibrations, the classifying map of this difference lifts to
the fiber BO˝ , and, one can show, lifts further to BSpin˝ . The composite c. k/ıg is
denoted �k and represents the Adams–Bott cannibalistic class, something particularly
amenable to algebraic study.

Now, if we let �k D f ı 
 , then the central columns of the diagram above form a
square, which we call the Adams–May square:

BO
 k�1 //

�k

��

BSpin

�k

��
BO˝

 k=1 // BSpin˝

May proved that after localizing at a prime, then for a suitable choice of k , this square
is a pullback in the homotopy category. This is remarkable, in that pullbacks are rare
in homotopy categories, where one typically instead encounters homotopy pullbacks.
In particular, this implies that for a space X , one obtains, instead of just an exact
sequence, an actual pullback diagram:

eKO.X /^p
 k�1 //

�k

��

AKSpin.X /^p

�k

��

1CeKO.X /^p
 k=1 // 1C AKSpin.X /^p

Thus, if �k.�/D . k=1/.1C �/, then � is in the image of  k � 1, implying Adams’
result that J 0.X /D J 00.X /.

This geometric rephrasing of Adams’ work yields extra information. Knowing that the
Adams–May square is a pullback in the homotopy category implies that the composite
" ı˛ in the left column of the J –theory diagram above induces a monomorphism on
homotopy groups. Since the homotopy groups of J k and J k

˝ are abstractly isomorphic
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and finite, this implies " ı˛ is a weak equivalence, so that the p–localization of SF
splits up to homotopy, with one factor being J k . The image of this factor on homotopy
groups is closely related to the image of the classical J –homomorphism in the stable
homotopy groups of spheres. We should note that the existence of such a splitting of
SF was first discovered by Sullivan, using different methods.

In [13], we constructed an equivariant version of the Adams–May square, and we
considered the case when G is p–group, with p ¤ 2. We proved that for suitable k ,
after restricting to G –connected covers and completing at the prime p , the equivariant
Adams–May square becomes a pullback in the homotopy category. This is then an
equivariant version of the statement J 0 D J 00 . Moreover, we used this result to show
that p–completion of an equivariant analogue of SF splits as a product Jp�Cp , where
the fixed point subspaces of Jp capture the image of the equivariant J –homomorphism.
One of the results of the current paper is to extend this result to the prime p D 2. We
show that when G is a 2–group, then for k D 3, the equivariant Adams–May square
becomes a pullback in the homotopy category after 2–completing the G–connected
cover.

The case when the order of G is not a power of p is more subtle. In fact, if G is
not a p–group, then the p–completion of the equivariant Adams–May square will
not be a pullback in the homotopy category for any value of k . However, we show in
this paper that when p is a fixed prime and none of the prime divisors of the order of
G are congruent to 1 modulo p , there is a natural splitting of the p–completion of
equivariant K–theory:

KG.X /
^
p ŠWG.X /�W ?G .X /

This splitting, which can also be realized on the level of equivariant KO –theory, is
compatible with Adams operations as well as the maps �k and �k of the Adams–May
square, so that the entire Adams–May square splits as a product of two squares. We
show that every element in W ?

G
.X / can be written as a linear combination of elements

of the form . l�1/.�/ where l ranges over integers which are relatively prime to p and
jGj. Thus, these elements have trivial underlying spherical fibrations by the Equivariant
Adams Conjecture, and so do not contribute to the image of the J –homomorphism.
Moreover, we show that for suitable k , the restriction of the Adams–May square to the
W factor is a pullback. As a corollary, we obtain a splitting of the equivariant analogue
of SF at the prime p .

A good understanding of the equivariant Adams–Bott class �k lies at the heart of
both this work and our previous work in [13]. There, we showed that when G is a
p–group, then p–complete KG –theory takes values in p–adic �–rings, described by
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Atiyah and Tall [9]. Thus, we were able to use their results to show that �k induces an
isomorphism on the Adams summand of p–complete KG –theory. We would guess
that Atiyah and Tall were primarily motivated in their study of �–rings by an interest in
giving a more conceptual and less computational proof of Adams’ result in [2]. Their
approach was certainly the right way to think about the equivariant case for p–groups.
However, in the current paper, their work does not apply, and we are instead inspired
by Adams’ original work – we generalize the computational machinery he developed
to reduce to the case of a p–group.

The condition that we impose on the order of G may seem unusual, but we make
essential use of this condition in our arguments. As will be seen, we build from the
simplest case when G D Z=q , where q is a prime different from p . For this case, we
need the number of units in G , which is q� 1, to be invertible, and this requires that
p does not divide q � 1. While it is difficult to prove that one could not find a way
around the obstacles we have encountered, we believe that a substantially new idea
would be required. Indeed, we show that if some prime q divides jGj, and p divides
q� 1, then there cannot exist a splitting of p–completed equivariant KO –theory into
two factors, in which one factor contains only linear combinations of elements of the
form . l � 1/.�/, and such that for some k , the restriction of the Adams–May square
to the other factor is a pullback. This does not preclude the existence of a splitting of
equivariant SF, but it does suggest that the technique we use in this paper cannot be
extended without a substantially different idea.

Our paper is organized as follows. In Section 2, we give just enough background to
understand the equivariant J –theory diagram, and we formally state the main result of
the paper; we also give a proof of this theorem, using results from later in the paper. In
Section 3, we define our generalized Adams summand in equivariant K–theory, and in
Section 4, we study the equivariant Adams–Bott map �k . In Section 5, we study the
map of equivariant classifying spaces BGSpin! BGO , in order to prove that  k � 1

lifts to BGSpin. In Section 6, we construct the map �k , and prove that �k and �k

become homotopic maps after restricting to G –connected covers. Finally, in Section 7,
which is an appendix, we prove a somewhat technical result (Corollary 2.3) about the
zeroth space of the equivariant p–complete sphere spectrum, and we show why our
technique for proving Theorem 2.10 cannot be extended to the case where one of the
prime divisors of G is congruent to 1 modulo p .

Acknowledgements The author wishes to thank J Peter May for initially guiding him
to this subject, for continued interest in his progress and for valuable advice along the
way.
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2 Background and main result

Some of the material in this section comes straight out of our work in [13], and more
details can be found there. Our first task is to understand the equivariant analogues
of the classifying spaces involved in the J –theory diagram. It is useful to begin as
generally as possible, so we suppose A and G to be compact Lie groups. A principal
.G;A/–bundle is a principal A–bundle pW E!B , where p is also a map of G –spaces,
and the actions of G and A on E commute. Waner [20] constructed a classifying
space BGA for principal .G;A/–bundles. A G –map �W G!A endows BGA with
a canonical G –fixed basepoint. One tool for studying a based G –space such as BGA

is to pass to G –connected covers.

Notation 2.1 Given a based G–space X , let SGX denote the G–connected cover
of X . That is, SGX is a based G–space equipped with a based G–map SGX !X

such that for each H � G , the restriction .SGX /H ! X H induces a homotopy
equivalence between .SGX /H and the basepoint component of X H .

One uses Elmendorf’s construction [12] to prove the existence and uniqueness up to
homotopy of the G –connected cover.

In [13], we found the following simple model for SGBGA. Suppose �W G!A is a
distinguished homomorphism, determining a basepoint for BGA. Then G acts on A

by conjugation: g � a D �.g/a�.g/�1 . This in turn induces an action of G on BA,
with .BA/H D B.AH /. Thus, we may view BA as a G–connected G–space. The
following proposition is obtained by combining Lemmas 2.19 and 2.20 in [13].

Proposition 2.2 The G–connected cover of BGA at the basepoint obtained from a
homomorphism �W G ! A is equivariantly homotopy equivalent to BA, where the
action on BA is induced by � .

In [13], we constructed stabilization maps to build classifying spaces for various types
of stable bundles. These are denoted BGO;BGSO;BGSpin;BGU; and BGSU. We
proved that each of these classifying spaces has a weak G –Hopf space structure. Weak,
here, means that the associativity and unit diagrams commute up to homotopy when
restricted to finite G –CW complexes. One has obvious maps such as BGSpin!BGSO
and BGSO! BGO classifying forgetful functors.

Building on work of Waner [20], we also developed equivariant analogues for the
classifying spaces of F –fibrations, which May described in [15]. A set of admissible
fibers F is a set of based-spaces fF�g, where each space is endowed with a left
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base-point preserving action of a closed subgroup H� of G , such that whenever K

is subconjugate to H� , the K–space obtained from F� is also in F . There is then
a notion of a GF.F/–fibration, generalizing an F –fibration. In such fibrations, the
fiber over a point with isotropy group K is a K–space F which is equivalent to one of
the K–spaces F� in the set F . There is a classifying space BG.F/ classifying such
GF.F/–fibrations.

For example, one could take V to be a finite-dimensional complex inner product space.
For an action � of a subgroup H �G on V , we denote the one-point compactification
of the representation V� by SV� . The collection of such spaces forms an admissible
set of fibers SV , and hence determines a classifying space BG.S

V /. Restricting to
those actions H on V such that V H is nonzero, we could consider the set of all
p–completions .SV�/^p , along with the restrictions of such spaces to subconjugates
of H . We denote the associated set of fibers .SV /^p , and the associated classifying
space BG..S

V /^p/. We constructed stable classifying spaces BG.S/ and BG.S
^
p /

obtained by taking colimits of the above classifying spaces over stabilization maps. We
also constructed a fiberwise completion map k^p from BG.S/ to BG.S

^
p /.

Finally, we constructed a space BG.S
^
p IKO^p / which classifies GF.S^p /–fibrations

equipped with a KO^p –orientation. As in the nonequivariant case, the GF.S^p /–
fibration obtained from a .G;Spin/–bundle has an Atiyah–Bott–Shapiro KO^p –orien-
tation, and we thus obtain a map g^p W BGSpin!BG.S

^
p IKO^p /, which is of fundamen-

tal importance in the J –theory diagram. We let Bj^p denote the composite of g^p with
the map qW BG.S

^
p IKO^p /!BG.S

^
p / representing the forgetful functor. Then Bj^p

represents the forgetful functor from equivariant Spin–bundles to GF.S^p /–fibrations.

Now, in the middle row in the J –theory diagram Figure 1, we used the identification
between �BSF and SF to identify the left-hand term. We thus need to consider what
SF should mean in an equivariant context. The equivariant analogue of QS0 is given
by QGS0 D colimVi

�Vi SVi where Vi runs over a suitable sequence of complex G –
representations. We denote this space FG . The group G acts on FG by conjugation,
with the basepoint determined by the identity map. There are two natural choices for
an equivariant analogue of SF: the basepoint component of FG , or the G –connected
cover: SGFG . In this paper, we will work with SGFG . In Section 7.1, we will prove
the following corollary, which is the best available generalization of the nonequivariant
result �BSF' SF.

Corollary 2.3 Let p be a prime number. The space SG�BG.S
^
p / is G –equivalent to

.SGFG/
^
p . Also, �n.BG.S

^
p /

H / is p–complete for all n� 1. Thus, ŒX;BG.S
^
p /

H �G
is p–complete whenever X is a finite G –connected G –CW complex.
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Both equivariantly and nonequivariantly, Spin bundles have KO –orientations, so that
the source of the map g in the J –theory diagram Figure 1 is BSpin. Conveniently,
it is not hard to show that the map  k � 1W BO! BO lifts uniquely to BSpin. We
show in Section 5.2 that the map  k � 1W BGO ! BGO also lifts to BGSpin, and
that the restriction of this lift to SGBGO is unique.

Arguably the most important tool in the construction of the J –theory diagram in
Figure 1 is the validity of the Adams Conjecture. Recall that this implies that af-
ter suitable localization, a certain collection of bundles are not detected by the J –
homomorphism. On the classifying-space level, this allows us to define the map 

in the J –theory diagram. We now turn to considering these ideas in the equivariant
context.

The following is tom Dieck’s version of the Equivariant Adams Conjecture, quoted
verbatim. Here, G is a finite group, E an orthogonal G –bundle, S.E/ its associated
(stable) spherical fibration, and k is odd.

Theorem 2.4 [11, Theorem 11.3.8] There exist stable G –maps f W S.E/!S. kE/

such that f H has for all H <G a degree which divides a power of k (k prime to jGj).

Definition 2.5 Let TG.X / denote the subgroup of eKO G.X / generated by the images
of the maps  k � 1, where k ranges over all odd integers relatively prime to p and
jGj. Let TG.X /

^
p denote the p–completion of TG.X /.

Thus, the Equivariant Adams Conjecture implies that elements in TG.X / are not
detected by the equivariant J –homomorphism.

Remark 2.6 Note that in the nonequivariant case, it is possible to choose a single
integer k which topologically generates the units in Z^p , at least for p odd. With such
a choice, the image of  k � 1 contains the images of  l � 1 for all other integers l

relatively prime to p (after p–completion). Therefore, the nonequivariant analogue of
TG.X /

^
p can be described quite simply as the image of a single map  k�1. Similarly,

if G is a p–group and k is a topological generator of the units in Z^p , then for a
G –space X , TG.X /

^
p can be again realized as the image of a single map  k � 1. On

the other hand, if G is not a p–group, this is no longer in general possible. One needs
the images of  k � 1 for several values of k to generate all of TG.X /

^
p .

For now, we simply take k to be an odd number prime to p and jGj. We wish to use
the Equivariant Adams Conjecture to define the map 
 k in the equivariant J –theory
diagram. By Corollary 2.3, when X is a finite G –connected G –CW complex, the group
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ŒX;BG.S
^
p /� is p–complete. Therefore, if k is prime to p and jGj, then it follows

from Theorem 2.4 and a standard lim1 –argument that the composite Bj^p ı . 
k � 1/

becomes null-homotopic after restricting to SGBGO . By choosing a null-homotopy
and restricting to SGBGO , we obtain a map 
 k from SGBGO to the G–connected
cover of the fiber of Bj^p .

Remark 2.7 The map 
 k is determined by a choice of null-homotopy, so we have
some flexibility in defining it. We will only need to use this flexibility for the J –theory
diagram at p D 2. See Remark 6.10 for details.

Now, for a given odd number k which is relatively prime to p and jGj, the equivariant
J –theory diagram is displayed in Figure 2, and this should be compared to Figure 1.
Given a map f W X ! Y , Fib.f / denotes the homotopy fiber of f .

SGFib. k � 1/

˛k

��

// SGBGO


k

��

 k�1 // SGBGSpin

.SGFG/
^
p

// SGFib.Bj^p / //

f

��

SGBGSpin
Bj^p //

g^p
��

SGBG.S
^
p /

.SGFG/
^
p

// SGFib.q/ � //
� _

�

��

SGBG.S
^
p IKO^p /

q //

c.‰k/
��

SGBG.S
^
p /

SGBGO˝
^
p

 k=1 // SGBGO˝
^
p :

Figure 2: The equivariant J –theory diagram

In this diagram, the first three rows are G–connected covers of fiber sequences; this
follows for the second and third row by Corollary 2.3. The map ˛k is the map of
homotopy fibers determined by 
 k . The map f is the map of fibers determined by g^p .
The space BGO˝ is the same space as BGO , but with Hopf-space structure determined
by tensor products of bundles of virtual dimension 1. Thus,  k=1 represents the
operation of taking such a bundle � and replacing it with  k.�/=�. The map c.‰k/

(see Section 6) represents replacing a KO^p –oriented GF.S^p /–fibration .E; �/ with
the virtual bundle  k.�/=�. A KO^p –orientation of a trivialized GF.S^p /–fibration
determines a virtual bundle over the base space; this gives a geometric interpretation of
the map �. The map �k is defined to be c.‰k/ ıg^p ; this represents the Adams–Bott
cannibalistic class. As in the nonequivariant setting, we let �k D � ıf ı 
 k .
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As we show in Section 5.2 and Section 6.1, there are homotopy lifts of  k=1 and �k

to SGBGSpin˝
^
p . We show in Corollary 5.4 that for a G–connected space X , if a

map X ! BGO lifts to BGSpin, then that lift is unique up to homotopy. The same
argument applies to SGBGSpin˝

^
p , so that the square on the right below commutes

up to homotopy. This induces the map "k on the left.

.SGFG/
^
p

//

"k

��

SGFib.Bj^p / //

iıf

��

SGBGSpin

�k

��
SGFib. k=1/^p

// SGBGO˝
^
p

 k=1 // SGBGSpin˝
^
p

One might hope that for suitably chosen k , the composite "k ı ˛k would induce an
equivalence, thus giving an equivariant splitting of .SGFG/

^
p . We proved this in [13]

assuming that p is odd and the order of G is a power of p . But, in the general case,
there is no good choice for k , as we remarked in Remark 2.6. The fact that, in the
nonequivariant setting, the image of the classical J –homomorphism at the prime p

could be realized as the homotopy groups of Fib. k � 1/ for a particular value of
k turns out to be something of a happy accident that carries over only partially into
the equivariant setting. More generally, Fib. k � 1/ is simply the wrong space to be
called J . We need to define a different space.

We will look at a small summand of p–complete KOG –theory, which determines a
factor of the space BGO^p . This summand, as we will see, carries all the homotopical
information we need; using the Equivariant Adams Conjecture, one can show that the
restriction of the J –homomorphism to the complementary summand is trivial.

To prepare for our definition, we first recall the Adams splitting of p–complete KO –
theory. In the p–adic metric, the Adams operations act continuously on p–complete
KO –theory, so one can define Adams operations  ˛ , where ˛ is any p–adic integer.
In particular, one can choose ˛ to be a .p � 1/–st root of unity, so that KO.X /^p
naturally splits as a product of eigenspaces. By Brown representability, BO^p then splits
as a product W �W ? , where W represents the summand of KO.X /^p corresponding
to the elements fixed by  ˛ . The space W is often called the Adams summand of
BO^p .

Equivariantly, the Adams operations again act continuously on p–complete KOG –
theory. Thus, one can define  ˛ where ˛ is a .p� 1/–st root of unity, so one could
again define a splitting just as before. However, when G is not a p–group, one can in
fact whittle down p–complete KOG –theory quite a bit further. In Section 3 (see in
particular Remark 3.11), we construct a natural splitting of p–complete KOG –theory:

KOG.X /
^
p ŠWG.X /˚WO?G .X /
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When G is not a p–group, our group WG.X / is significantly smaller than the fixed
points of  ˛ . In particular, if G DQ�P , where P is a Sylow p–subgroup, then
WG.S

2m/ is isomorphic to a tensor product W .Q/˝WP .S
2m/, where W .Q/�R.Q/

consists of those representations which are fixed by  k for all k relatively prime to
the order of Q. (See Remark 3.8). As we explain in Remark 3.11, the splitting
of KOG.X /

^
p leads to a splitting of SGBGSO^p as a product WG �WO?

G
. We let

.WG/˝ and .WO?
G
/˝ denote the (homotopically equivalent) corresponding factors of

SGBGSO˝^p .

We are now ready to define our space JG . Let p be a prime and suppose G is a
finite group such that none of the prime divisors of jGj are congruent to 1 modulo p .
If, for example p D 2, then G must be a 2–group, and we simply define JG to
be SGFib. 3 � 1/^

2
and JG˝ to be SGFib. 3=1/^

2
. If p is odd, let k be an odd

integer which is relatively prime to jGj and which is also a topological generator in
Z^p . Because Adams operations commute, the operation  k � 1 can be restricted to a
natural transformation on WG.X /, and so induces a self-map of the representing space
WG . We define JG to be the fiber of this map. Similarly, the operation  k=1 induces
a self-map of WG˝ , and we define JG˝ to be the fiber of this map.

Remark 2.8 It should be remembered that the spaces JG and WG are defined in
terms of the prime p and the integer k . To simplify notation, we have not incorporated
these data into the notation for these spaces.

Since p is odd, the maps BGSpin!BGSO and BGSO!BGO are p–equivalences
(by Lemma 5.2 and Lemma 5.3), so we will refer just to BGSO. Now we have the
(homotopy) commutative diagrams in Figure 3.

We could define the classical J –homomorphism as the map �n.Spin/ ! �n.SF/,
induced by taking homotopy groups of the map Spin! SF. Nonequivariantly, the
homotopy groups of J are equal to the image of the classical J –homomorphism
at an odd prime, and contain this image when p D 2. If we replace Spin and SF
by their equivariant counterparts Spin and SGFG , then for each H � G , we have
a J –homomorphism �n.SpinH /! �n.SGFH

G
/. We now show that, at a prime p ,

the homotopy groups of the fixed-point subspaces J H
G

are equal to the image of this
J –homomorphism when p is odd, and contain this image when p D 2. We have the
following maps of fiber sequences.

Spin // Fib. k � 1/ //

��

BGO
 k�1 //

��

BGSpin

Spin
�Bj // �BG.S

^
p / // Fib.Bj / // BGSpin

Bj // BG.S
^
p /
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JG

��

// WG

 k�1 //

��

WG

��
SGFib. k � 1/^p

// SGBGSO^p
 k�1 // SGBGSO^p ;

SGFib. k=1/^p
//

��

SGBGSO˝^p
 k=1 //

��

SGBGSO˝^p

��
.JG˝/ // WG˝

 k=1 // WG˝:

Figure 3

Here, we have used Proposition 2.2 to identify �BGSpin with Spin and �BGSO
with SO. Also, note that by Corollary 2.3, �n.�BG.S

^
p /

H /Š �n..SGFG/
^
p

H / for
all n� 1.

Proposition 2.9 For any H �G and any n� 1, the image of

�n.�Bj /W �n.SpinH /! �n.�BG.S
^
p /

H /Š �n..SGFG/
^
p

H /

is contained in the image of

�n.J
H
G /! �n.Fib. k

� 1/^p
H /! �n.�BG.S

^
p /

H /Š �n..SGFG/
^
p

H /:

When p is odd, this containment is actually an equality.

Proof When p D 2, JG is defined to be equal to Fib. k � 1/^
2

(where k D 3), so
the statement is obvious. Suppose p is odd. The given map �n.�Bj / factors through
�n.SpinH /^p . Since p is odd,

�n.SpinH /^p Š �nC1.BGSOH /^p Š
�WH .S

nC1/˚ eWO
?

H .S
nC1/:

By Lemma 3.12, the image of eWO
?

H .S
nC1/ is trivial. But the map from �n.�W H

G
/

to �n.Fib. k � 1/^p
H / factors through �n.J

H
G
/.

The second statement follows since  k�1W BGSO^p ! BGSO^p induces an injection on
�n of H –fixed points for all n� 1. Therefore, the same can be said of  k � 1W WG!

WG . This implies that every element in �n.JG/ lifts to �n.�WG/.

We now state and prove our main theorem, citing the results that we will need in later
sections.
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Theorem 2.10 Suppose G is a finite group, p a prime, and none of the prime divisors
of the order of G are congruent to 1 modulo p . If p is odd, suppose k is an odd
integer which is relatively prime to the order of G , and which topologically generates
the units in Z^p . If p D 2, let k D 3.

Then the space JG is, up to homotopy, a direct factor of .SGFG/
^
p ; more precisely, the

composite

JG
// SGFib. k � 1/^p

˛k
// .SGFG/

^
p

"k
// SGFib. k=1/^p

// .JG˝/

is an equivariant weak homotopy equivalence. (The first and last maps are identities if
p D 2.)

If p D 2, so that G is a 2–group, then the displayed square is a pullback diagram in
the homotopy category:

SGBGO^p
 k�1 //

�k

��

SGBGSpin^p

�k

��
SGBGO˝

^
p

 k=1 // SGBGSpin^p

If p is odd, then the displayed square, which represents the components of the four
maps  k � 1;  k=1; �k ; �k on the Adams summands, is a pullback diagram in the
homotopy category:

WG

 k�1 //

�k

��

WG

�k

��
WG˝

 k=1 // WG˝

Proof First, suppose p is odd. Then the diagram in Figure 4 commutes up to
homotopy.

By Corollary 6.9, the maps �k and �k induce the same map on the n–th homotopy
groups of H –fixed points for H � G and for n � 1. By Theorem 4.1, the right
composite of vertical maps (and therefore the middle vertical composite) induces an
equivalence on homotopy groups. Therefore, the left composite of vertical maps induces
an equivalence on homotopy groups.
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JG
//

��

WG

��

 k�1 // WG

��
SGFib. k � 1/^p

"kı˛k

��

// SGBGSO^p

�k

��

 k�1 // SGBGSO^p

�k

��
SGFib. k=1/^p

��

// SGBGSO˝^p

��

 k=1 // SGBGSO˝^p

��
JG˝

// WG˝
 k=1 // WG˝:

Figure 4

Now suppose p D 2, so k D 3. In this case, the following diagram commutes up to
homotopy:

SGFib. 3� 1/^
2

"3ı˛3

��

// SGBGO^
2

�3

��

 3�1 // SGBGSpin^
2

�3

��
SGFib. 3=1/^

2
// SGBGO˝

^
2

 3=1 // SGBGSpin˝
^
2

By the last part of Theorem 4.2, the map �3 on the right induces an equivalence on �n

of H –fixed points for n� 2. By Lemma 5.2,

SGBGO ' .SGBGSO/� .SGBGO.1//:

By Corollary 6.9 and Theorem 4.2, the map �3 is a weak equivalence on the fac-
tor .SGBGSO/^

2
, while by Lemma 6.11, �3 is a weak equivalence on the factor

SGBGO.1/^
2

. Thus, �3 is a weak equivalence, so "3 ı˛3 is a weak equivalence.

In Section 7.2 of our appendix, we will prove the following, in order to explain why
we have been unable to remove the condition on the prime divisors of jGj.

Theorem 2.11 Suppose p is a prime, G is a finite group such that one of the prime
divisors of the order of G is congruent to 1 modulo p , and k is an odd integer prime
to p and jGj. Suppose given a natural splitting

KOG.X /
^
p ŠA.X /�B.X /
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which is compatible with Adams operations and �k . Finally, suppose that for each
space X , B.X /� TG.X /

^
p (see Definition 2.5). Then there is a space X and a pair of

elements �; � 2A.X / of virtual dimension 0 such that �k.�/D . k=1/.1C �/, but �
is not in the image of  k � 1. Thus, the restriction of the Adams–May square to A.X /

cannot be a pullback diagram.

3 A splitting of equivariant K –theory

Throughout this section, let p be an odd prime, and let G be a finite group of order n,
where none of the prime divisors of n are congruent to 1 modulo p . Let GcT be the
category whose objects are finite G –connected G –CW complexes.

In this section, as advertised, we construct a natural splitting of KG.X /
^
p for X 2GcT ,

generalizing the Adams splitting of K.X /^p . Since p is odd, it will be easy to compare
KG.X /

^
p with KOG.X /

^
p .

Construction 3.1 We sketch a construction of the nonequivariant Adams splitting.
First, one shows that the action of the Adams operations  k are p–adically continuous
in k , so one can define a new set of Adams operations  ˛ for p–adic integers ˛ . If
˛ is a .p� 1/–st root of unity, then one can define a projection onto the fixed-points
of  ˛ by the formula 1

p�1

Pp�1
jD1

 ˛
j

. Thus, the fixed points of  ˛ form a direct
summand of K.X /^p , called the Adams summand.

In the general equivariant setting, it is no longer the case that the action of the Adams
operations  k are p–adically continuous in k . However, as we show in Lemma 3.2,
if we restrict k to lie in a certain multiplicative submonoid of Z, then the Adams
operations are again p–adically continuous in k . Furthermore, this submonoid is dense
in Z^p , so one can again define Adams operations for any p–adic integer. However,
unless k happens to lie in our multiplicative submonoid, one is not guaranteed that
the new Adams operation for an ordinary integer k will coincide with the traditional
operation  k (see Remark 3.3 for a specific example.) To distinguish the new operations
from the old, we will denote the new operations by z k .

One might expect that we would then define WG.X / as the fixed points of z ˛ , where
˛ is a .p � 1/–st root of unity. Our goal, however, is to find a summand WG.X /

of KG.X /
^
p such that the complementary summand lies in TG.X /, and so that �k

restricts to an isomorphism; for this, we need WG.X / to be significantly smaller than
just the fixed points of z ˛ . In fact, we will want WG.X / to consist of those elements
which are fixed by z ˛ , and for which the action of  k and z k coincide for a certain
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collection of integers k (see Lemma 3.9). To get this smaller summand, we define
a finite collection of commuting projections and let � denote the product; this leads
us to our Definition 3.5 of WG.X /. In Lemma 3.12, we show that the elements in
the complementary summand which have an underlying real structure are themselves
contained in TG.X /, as was our goal.

Now, we may write n D n0ppr.n/ , where p−n0p and r.n/ is the number of factors
of p in n. Let M.n0p/ D 1C n0pZ denote the multiplicative monoid of all integers
congruent to 1 modulo n0p ; note that M.n0p/ is dense in Z^p . The monoid M.n0p/ acts
on KG.X /

^
p by k � � D  k.�/ for k 2M.n0p/ and � 2KG.X /

^
p .

Lemma 3.2 The action of M.n0p/ on KG.X /
^
p (X 2GcT ) is p–adically continuous.

Proof We need to show that if k1�k2 is divisible by a sufficiently large power of p ,
then  k1.�/ �  k2.�/ is divisible by a specified large power of p . First, suppose
L is a line bundle over X . For each x 2 X H , the fiber LjGjx of LjGj over x has
trivial H –action. It follows from [13, Corollary 2.10] that LjGj D ��.L0/, where
� W X!X=G is the projection to the orbit space and L0 is a nonequivariant line bundle
over X=G . In turn, L0 Š f �

L0
.ŒH �/ for some classifying map fL0 W X=G ! CPm ,

where ŒH � is the canonical line bundle over CPm . Letting fL D fL0 ı � , we have
LjGj D f �

L
.ŒH �/.

Now, if k1 and k2 are integers in M.n0p/, and k1� k2 D kn0p , then so long as pr.n/

divides k , we have:

 k1.L/� k2.L/DLk2.Lkn0p � 1/

DLk2..LjGj/kp�r .n/

� 1/DLk2.f �L .ŒH �kp�r .n/

� 1//

Letting x D ŒH �� 1, we have ŒH �kp�r .n/

� 1 D .xC 1/kp�r .n/

� 1. Since xmC1 2

zK.CPm/ is trivial, we only need to consider the binomial coefficients�
kp�r.n/

t

�
for 1 � t � m. The p–adic valuation of the denominator t ! of this coefficient is
bounded, while the p–adic valuation of the term kp�r.n/ in the numerator can be
made as large as we like by making the p–adic valuation of k large.

The case of sums of line bundles is immediate. Now suppose E is a bundle over X .
Then by the equivariant splitting principle, there is a G–map f W X 0 ! X so that
f �W KG.X /

^
p !KG.X

0/^p is injective and takes E to a sum of line bundles. Then
f �.. k1 � k2/.E// D . k1 � k2/.f �E/ will be divisible by a specified power
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of p provided that k1 � k2 is divisible by a sufficiently large power of p . The set
of elements in KG.X /

^
p which are not divisible by pa for some a is compact in the

p–adic topology, so its image under f � is compact and does not contain 0 (since
f � is injective). The complement of this image is an open neighborhood U of 0 in
KG.X

0/^p , which must contain all elements divisible by pb for some b . By definition
of U , .f �/�1.U / consists entirely of elements divisible by pa . Thus, by ensuring that
f �. k1 � k2/.E/ is divisible by pb , we have . k1 � k2/.E/ divisible by pa .

It follows that we have a natural action of Z^p
� on KG.X /

^
p . We denote the operation

of k 2 Z^p
� on KG.X /

^
p as z k .

Remark 3.3 For k 2M.n0p/, we of course have z k D  k , but z k is not in general
the same as  k . For example, suppose that X D S2 , p D 3, G D Z=5, and k D 2.
Then zKG.S

2/^p is a free R.G/^p module, generated by the Bott class y , and R.G/D

ZŒz�=.z5� 1/. Thus,
 2.zy/D z2 2.y/D 2z2y:

To compute z 2 , we must approximate 2 in Z^p by a sequence of elements a0; a1; a2; : : :

which are all congruent to 1 modulo 5 (eg 1; 11; 11; 56; 326; 731; : : :). So  ai .zy/D

zai aiy D zaiy , since zai D z . Since lim ai D 2 by construction,

z 2.zy/D lim ai .zy/D lim zaiy D 2zy:

Remark 3.4 Suppose G contains a normal Sylow p–subgroup P , with QDG=P ,
so jQj D n0p . Then KG.X /

^
p is an R.G/–module, and hence by restriction an R.Q/–

module. For each k 2M.n0p/, k � 1 mod jQj; thus  k acts as the identity on Q–
representations, so  k is an R.Q/–module homomorphism. Thus, for each k 2Z^p ,
z k is an R.Q/–module homomorphism. In particular, z ˛ acts as an R.Q/–module
homomorphism.

Also, it follows from Lemma 3.2 that the action of the entire monoid Z on KP .X /
^
p (by

Adams operations) is p–adically continuous in k (since n0p D 1.) Thus, for an ordinary
integer k , the restriction of z k to KP .X /

^
p coincides with  k . Moreover, because

 k acts on K.S2m/ as multiplication by km , z ˛ acts on K.S2m/^p as multiplication
by ˛m .

We now turn to defining the commuting projections on KG.X /
^
p whose product will

have image equal to WG.X /. The elements of WG.X / will consist of those elements
which are fixed by z ˛ (where ˛ 2 Z^p is a primitive .p� 1/st root of unity), and for
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which the action of  k and z k coincide for each k relatively prime to n0p . We first
define �0 to be

1

p� 1

p�2X
jD0

z ˛
j

:

Since z ˛ ı �0 D �0 , �0 is a projection, and its image consists of those elements
x 2KG.X /

^
p fixed by z ˛ .

Now, suppose that k is an integer satisfying the following conditions:

(1) k � 1 mod pr.n/ .

(2) k determines a unit in Z=n.

Let bk be the order of k in .Z=n/� . Then bk D
Q

qrq�1.q� 1/ where q runs over
the prime divisors of n0p , and rq is the exponent of q in the prime factorization. Since
none of these prime divisors are congruent to 1 modulo p , it follows that bk is not
divisible by p , and is therefore invertible in Z^p . So, we have a natural operation �k

on KG.X /
^
p given by

1

bk

bk�1X
jD0

 kj z k�j :

Also, kbk 2M.n0p/, so  kbk z k�bk
D z kbk z k�bk

D 1. This implies  k z k�1

�k D

�k , so �k is also a projection.

Since  k�k D
z k�k , the image of �k consists solely of elements x 2KG.X /

^
p for

which  k.x/D z k.x/, and all such elements are fixed by �k , hence in the image of �k .
Thus, each of the projections �k does part of the job of whittling down KG.X /

^
p . We

now simply choose a finite set Sn of odd integers k satisfying conditions (1) and (2)
above, and generating the group of units in Z=n0p . Since the projections �k and �0

all commute, we have a natural projection � given by �0

Q
k2Sn

�k on KG.X /
^
p .

Definition 3.5 Let WG.X / and W ?
G
.X / denote the image and kernel of � . Thus,

KG.X /
^
p ŠWG.X /˚W ?G .X /:

As usual, we let �WG.X / and �W ?
G
.X / denote the kernels of the maps WG.X /!

WG.�/ and W ?
G
.X /!W ?

G
.�/.

Definition 3.6 If Q is a group whose order is relatively prime to p , let W .Q/�R.Q/

consist of those representations fixed by  k for all k relatively prime to the order
of Q.
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We include the following examples to help the reader get accustomed to our notation.

Examples 3.7 (1) (G is a p–group.) If G is a p–group, then n0p D 1, so we
can take Sn to be empty. Thus, in this case, WG.X / simply coincides with the z ˛

fixed-points. If G D Z=p , m is some positive integer, and k is an integer such that
˛ � k mod p , then �WG.S

2m/ is generated over Z^p by�
zC˛mzk

C˛2mzk2

C � � �C˛m.p�2/zkp�2�
xm;

where xm is a generator of zK.S2m/.

(2) (G is cyclic of prime order q ¤ p .) If G is cyclic of order nD q , where q ¤ p

is a prime which is not congruent to 1 modulo p , and m� 1 is some integer. Then,
KG.S

2m/^p ŠR.G/˝K.S2m/^p . As we observed in Remark 3.4, z ˛ acts by R.G/–
module homomorphisms, and acts on K.S2m/^p as multiplication by ˛m . Thus, the
z ˛ –fixed points of KG.S

2m/^p are trivial unless p�1jm, in which case z ˛ acts as the
identity. Now, we may choose an odd integer k which generates .Z=q/� , and take Sn to
be fkg. The actions of  k and z k on KG.S

2m/^p correspond under the isomorphism
KG.S

2m/^p ŠR.G/˝K.S2m/^p to  k˝ k and 1˝ k respectively. It follows that
the group of elements in KG.S

2m/^p for which  k and z k coincide is isomorphic to
W .G/˝K.S2m/^p . Now, W .G/ is a two-dimensional free Abelian group generated
by the trivial representation and the regular representation. Thus, �WG.S

2m/ is trivial
unless p� 1jm, in which case it is isomorphic to W .G/^p D Z^p ˚Z^p .

(3) (G is cyclic of order q1q2 , for primes q1; q2 not equal to p .) Suppose G is
cyclic of order nD q1q2 , where q1 and q2 are two primes, neither of which is equal
to p or congruent to 1 modulo p , and suppose m� 1. Using the same arguments as
in the last example, �WG.S

2m/ is trivial unless p�1jm, and in this case is isomorphic
to W .G/^p . This time, W .G/ � R.G/ is a four-dimensional free Abelian group,
generated by the trivial representation 1, the regular representation

Pq1q2

iD1
zs , and the

representations
Pq1

iD1
zq2s and

Pq2

iD1
zq1s . Thus, �WG.S

2m/ is trivial when p�1−m,
and is isomorphic to Z^p

˚4 when p� 1jm.

(4) (G is cyclic of order relatively prime to p .) If G is cyclic of order n0p , where
p−n0p and no prime divisor of n0p is congruent to 1 modulo p , then one may be able
to guess from the above that �WG.S

2m/ is trivial when p� 1−m and is isomorphic to
Z^p
˚�.n0p/ when p� 1jm. Here, �.n0p/ is the number of divisors of n0p .

(5) (G is a permutation group.) Let us now consider a noncyclic group. Suppose
G is the permutation group †t , so nD t !, and p is any prime such that none of the
prime divisors of m! are congruent to 1 modulo p (eg p � t=2.) Suppose k satisfies
conditions (1) and (2), ie k is relatively prime to n!, and k � 1 mod pr.n/ . Then k
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is relatively prime to all the numbers from 1 to t . We claim  k acts as the identity
on R.G/. Indeed, if �V is the character of a complex G–representation V , then
� kV .�/D �V .�

k/. By writing � as a product of disjoint cycles, it is easy to see that
�k is conjugate to � in St (since k is relatively prime to every possible cycle length.)
Therefore, � kV D �V , so that  kV D V . Thus,  k acts as an R.G/–module
homomorphism.

We calculate z k by p–adically approximating k with numbers in M.n0p/. Suppose
l � 1 mod n0p , and also l � k mod pr.n/ . Then since k � 1 mod pr.n/ , it follows that
l � 1 mod n. Therefore,  l acts as the identity on R.G/ for any l 2M.n0p/ which is
sufficiently close p–adically to k . Thus, z k acts as an R.G/–module homomorphism.
It follows easily that  k and z k coincide on KG.S

2m/^p , so that �WG.S
2m/ is just

the z ˛ invariants.

Remark 3.8 Suppose G splits as a product Q�P , where P is a Sylow p–subgroup.
Then for m� 1,

zKG.S
2m/^p ŠR.G/^p ŠR.Q/˝ zKP .S

2m/^p :

By Remark 3.4, z ˛ acts as an R.Q/–algebra homomorphism, so by Examples 3.7 (1),
the fixed points of z ˛ are R.Q/˝ �WP .S

2m/. Also by Remark 3.4, each z k acts
as an R.Q/–algebra homomorphism, and the actions of z k and  k on zKP .S

2m/^p
coincide. Thus, �WG.S

2m/ŠW .Q/˝ �WP .S
2m/:

In general, we have the following description of WG.X /.

Lemma 3.9 For X 2GcT , the subgroup WG.X / of KG.X /
^
p consists precisely of

those elements which are fixed by z ˛ , and for which the action of  k and z k coincide
for each k relatively prime to n0p .

Proof Clearly such elements are fixed by � and therefore in the image of � . For the
converse, note that z ˛� D � , so elements in the image of � are fixed by z ˛ . Now
suppose given k relatively prime to n0p . Though k may not be in Sn , we can find an l

which is a product of elements in Sn such that kl � 1 mod n0p . Therefore,  kl D z kl

by Remark 3.3, and the actions of  l and z l coincide on the image of � . Thus on
the image of � , we have

 k z l
D  k l

D  kl
D z kl

D z k z l :

Since l is a unit in Z^p , z l is invertible. Thus,  k D z k on the image of � .

Algebraic & Geometric Topology, Volume 9 (2009)



The equivariant J –homomorphism for finite groups at certain primes 1905

Corollary 3.10 For X 2GcT , the subgroup WG.X / is contained in the image of the
complexification map

cW KOG.X /
^
p !KG.X /

^
p :

Proof Suppose x is in the image of � . Since ˛.p�1/=2 D �1 in Z^p , and x D
z ˛x by Lemma 3.9, we have x D z �1.x/. Applying Lemma 3.9 again yields
 �1.x/D z �1.x/, since �1 is relatively prime to n0p . Thus

cr.x/D .1C �1/.x/D 2x:

But 2 is a unit since p is odd.

Remark 3.11 Since rc D 2 is a unit, the complexification map c is one-to-one. We
let WO?

G
.X /�KOG.X /

^
p denote the preimage under c of W ?

G
.X /. By Corollary

3.10, we have
KOG.X /

^
p ŠWG.X /˚WO?G .X /:

By equivariant Brown representability [17, Chapter XIII, Theorem 3.1], the restrictions
of the functors �WG.�/ and eWO

?

G.�/ to finite G –connected based G –CW complexes
are representable by G –connected G –spaces WG and WO?

G
. Thus, we have

SGBGO^p 'WG �WO?G :

The following lemma, together with the Equivariant Adams Conjecture, implies that
WO?

G
.X / does not contribute to the image of J .

Lemma 3.12 WO?
G
.X /� TG.X /

^
p .

Proof We will show that each element � 2W ?
G
.X / can be p–adically approximated

by linear combinations of the form
P
. ki � 1/.�i/, where ki is an odd integer

relatively prime to p and jGj and �i 2 zKG.X /
^
p . Assuming this, then if � is in

WO?
G
.X /, we have c� 2W ?

G
.X /, so c� can be approximated as a linear combinationP

. ki � 1/.�i/. Then 2� D rc� is approximated by
P

r. ki � 1/.�i/. Since c is
one-to-one and both c and cr commute with  ki , it follows that r commutes with  ki ,
so 2� is approximated by

P
. ki � 1/r.�i/. Thus, since 2 is invertible, � 2 TG.X /

^
p .

Now, recall that W ?
G
.X / is generated by the kernels of �0 and �k , k 2 Sn (Sn was

defined in the paragraph prior to Definition 3.5). The kernel of �0 is the image of

�0� 1D
1

p� 1

p�1X
jD1

. z ˛
j

� 1/;
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so it suffices to p–adically approximate elements in the image of z ˛
j

� 1. Suppose
� 2 zKG.X /

^
p . For each j , ˛j can be p–adically approximated by some odd integer

kj 2M.n0p/, and since p does not divide ˛j , p does not divide kj . Then  kj .�/

is a p–adic approximation to z ˛
j

.�/, so . kj � 1/.�/ is a p–adic approximation to
. z ˛

j

� 1/.�/.

Now, for each k 2 Sn , the kernel of �k is the image of

�k � 1D
1

bk

bkX
jD1

�
. kj

� 1/ z k�j
C . z kj

� 1/
�
:

Again, since p does not divide k , kj can be p–adically approximated by odd integers
in M.n0p/ which are not divisible by p . So any element of the form . z kj � 1/.�/ can
be p–adically approximated as above. Elements in the image of  kj � 1 are already
in the needed form.

We end this section with a technical lemma that we will need later.

Lemma 3.13 Suppose that P is a p–group, and q is a prime not congruent to 0 or 1

modulo p . Then  q � q induces an isomorphism on WP .S
2m/.

Proof It suffices to show that  qj � qj induces an isomorphism for some j , since

 qj
� qj

D . q
� q/. qj�1

C q qj�2

C � � �C qj�1/

D . qj�1

C q qj�2

C � � �C qj�1/. q
� q/:

Because q is not congruent to 0 or 1 modulo p , we have q � ˛l mod p for some l

with 1 � l � p � 2. Let ˇ D ˛l . Then since pj.q � ˇ/, it follows by an inductive
argument that pjC1j.qpj �ˇpj /D .qpj �ˇ/. Therefore, the sequence of integers
qpj p–adically converges to ˇ . Thus, the sequence of maps  qpj

� qpj p–adically
converges to z ˇ �ˇ (in this case, M.n0p/DM.1/DZ). Since z ˇ acts as the identity
on WP .S

2m/ and p − .1�ˇ/, z ˇ �ˇ induces an isomorphism on WP .S
2m/. Since

WP .S
2m/ has finite rank over Z^p and the units in Z^p form an open subset, it follows

that  qpj

� qpj must be an isomorphism for j sufficiently large.

4 The Adams–Bott map �k

As in Section 3, let GcT denote the category whose objects are finite G–connected
G–CW complexes. For a finite group G and a space X 2 GcT , let �k

c denote the
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complex Adams–Bott cannibalistic class:

�k
c W KG.X /!KG.X /k.DKG.X /Œ1=k�/

Then �k
c is natural and is exponential in the sense that �k

c .�1˚ �2/D �
k
c .�1/ � �

k
c .�2/.

When L is a line bundle,

�k
c .L/D 1CLCL2

C � � �CLk�1
D

Lk � 1

L� 1
:

While our primary interest lies in the corresponding map �k for KOG –theory, the map
�k

c is computationally easier to deal with, and the results we will need about �k will
generally be derived from counterparts about �k

c .

As usual, let zKG.X / denote the kernel of the augmentation homomorphism KG.X /!

KG.�/ Š R.G/, and let 1C zKG.X / denote the set of elements in KG.X / which
map to 1 under the augmentation. By naturality, �k

c restricts to a map �k
c W
zKG.X /!

1C zKG.X /k . By the splitting principle, �k
c commutes with Adams operations. There-

fore, so long as p −k , so that k2Z^p
� , �k

c restricts to a map �k
c W
�WG.X /!1C �WG.X /

(see Definition 3.5). In Section 3, we showed that �WG.X / is also a summand of
eKO G.X /

^
p , and as above, �k restricts to a map �k W �WG.X /! 1C �WG.X /.

Adams’ computations involving the maps �k lie at the heart of his study of the groups
J.X /. He found a connection between these maps and the sequence ˛t satisfying:

log
ex � 1

x
D

1X
tD0

˛t
xt

t !

In particular, he proved [2, Theorem 5.18] that if x 2 eKO .S4m/, then

(4-1) �k.x/D 1C
1

2
.k2m

� 1/˛2mx:

Using his techniques, one can similarly show that for x 2 zK.S2m/,

(4-2) �k
c .x/D 1C .km

� 1/˛mx:

Using these calculations, one can show that for the right choice of k , �k induces an
isomorphism on the Adams summand of KO –theory (discussed in Construction 3.1).
Our goal in this section will be to prove the following equivariant version of this fact,
which we used for the proof of our main result, Theorem 2.10.

Theorem 4.1 Suppose G is a finite group, p is an odd prime, and none of the prime
divisors of the order of G are congruent to 1 modulo p . Also, suppose that k is an
integer which is relatively prime to the order of G , and which topologically generates
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the units in Z^p . Then for each integer m� 1, the map �k W �WG.S
2m/! 1C �WG.S

2m/

is an isomorphism. Thus, the composite map

WG
// SGBGSO^p

�k

// SGBGSO˝^p // WG˝

is an equivariant weak homotopy equivalence.

In the case when p D 2, our condition on the prime divisors of jGj is equivalent to
saying that G must be a 2–group. In this section, we will also prove the following
theorem, which we used for the proof of Theorem 2.10. Here, IKSOG.X / denotes
the kernel of the natural augmentation map KSOG.X /!KSO.�/Š Z.

Theorem 4.2 Suppose G is a 2–group. Then for m� 1, the map

�3
W IKSOG.S

m/^2 ! 1C IKSOG.S
m/^2

is an isomorphism. Thus, the map �3W .SGBGSO/^
2
! .SGBGSO˝/^2 is a weak

equivalence. Moreover, the map �3W .SGBGSpin/^
2
! .SGBGSpin˝/

^
2

induces an
isomorphism on �n of H –fixed points for n� 2, and any H �G .

As a first step toward proving Theorem 4.1, we generalize Adams’ arguments in [2]
to find an equivariant version of Equation (4-2) above (see Equation (4-3) in Section
4.1). We show in Section 4.2 how this calculation alone can be used to prove that
�k

c W
�WG.S

2m/! 1C �WG.S
2m/ is an isomorphism when G is cyclic of prime order q ,

where q¤p and q 6�1 mod p . In Section 4.3, we show how to simplify the expressions
obtained from Equation (4-3) when we apply �k

c to generators of �WG.S
2m/. In Section

4.4, we define and analyze a commutative diagram which reduces the study of �k
c

for cyclic groups G to the case of cyclic p–groups, which we considered in [13].
Finally, in Section 4.5 and Section 4.6, we put all our previous results together to prove
Theorem 4.1 and Theorem 4.2.

4.1 An equivariant version of Equation (4-2)

Much of Adams’ study in [2] can be described in purely algebraic terms, and in this
way can be generalized to our context. For this subsection, we simply consider a cyclic
group G of order n. Let R.n/ denote the representation ring of G ; algebraically, R.n/

is just ZŒz�=.zn� 1/. In Definition 4.4, we describe a sequence of linear self-maps ˛r

on R.n/˝Q, which we will use for the equivariant study of �k in much the same
way Adams used the coefficients ˛r in the nonequivariant context. Indeed, if G is
trivial, so that n D 1 and R.n/ D Z, then our map ˛r is just multiplication by the
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coefficient ˛r that Adams studied. More generally, zKG.S
2m/ is a free module over

R.n/D ZŒz�=.zn� 1/ on one generator xm , and as we show in Proposition 4.12, we
have the following analogue of Equation (4-2) above:

(4-3) �k
c .z

sxm/D 1C .km˛m.z
ks/�˛m.z

s//xm:

In order to prove this result, we work in an algebraic setting, identifying KG.CPm/

with R.n/Œy�=.ymC1/, and defining algebraic maps ";  k ; ch and bh corresponding
to maps Adams considered in [2]. The main relation between these maps is proved in
Lemma 4.10, which is strictly analogous to [2, Proposition 5.6].

For an Abelian group M and any integer k , let Mk DM ˝ZŒ1=k�, and let MQ D

M ˝Q. Let  k act on R.n/ by taking z to zk . As in Section 3, we may write n in
the form n0ppr.n/ , where p does not divide n0p . Let ˆd .z/ be the d –th cyclotomic
polynomial, so that zn� 1D

Q
d jnˆd .z/. Let Rd D ZŒz�=ˆd .z/. Thus, Rd

Q is just
the field Q.�/, where � is a primitive d –th root of unity, and z 2R.n/Q corresponds
to � 2Rd

Q . The following lemma is well-known and not hard to prove.

Lemma 4.3 After inverting n, R.n/ splits as a product of the rings Rd , so we have
R.n/n Š

Q
d jn Rd

n , and R.n/Q Š
Q

d jn Rd
Q .

Definition 4.4
� For each triple .r; s; d/, where r is a positive integer, s is any integer, and d is

a positive divisor of n, we define ˛r;s;d 2Rd
Q by the equation below.

(4-4)
1X

rD1

˛r;s;d

xr

r !
D

(
log ex�1

x
d js

log zsex�1
zs�1

d−s

� Let ˛r;s 2 R.n/Q Š
Q

d jn Rd
Q be the element determined by ˛r;s;d for each

divisor d of n.
� Let ˛r W R.n/Q!R.n/Q be the linear map taking zs to ˛r;s .
� Let ˛W R.n/QŒŒx��!R.n/QŒŒx�� be the group homomorphism defined by

˛

 
1X

rD0

cr xr

!
D

1X
rD1

˛r .cr /x
r :

Notation 4.5 We will write

log
ex � 1

x
D

1X
tD0

˛0t
xt

t !
;

so that ˛0t 2Q denotes the coefficient Adams referred to as ˛t . Note that ˛t;s;1 D ˛
0
t .

Algebraic & Geometric Topology, Volume 9 (2009)



1910 Christopher P French

We may identify KG.CPm/ with R.n/Œy�=.ymC1/, where yC1 represents the canon-
ical line bundle. Thus, the elements representing line bundles are of the form zs.yC1/r .
We will use Lemma 4.8 below to show that the following definition makes sense.

Definition 4.6 For k relatively prime to n, let �k
c W R.n/Œy�! .R.n/k ŒŒy��/

� be the
group homomorphism determined by

�k
c .z

s.yC 1/r /D 1C zs.yC 1/r C z2s.yC 1/2r
C � � �C z.k�1/s.yC 1/.k�1/r :

Remark 4.7 By our construction, the diagram below commutes:

R.n/Œy� //

�k
c

��

R.n/Œy�=ymC1 Š // KG.CPm/

�k
c

��
.R.n/k ŒŒy��/

� // R.n/k Œy�=y
mC1 Š // KG.CPm/k

Lemma 4.8 If k is relatively prime to n, then

1C zs.yC 1/r C z2s.yC 1/2r
C � � �C z.k�1/s.yC 1/.k�1/r

is a unit in R.n/k ŒŒy��.

Proof For a ring S , an element in S ŒŒy�� is a unit if and only if its constant coefficient
is a unit, so it suffices to show that 1C zs C � � � C z.k�1/s is a unit in R.n/k . We
will show this by showing that the map R.n/k !R.n/k given by multiplication by
1C zsC� � �C z.k�1/s has determinant k , and is therefore a Zk –module isomorphism.
(After proving this, we realized that Hirata and Kono proved the same result about this
determinant in [14].)

We may compute the above determinant by computing the determinant of the vector-
space map

CŒz�=.zn
� 1/!CŒz�=.zn

� 1/

given by multiplication by 1CzsC� � �Cz.k�1/s . Now, CŒz�=.zn�1/Š
Qn

iD1 C , and
z corresponds to the sequence .�0; �1; : : : ; �n�1/, where �i runs through the n–th roots
of unity (with �0D1). In

Qn
iD1 C , multiplication by 1CzsC� � �Cz.k�1/s corresponds

to the map which, on the i –th factor, is multiplication by 1C �s
i C � � �C �

.k�1/s
i . This

map then has determinant

n�1Y
iD0

�
1C �s

i C � � �C �
.k�1/s
i

�
D k �

n�1Y
iD1

�ks
i � 1

�s
i � 1

:

Since k is relatively prime to n, the denominators and numerators in the above product
cancel, and we are left with just k .
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Notations 4.9 Let "W R.n/k Œy� ! R.n/k be the R.n/k –module homomorphism
sending y to 0, let  k W R.n/Œy� ! R.n/Œy� be the ring homomorphism sending
zs.yC1/r to zks.yC1/kr , and let chW R.n/k Œy�!R.n/QŒŒx�� be the R.n/k –algebra
homomorphism determined by ch.y/ D ex � 1 (so ch.y C 1/ D ex ). Since ex � 1

is divisible by x in R.n/QŒŒx��, ch extends to an R.n/k –algebra homomorphism
from R.n/k ŒŒy�� to R.n/QŒŒx��. Note also that ch restricts to a homomorphism of
multiplicative groups:

chW 1CyR.n/k ŒŒy��! 1CxR.n/QŒŒx��:

For a divisor d of n, let bhd
W R.n/Œy�! 1CxRd

QŒŒx�� be the group homomorphism
determined by

bhd .zs.yC 1/r /D

(
er x�1

rx
d js;

zser x�1
zs�1

d−s:

Note that when d−s , zs�1 is invertible since Rd
Q is a field. By Lemma 4.3, R.n/QŠQ

d jn Rd
Q , so we may let

bhW R.n/Œy�! 1CxR.n/QŒŒx��

be the group homomorphism determined by the maps bhd .

The following lemma is our algebraic analogue of Adams’ result [2, Proposition 5.6].

Lemma 4.10 For each � 2R.n/Œy�,

bh.�/ � ch.�k
c .�//D �

k
c .".�// � bh. k.�///:

Thus, if � D zsym for some s and some m� 1, then

log bh.�/C log ch.�k
c .�//D log bh. k.�//:

Proof It suffices to prove the equality in .Rd
QŒŒx��/

� for each d . Since both sides
are exponential, it suffices to consider the generators zs.yC 1/r . When d js , we have
zs D 1 in Rd

Q , so we have

bhd .zs.yC 1/r / � ch.�k
c .z

s.yC 1/r //

D
erx � 1

rx
�
ekrx � 1

erx � 1
D k �

ekrx � 1

krx
D �k

c .".z
s.yC 1/r // � bhd . k.zs.yC 1/r //:
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When d−s , we have

bhd .zs.yC 1/r / � ch.�k
c .z

s.yC 1/r //

D
zserx � 1

zs � 1
�
zksekrx � 1

zserx � 1

D
zks � 1

zs � 1
�
zksekrx � 1

zks � 1
D �k

c .".z
s.yC 1/r // � bhd . k.zs.yC 1/r //:

The second statement follows since ".zsym/D 0 when m� 1.

Lemma 4.11 For each � 2R.n/Œy�, we have ˛.ch.�//D log.bh.�//, where ˛ is the
homomorphism of Definition 4.4.

Proof In Rd
QŒŒx��, we have

˛.ch.zs.yC 1/r //D ˛.zserx/D

(
log er x�1

rx
d js;

log zser x�1
zs�1

d−s
D log.bhd .zs.yC 1/r //:

Proposition 4.12 Suppose m � 1. Let yxm denote a generator of zK.S2m/, and
let xm 2

zKG.S
2m/ be the element corresponding to 1 ˝ yxm 2 R.n/ ˝ zK.S2m/.

If gcd.k; n/ D 1, then the map �k
c W
zKG.S

2m/ ! 1 C zKG.S
2m/k takes zsxm to

1C
�
km˛m;ks �˛m;s

�
xm .

Proof First, recall that zKG.CPm/ŠR.n/Œy�=.ymC1/, and the submodule zKG.S
2m/

of zKG.CPm/ corresponds under this isomorphism to the submodule generated by ym .
We may then identify xm with ym . We will prove the claim by showing that the map
�k

c W
zKG.CPm/ ! 1C zKG.CPm/k takes zsym to 1C .km˛m.z

ks/�˛m.z
s//ym .

By Remark 4.7, we may use our algebraic description of �k
c given in Definition 4.6.

By Lemma 4.10 and Lemma 4.11, we have:

log ch.�k
c .z

sym//

D log bh. k.zsym//� log bh.zsym/

D ˛
�
ch. k.zsym/� zsym/

�
D ˛

�
ch
�
zks..yC 1/k � 1/m� zsym

��
D ˛

�
zks.ekx

� 1/m� zs.ex
� 1/m

�
D ˛

�
.kmzks

� zs/xm
C � � �

�
D
�
km˛m;ks �˛m;s

�
xm
C � � �

It follows that

ch.�k
c .z

sym//D 1C
�
km˛m;ks �˛m;s

�
xm
C � � � ;
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and therefore in 1C zKG.CPm/Q , we must have

�k
c .z

sym/D 1C
�
km˛m;ks �˛m;s

�
ym:

In the corollary below, the map labelled C1 is the map that takes x to 1Cx .

Corollary 4.13 If gcd.k; n/D 1 and m� 1, then the diagram below commutes:

R.n/˝ zK.S2m/

˛m˝1

��

Š // zKG.S
2m/

�k
c // 1C zKG.S

2m/k� _

��

R.n/Q˝ zK.S
2m/

Š // zKG.S
2m/Q

C1 // 1C zKG.S
2m/Q

 k=1// 1C zKG.S
2m/Q

Proof First,  k.xm/D kmxm . Thus, chasing zs˝ yxm counterclockwise, we get

. k=1/.1C˛m.z
s/xm/D

1C k.˛m;s/ � k
mxm

1C˛m;s �xm
D 1C

�
km˛m;ks �˛m;s

�
�xm:

Going clockwise, we get the same by Proposition 4.12.

Remark 4.14 For an integer m � 1, the multiplication on zKG.S
2m/ is trivial. It

follows that the map 1C zKG.S
2m/! zKG.S

2m/ taking 1Cx to x is an isomorphism.
We will sometimes use the notation �k

c to denote the composite

zKG.S
2m/

�k
c // 1C zKG.S

2m/k
// zKG.S

2m/k :

In this usage, �k
c is an additive homomorphism.

Also, note that for an element x 2 zKG.S
2m/,

. k=1/.1Cx/D
1C kx

1Cx
D 1C . kx�x/D 1C . k

� 1/x:

Thus, Corollary 4.13 implies that the diagram below commutes:

R.n/˝ zK.S2m/
Š //

˛m˝1

��

zKG.S
2m/

�k
c // zKG.S

2m/k� _

��

R.n/Q˝ zK.S
2m/

Š // zKG.S
2m/Q

 k�1 // zKG.S
2m/Q
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4.2 Example: G D Z=q

Suppose G D Z=q , where q ¤ p is an prime which is not congruent to 1 modulo p .
Thus, n D q for this example. Let k be an integer which determines a topological
generator of Z^p , and which is also relatively prime to q . Using Proposition 4.12, we
will show here that for m� 1, �k

c W
�WG.S

2m/! 1C �WG.S
2m/ is an isomorphism.

By Remark 3.8, with Q D G and P being trivial, �WG.S
2m/ ŠW .G/˝ �W .S2m/.

Here �W .S2m/ is trivial unless p� 1jm, and W .G/ is generated by 1 and .zC z2C

� � �C zq�1C zq/. (See Examples 3.7 (2).) Thus, we may assume p� 1jm, so that, in
particular, m is even.

We have

�k
c .xm/D 1C .km

� 1/˛m;0xm:

Since ˛m;0;1 and ˛m;0;q are both equal to ˛0m , we may identify ˛m;0 2R.n/Q with
˛0m 2Q�R.n/Q . Thus,

�k
c .xm/D 1C .km

� 1/˛0mxm:

On the other hand, by Proposition 4.12, exponentiality of �k
c , and triviality of x2

m ,

�k
c ..zC z2

C � � �C zq/xm/D

qY
sD1

�
1C .km˛m;ks �˛m;s/xm

�
D 1C

 
qX

sD1

km˛m;ks �˛m;s

!
xm

D 1C .km
� 1/

 
qX

sD1

˛m;s

!
xm:

The last equality follows since q − k . To calculate
Pq

sD1
˛m;s 2R.n/Q , we must con-

sider the images
Pq

sD1
˛m;s;1 2R1

Q and
Pq

sD1
˛m;s;q 2R

q
Q . Returning to Definition

4.4, we have:

1X
mD1

 
qX

sD1

˛m;s;1

!
xm

m!
D

qX
sD1

1X
mD1

˛m;s;1

xm

m!
D q log

�
ex � 1

x

�
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Thus,
Pq

sD1
˛m;s;1 D q˛0m 2R1

Q . Using Definition 4.4 again, we have:

1X
mD1

 
qX

sD1

˛m;s;q

!
xm

m!
D

qX
sD1

1X
mD1

˛m;s;q
xm

m!
D

q�1X
sD1

log
zsex � 1

zs � 1
C log

ex � 1

x

D log

0@ q�1Y
sD1

zsex � 1

zs � 1

!
ex � 1

x

1AD log

 Qq
sD1

.zsex � 1/

x
Qq�1

sD1
.zs � 1/

!

For the last equality, we used the fact that 1D zq . To compute
Qq�1

sD1
.zs � 1/, note

that the set fzs � 1 W 1 � s � q � 1g is the set of roots of the monic polynomialPq�1
sD0

.yC 1/s . Since the constant term of this polynomial is q , and the degree is
q � 1, the product of its roots is .�1/q�1q . In a similar way, one can show thatQq

sD1
.zsex � 1/D .�1/q.1� eqx/. Thus,

log

 Qq
sD1

.zsex � 1/

x
Qq�1

sD1
.zs � 1/

!
D log

eqx � 1

qx
D

1X
mD0

˛0m
.qx/m

m!
:

It follows that
Pq

sD1
˛m;s;q D qm˛0m 2R

q
Q .

Thus,
Pq

sD1
˛m;s is the element in R.n/Q which maps to q˛0m 2R1

Q and to qm˛0m
in R

q
Q . Therefore, this element must be

˛0m
�
qm
C .1� qm�1/.zC z2

C � � �C zq/
�
:

In summary, we have shown that

�k
c ..zC z2

C � � �C zq/xm/D 1C .km
� 1/˛0m

�
qm
C .1� qm�1/.zC z2

C � � �C zq/
�

�k
c .xm/D 1C .km

� 1/˛0mxmand

Now, let S W W .Q/!W .Q/ be the map whose matrix representation with respect to
the basis 1 and zC z2C � � �C zq is given by�

1 qm

0 1� qm�1

�
:

As in Remark 4.14, we write �k
c for the map �WG.S

2m/ ! �WG.S
2m/ given by

composing �k
c with subtraction by 1, so that by (4-2), �k

c W
�W .S2m/! �W .S2m/ takes
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xm to .km� 1/˛0mxm . Thus, the following diagram commutes:

(4-5)

�WG.S
2m/

�k
c

��

Š // W .G/˝ �W .S2m/

S˝�k
c

���WG.S
2m/

Š // W .G/˝ �W .S2m/:

As Adams proved [2, Theorem 2.6 and Lemma 2.12], .km� 1/˛0m is a p–adic unit,
provided that m is even, p odd, and k is a generator of the units in Z^p (all of which
we have assumed). Thus �k

c W
�W .S2m/! �W .S2m/ is an isomorphism. On the other

hand, since p� 1jm, qm � 1 mod p . Since q 6� 1 mod p , 1� qm�1 is not divisible
by p , so the determinant of the matrix representation for S is not divisible by p . Thus,
S induces an isomorphism after completing at p , so �k

c W
�WG.S

2m/! �WG.S
2m/ is

an isomorphism.

4.3 Representation theory for cyclic groups

We now turn to the case of cyclic groups G D Z=n, where n is a positive integer
such that none of the prime divisors of n are congruent to 1 modulo p , and write
nD n0p �p

r.n/ , where p − n0p . By Remark 3.8, �WG.S
2m/ŠW .Z=n0p/˝

�WP .S
2m/^p ,

where P is the Sylow p–subgroup of Z=n. Recall from Definition 3.6 that W .Z=n0p/

is the subgroup of R.Z=n0p/ consisting of representations fixed by  k for all k

relatively prime to n0p . For brevity, we will write W .n0p/ for W .Z=n0p/.

It is not hard to see that W .n0p/ is free, with a basis consisting of elements fd DP
d js;1�s�n0p

zs; where d ranges over the divisors of n0p . It will sometimes be more
convenient to use the basis consisting of elements ed D

P
d js;1�s�n zs , where d ranges

over all the divisors of n which are divisible by pr.n/ . Note that ed is obtained from
fd simply by substituting zpr .n/

for z .

In Section 4.2, where nD q , we studied �k
c .e1 �xm/ and �k

c .eq �xm/. This study led
us to consider

Pq
sD1

˛m;s;1 and
Pq

sD1
˛m;s;q . More generally, when p may divide

n and n0p may potentially have several factors, we will need to study �k
c .ed � z

cxm/,
where d is a multiple of pr.n/ which divides n, and zc is in R.P /. We can and will
assume throughout that c is a multiple of n0p ; this will be technically convenient. In any
case, we need to understand certain sums of the form

P
˛m;s;d 0 , where d 0 is a divisor

of n0p and the sum is taken over a certain set of values for s . After some notation for
describing the indexing set for these sums, we will prove Proposition 4.16, in which
we show how such sums can be simplified. In Section 4.4, we will need a corollary of
this proposition, Corollary 4.19, in order to show that a certain diagram commutes.
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Notation 4.15 Let Sn
d;c

denote the set of all integers s between 1 and n such that
s � c mod pr.n/ and s � d mod n0p . Assuming pr.n/jd , we can describe Sn

d;c
more

simply as the set of integers between 1 and n of the form cC dt , t 2 Z.

Note that the sum of terms of the form zs , where s ranges over Sn
d;c

, is the element in
R.n/ corresponding to ed ˝ zc 2R.n0p/˝R.P /.

After two easy lemmas, we will prove:

Proposition 4.16 Suppose pr.n/jd jn and d 0jn, and let l D lcm.d; d 0/. ThenX
s2Sn

d;c

˛m;s;d 0 D
n

l

�
l

d

�r

˛m;cl=d;d 0 :

In the following, S l
d;c

is just the set of elements in Sn
d;c

between 1 and l .

Lemma 4.17 There is an element s0 2 S l
d;c

which is divisible by d 0 if and only if
c.l=d/ is divisible by d 0 . Moreover, in this case, s0 is unique.

Proof If c.l=d/Dmd 0 , then gcd.d; d 0/ divides c , so cD d 0u�dv for some integers
u; v . Now there is an integer r so that the number s0 D cCdvC r l is in f1; 2; : : : ; lg.
Since d jl , s0 can be written in the form c C dt , so s0 2 S l

d;c
. Since d 0 divides

c C dv and l , d 0 also divides s0 . Conversely, if c C dt D d 0u for some u, then
c.l=d/D d 0u.l=d/� t l , which is divisible by d 0 . Uniqueness of s0 is obvious – any
two elements of the form c C dt which are both divisible by d 0 must differ by a
multiple of l .

Lemma 4.18 In Rd 0

Q , we haveY
s2S l

d;c

zsex
� 1D .�1/l=d .1� zcl=delx=d /:

If cl=d is divisible by d 0 , let s0 2 S l
d;c

be the unique element divisible by d 0 . Then in
Rd 0

Q , we have Y
s2S l

d;c
;s¤s0

zs
� 1D .�1/.l=d/�1.l=d/:

Proof We first claim that the set fzs W s 2 S l
d;c
g is the set of roots of the polynomial

yl=d � zcl=d in Rd 0

Q . To see this, first note that S l
d;c

consists of l=d elements. Next,
note that each of these elements is a root of yl=d � zcl=d : if s D c C dt , then
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zsl=d D zcl=dztl , and zl D 1 in Rd 0

Q . Finally, since z is a primitive d 0–th root of
unity in Rd 0

Q , and any two elements in Sd;c which are congruent modulo d 0 must be
congruent modulo l , the elements in fzs W s 2 S l

d;c
g are distinct.

Therefore, the set fzsex � 1 W s 2 S l
d;c
g is the set of roots of the polynomial

.elx=d /

 �
yC 1

ex

�l=d

� zcl=d

!
D .yC 1/l=d � zcl=delx=d :

This is a monic polynomial of degree l=d , with constant coefficient 1� zcl=delx=d .
Therefore, Y

s2S l
d;c

.zsex
� 1/D .�1/l=d .1� zcl=delx=d /:

The second statement follows using a similar argument.

We now prove Proposition 4.16.

Proof Since ˛r;s;d 0 D ˛r;sCl;d 0 , we have
P

s2Sn
d;c
˛r;s;d 0 D .n= l/

P
s2S l

d;c
˛r;s;d 0 . It

therefore suffices to show thatX
s2S l

d;c

˛r;s;d 0 D

�
l

d

�r

˛r;cl=d;d 0 :

If cl=d is not a multiple of d 0 , then d 0 does not divide any s 2 S l
d;c

by Lemma 4.17,
so we have

1X
rD1

X
s2S l

d;c

˛r;s;d 0
xr

r !
D

X
s2S l

d;c

log
zsex � 1

zs � 1
D log

 Y
s2S l

d;c

zsex � 1

zs � 1

!

D log

 Q
s2S l

d;c
zsex � 1Q

s2S l
d;c

zs � 1

!
D log

 
zcl=delx=d � 1

zcl=d � 1

!

D

1X
rD1

˛r;cl=d;d 0

�
l

d

�r
xr

r !
:

The penultimate equality above uses Lemma 4.18, and its specialization to the case
x D 0.
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Now, if cl=d is a multiple of d 0 , we let s0 2 S l
d;c

be the unique element divisible
by d 0 . Then, we have

1X
rD1

X
s2S l

d;c

˛r;s;d 0
xr

r !
D

 X
s2S l

d;c
;s¤s0

log
zsex � 1

zs � 1
C log

ex � 1

x

!

D log

  Y
s2S l

d;c
;s¤s0

zsex � 1

zs � 1

!
�
ex � 1

x

!
:

Since zs0 D 1, this is

log

 Q
s2S l

d;c
zsex � 1

x
Q

s2S l
d;c
;s¤s0 z

s � 1

!
D log

�
elx=d � 1

lx=d

�
D

1X
rD1

˛r;cl=d;d 0

�
l

d

�r
xr

r !
:

Again, the penultimate equality uses by Lemma 4.18.

Corollary 4.19 Suppose pr.n/jd jn and d 0jn0p , and let l D lcm.d; d 0/. ThenX
s2Sn

d;c

˛r;s and
n

l

�
l

d

�r

˛r;cl=d

have the same image under the map

R.n/Q ŠR.n0p/Q˝R.pr.n//Q!Rd 0

Q ˝R.pr.n//Q:

Proof Observe that

Rd 0

Q ˝R.pr.n//Q Š
Y

d 00jpr .n/

Rd 0

Q ˝Rd 00

Q Š
Y

d 00jpr .n/

Rd 0d 00

Q :

Therefore, it suffices to see that the cited quantities are equal in Rd 0d 00

Q , which follows
from Proposition 4.16.

4.4 A commutative diagram

It is not so obvious how to define an analogue of the map S in Diagram (4-5) of Section
4.2. In this subsection, we construct a substitute diagram

(4-6)

�WG.S
2m/

�k
c

��

W .n0p/˝
�WP .S

2m/
T 0m // M.n0p/˝

�WP .S
2m/

1˝�k
c

���WG.S
2m/ W .n0p/˝

�WP .S
2m/


˝1 // M.n0p/˝
�WP .S

2m/:
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Once again, we have written �k
c for the map that is technically given by �k

c followed
by subtracting 1. We will show that 
 induces an isomorphism after inverting n0p
(Lemma 4.22), that T 0m is an isomorphism (Lemma 4.26), and that Diagram (4-6)
commutes (Proposition 4.28). Thus, the demonstration of Theorem 4.1 for cyclic
groups G reduces to the case of cyclic p–groups, which follows from our earlier
paper [13].

To define M.n0p/, we first need the following lemma. Recall that if d is a divisor of
n0p , then fd 2W .n0p/ is given by

P
d js;1�s�n0p

zs .

Lemma 4.20 Suppose d and d 0 are divisors of n0p . Then the image of fd 2W .n0p/

in Rd 0 is equal to 0 if d 0 does not divide d , and n0p=d if d 0 does divide d .

Proof If d 0 does divide d , then zdD1 in Rd 0 , so fdDn0p=d . If d 0 does not divide d ,
then zd ¤ 1 in Rd 0 . Since .1C zC z2C � � �C zd�1/.z� 1/D zd � 1, it follows that
.1C zC z2C� � �C zd�1/¤ 0. But .1C zC z2C� � �C zd�1/fd D

Pn0p�1
kD0 zk D 0 in

Rd 0 . Since Rd 0 is an integral domain, fd D 0 in Rd 0 .

Definition 4.21 For each divisor d 0 of n0p , let Md 0 be the rank 1 subgroup of Rd 0

generated by 1, and let M.n0p/D
L

d 0jn0p
Md 0 . By Lemma 4.20, the projection

R.n0p/ ! Rd 0 takes each element fd to Md 0 . Let 
 W W .n0p/ ! M.n0p/ be the
homomorphism induced by the projections R.n0p/!Rd 0 .

Lemma 4.22 The homomorphism 
 induces an isomorphism after inverting n0p .

Proof We order the divisors of n0p as d1; d2; d3; : : : ; d�.n0p/ in such a way that di jdj

implies that i < j . This determines an obvious basis for M.n0p/, and also gives an
ordering for our basis ffdg of W .n0p/. By Lemma 4.20, the component of 
 .fd / in
Md 0 is 0 if d 0 − d and n0p=d if d 0jd . Thus the matrix representation of 
 is upper
triangular, and the determinant of the matrix representation of 
 is

�.n0p/Y
iD1

n0p

di
;

which becomes a unit after inverting n0p .

Definition 4.23 We now define a map

TmW W .n0p/˝R.pr.n//!M.n0p/˝R.pr.n//:

As in Lemma 4.22, we order the divisors di of n0p . However, we take as our basis of
W .n0p/ the elements epr .n/di

. (Recall that if pr.n/jd jn, then ed D
P

d js;1�s�n zs .) We
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can then describe Tm with a �.n0p/� �.n
0
p/ matrix in which the entries are self-maps

of R.pr.n//. For each pair di ; dj of divisors of n0p , let li;j D lcm.di ; dj /. Then let
the .i; j / entry of Tm be .n0p= li;j /.li;j=di/

m li;j =di .

Remark 4.24 If d and d 0 both divide n0p , and lD lcm.d; d 0/, then the d 0–component
of Tm.epr .n/d ˝ zc/ is .n0p= l/.l=d/mzcl=d . Equivalently, if pr.n/jd jn and d 0jn0p and
l D lcm.d; d 0/, then the d 0 component of Tm.ed ˝ zc/ is .n= l/.l=d/mzcl=d .

Remark 4.25 We can extend Tm to a map

Tm˝ 1W W .n0p/˝R.pr.n//˝ zK.S2m/^p !M.n0p/˝R.pr.n//˝ zK.S2m/^p :

Since R.pr.n//˝ zK.S2m/ Š zKP .S
2m/, and �WP .S

2m/ � zKP .S
2m/^p consists of

elements fixed by z ˛ , Tm˝ 1 restricts to a map

T 0mW W .n0p/˝
�WP .S

2m/!M.n0p/˝
�WP .S

2m/:

Since  li;j =di acts on zK.S2m/^p as multiplication by .li;j=di/
m , the .i; j / entry of

T 0m is given by
n0p

li;j
 li;j =di W �WP .S

2m/! �WP .S
2m/:

Lemma 4.26 T 0m is an isomorphism.

Proof Since p does not divide n0p or di , it suffices to consider the �.n0p/� �.n
0
p/

matrix whose .i; j / entry is given by

 li;j =di

li;j=di
W �WP .S

2m/! �WP .S
2m/:

In turn, this matrix can be viewed as a tensor product of matrices of the form0BBBBBBBBBB@

1  q

q
 q2

q2

 q3

q3 � � �
 qa

qa

1 1  q

q
 q2

q2 � � �
 qa�1

qa�1

1 1 1  q

q
� � �

 qa�2

qa�2

� � �

� � �

1 1 1 1 � � � 1

1CCCCCCCCCCA
where q ranges over the prime divisors of n0p , and a is the exponent of q in the prime
factorization of n0p . Subtracting each row from the next row reduces the above matrix
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to an upper triangular matrix with diagonal entries given by 1 (in the top left) or
1� q=q (everywhere else). Since none of the prime factors of n0p are congruent to 0

or 1 modulo p , it follows by Lemma 3.13 that 1� q=q induces an isomorphism on�WP .S
2m/. This completes the proof.

As a stepping stone to proving that diagram (4-6) commutes, we consider the following
diagram:

(4-7)

W .n0p/˝R.pr.n//
Tm //

˛m

��

M.n0p/˝R.pr.n//

1˝˛m

��

W .n0p/˝R.pr.n//Q

˝1 // M.n0p/˝R.pr.n//Q

A word of explanation is needed about the left vertical map. If we identify R.n/

with R.n0p/˝R.pr.n//, then the submodule W .n0p/˝R.pr.n// corresponds to the
submodule of R.n/ consisting of elements fixed by the action of  k for all k relatively
prime to n0p and such that k � 1 mod pr.n/ . The map ˛mW R.n/!R.n/Q commutes
with the action of  k for all k relatively prime to n, and so restricts to a map
˛mW W .n0p/˝ R.pr.n// ! W .n0p/˝ R.pr.n//Q , which is the left vertical map in
Diagram (4-7).

Proposition 4.27 Diagram (4-7) commutes.

Proof Suppose n0pjc and pr.n/jd jn. Then ed˝zc 2W .n0p/˝R.pr.n// corresponds
to
P

s2Sn
d;c

zs 2R.n/, so ˛m.ed ˝ zc/ corresponds to
P

s2Sn
d;c
˛m;s .

If d 0jn0p , then by Corollary 4.19, the d 0–component of ..
 ˝ 1/ ı˛m/.ed ˝ zc/ is

n

l

�
l

d

�m

˛m.z
cl=d /D .1˝˛m/

�
n

l

�
l

d

�m

zcl=d

�
D .1˝˛m/.Tm.ed ˝ zc//:

The last equality follows from Remark 4.24. Since W .n0p/˝R.pr.n// is generated by
elements of the form ed ˝ zc where n0pjc and pr.n/jd jn, the result now follows.

Proposition 4.28 Diagram (4-6) commutes.

Proof By Proposition 4.27, the middle square of the diagram in Figure 5 commutes.
The top and bottom squares clearly commute.

Since  k acts as the identity on W .n0p/, it follows from the extension of Corollary
4.13 in Remark 4.14 that the composite of the left vertical maps is the restriction of

�k
c W
zKG.S

2m/^p !
zKG.S

2m/Q^p :
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W .n0p/˝
�WP .S

2m/
T 0m //

� _

��

M.n0p/˝
�WP .S

2m/
� _

��

W .n0p/˝R.pr.n//˝ zK.S2m/^p

˛m˝1

��

Tm˝1 // M.n0p/˝R.pr.n//˝ zK.S2m/^p

1˝˛m˝1

��

W .n0p/˝R.pr.n//Q˝ zK.S
2m/^p


˝1˝1//

.1˝ k˝ k/�1
��

M.n0p/˝R.pr.n//Q˝ zK.S
2m/^p

.1˝ k˝ k/�1
��

W .n0p/˝R.pr.n//Q˝ zK.S
2m/^p


˝1˝1// M.n0p/˝R.pr.n//Q˝ zK.S
2m/^p

Figure 5

Similarly, the composite of the right vertical maps is the restriction of

1˝ �k
c W M.n0p/˝

zKP .S
2m/^p !M.n0p/˝

zKP .S
2m/Q^p :

4.5 Finite groups

Here, we prove Theorem 4.1.

Proof The primary step in the proof will be to show that the map �k
c W
�WG.S

2m/!

1C �WG.S
2m/ is an isomorphism. In the last paragraph of the proof, we will show

how this implies the corresponding result for �k .

We first claim that Diagram (4-6) commutes in the case when G is a p–elementary
group (p ¤ 2); ie G D Z=n0p �P , where P is a Sylow p–subgroup. To see this, it
suffices to show that elements in �WP .S

2m/ are detected by their restrictions to cyclic
subgroups. That is, the map below is injective:�WP .S

2m/! lim
P 0�P

�WP 0.S
2m/

where P 0 ranges over the cyclic subgroups of P . But this is clear since�WP .S
2m/� zKP .S

2m/^p ŠR.P /˝ zK.S2m/^p ;

and representations are detected by their restrictions to cyclic subgroups.

Thus, if G is p–elementary, then Diagram (4-6) commutes, T 0m is an isomorphism by
Lemma 4.26, and 
 ˝ 1 is an isomorphism by Lemma 4.22. Finally, it follows from
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[13, Section 10] that �k
c W
�WP .S

2m/! �WP .S
2m/ is an isomorphism. (This is where

we require the hypothesis that k be a topological generator of the units in Z^p .) This
completes the proof for p–elementary groups.

Now, consider the map
�W R.G/! lim

H�G
R.H /;

where H ranges over all p–elementary subgroups of G . Then it follows from [19,
Section 10.2, Theorem 18] that � becomes an isomorphism after completing at p .
Thus the corresponding map

�K W
zKG.S

2m/^p ! lim
H�G

zKH .S
2m/^p

is an isomorphism. Since �K commutes with Adams operations, it follows that the
corresponding projection

�W W
�WG.S

2m/! lim
H�G

�WH .S
2m/

is an isomorphism. By naturality, �k
c W
�WG.S

2m/! �WG.S
2m/ is an isomorphism.

Now, we can extend this result to �k . In [13, Lemma 9.1], we showed that when
y is a .G;SU.V //–bundle and V has complex dimension divisible by 4, we have
�k

c .y/ D c�k.ry/. Thus, �k
c D c�kr when we restrict to AKSUG.S

2m/. Since p is
odd,

AKSOG.S
2m/^p and eKOG.S

2m/^p

are equivalent, so that complexification takes eKOG.S
2m/^p to AKSUG.S

2m/^p . Since
rc D 2, complexification is injective. Now, �k

c .cx/D c�k.rcx/D c�k.2x/, and since
�k

c is injective, it follows that �k is injective. Now suppose 1C x 2 1C �WG.S
2m/.

Since �k
c is surjective, 1CcxD �k

c .y/ for some y 2 �WG.S
2m/. By Corollary 3.10, y

is in the image of the complexification map, so �k
c .y/D c�k.ry/. Since c is injective

and 1C cx D c�k.ry/, we conclude 1Cx D �k.ry/, so �k is surjective.

For the last statement of the theorem, we observe that any subgroup H of G also
satisfies the hypotheses of the theorem. Thus, the map �k W �WH .S

2m/!1C �WH .S
2m/

is also an isomorphism for m� 1. Since WG is equivalent to WH as an H –equivariant
space, the map

�k
W �2m.W

H
G /Š �WH .S

2m/! 1C �WH .S
2m/Š �2m..WG/

H
˝ /

is an isomorphism for m� 1. Now the result follows since WG is G –connected and
the homotopy groups of W H

G
are concentrated in even dimensions for each H �G .
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4.6 The prime p D 2

In this subsection, we prove Theorem 4.2. In fact, this result is a simple corollary
of a result by Atiyah and Tall in [9] about oriented 
 –rings, so we only need a few
preliminary lemmas in order to ensure that we are in the setting where this result
applies.

Lemma 4.29 Suppose X is a finite G –CW complex, where G is a any group. Then
IKSOG.X / is an oriented 
 –ring in the sense of Atiyah and Tall [9, Section III.4].

Proof The proof by Allard in [6] that KO.X /˚KSp.X / is a special �–ring gen-
eralizes immediately to the equivariant case, and since KSOG.X /! KOG.X / is
a monomorphism by Lemma 5.2, it follows that KSOG.X / is a special �–ring in
the sense of Atiyah and Tall [9, Section 1.1] Now, it suffices to show that for an
n–dimensional oriented bundle � over a G–space X , �r .�/ Š �n�r .�/. We may
write the total space of � as E �SO.V / V , where E is a principal .G;SO.V //–bundle
over X .

If W is a G–representation whose action map factors through SO.W /, then W

and W � are isomorphic since they have the same characters. Also, �nV is a trivial
one-dimensional representation of SO.V /. The pairing

�k.V /˝�n�k.V /! �n.V /ŠR

then exhibits an isomorphism between �k.V / and �n�k.V /� , so that �k.V / and
�n�k.V / are isomorphic as SO.V /–representations. This implies that

�k.�/DE �SO.V / �
k.V /ŠE �SO.V / �

n�k.V /D �n�k�:

Lemma 4.30 If G is a p–group, then for any m> 0, the 
 –ring IKSOG.S
m/^p is a

p–adic 
 –ring in the sense of Atiyah and Tall [9, Section III.2].

Proof It is enough to show that the topology induced by the power filtration is
finer than the p–adic topology. But IKSOG.S

m/^p is isomorphic as a 
 –ring to
AKSOG.S

m/^p ˚ IRSO.G/^p , where IRSO.G/ denotes the kernel of the augmentation
of RSO.G/. Now, AKSOG.S

m/ has trivial multiplication, so it suffices to show that
the topology induced by the power filtration of IRSO.G/ is finer than the p–adic
topology. But the complexification homomorphism cW RSO.G/!R.G/ is a �–ring
monomorphism, since rc D 2 and RSO.G/ is torsion free. Now the result follows
since the p–adic topology of IR.G/ is equivalent to the topology induced by the
power filtration by [9, Section III, Proposition 1.1].
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Lemma 4.31 Suppose that � is an oriented G–bundle of dimension 2n. Then the
class �3.� � 2n/ as defined in Section 6 is equal to the class �3.� � 2n/ as defined in
[9, Section III.4].

Proof We may view � as a .G;SO.V //–bundle, where V is an inner product space
of dimension 2n. Let i W T ! SO.V / be the inclusion of a maximal torus, and suppose
z1; z2; : : : ; zn is a choice coordinates for T . For 0 � r � 2n, let �r be the r –th
elementary symmetric polynomial in the 2n variables z1; z

�1
1
; z2; z

�1
2
; : : : ; zn; z

�1
n .

We observe that �r D �2n�r . We will denote the standard representation of SO.V /
given by the identity map as just V . For 0� r � 2n, the character of �r V restricted
to T is �r .

Now let � be a primitive cube root of unity, so 1C � D��2 and ��1 D �2 . Then

z�1
i C1Czi D

1CziCz2
i

zi
D
.zi��/.zi��

2/

zi
D�.1��z�1

i /.�2
�zi/

D��2.1��z�1
i /.1��zi/D .1C�/.1��z

�1
i /.1��zi/:

nY
iD1

.z�1
i C1Czi/D .1C�/

n
nY

iD1

.1��z�1
i /

nY
iD1

.1��zi/D .1C�/
n

2nX
rD0

.��/r�rSo

D .1C�/n

  
n�1X
rD0

.�1/r .�r
C�2n�r /�r

!
C.�1/n�n�n

!
:

We may write this as
Pn

rD0 an;r�r , and it is not difficult to check directly that each
an;r is an integer. Thus,

Qn
iD1.z

�1
i C 1C zi/ is the character of the representationPn

rD0 an;r�
r .V /, and if � has dimension 2n, �3.�/D

Pn
rD0 an;r�

r .�/. Moreover,
�3.2/D 3, so

�3.� � 2n/D
1

3n

nX
rD0

an;r�
r .�/:

�3.� � 2n/D 
�=.��1/.� � 2n/D ���.� � 2n/D
���.�/

���.1/
2n
D

���.�/

.1� �/2n
Now

D
���.�/

3n.��/n
D
.1C �/n

3n

 
2nX

rD0

.��/r�r .�/

!
D

1

3n

nX
rD0

an;r�
r .�/

since �r .�/D �2n�r .�/. So, �3.� � 2n/D �3.� � 2n/.

We now prove Theorem 4.2.
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Proof Atiyah and Tall [9, Section III, Theorem 4.5], proved that if A is an orientable
p–adic 
 –ring, then the map �3W A! 1CA induces isomorphisms on invariants and
coinvariants of the action of �=f˙1g, where � is the group of units in Z^p , acting via
the Adams operations, and h is a generator of �=f˙1g. It is clear from their proof,
however, that in the case when p D 2, �3 is itself an isomorphism. By Lemma 4.29
and Lemma 4.30, IKSOG.S

m/^
2

is an orientable 2–adic 
 –ring, so the claim follows
from Lemma 4.31.

The second statement follows in a similar way to the proof of the second statement
in Theorem 4.1. For the last statement, suppose H � G and consider the following
diagram:

�n..SGBGSpin/^
2

H / //

�3

��

�n..SGBGSO/^
2

H /

�3

��
�n..SGBGSpin^˝/

^
2
/H / // �n..SGBGSO/^˝/

^
2
/H /:

By Lemma 5.3, the horizontal maps are both isomorphisms for n�3 and are one-to-one
with cokernel Z=2 when nD 2. Thus, for n� 3, the claim follows from the previous
remarks. For nD2, the claim follows if and only if the diagram induces an isomorphism
on the cokernels Z=2. But this holds if and only if it holds nonequivariantly. Since
�3W BSpin^2 !BSpin˝

^
2

is a homotopy equivalence by [16, Chapter V, Theorem 4.4],
the claim follows.

5 Equivariant Spin structures

5.1 Comparing classifying spaces

Nonequivariantly, there are fiber sequences

SO! BO!K.Z=2; 1/;

BSpin! BSO!K.Z=2; 2/:

These facts are useful when one wants to show that an orthogonal vector bundle is
uniquely orientable, or that an orientable vector bundle has a unique Spin structure. In
[13], we considered the inclusions BGSO!BGO and BGSpin!BGSO when G is
a finite group with odd order. Since most of our results there fail for groups with even
order, we need to consider the general case.

First, we need to explain how we build these classifying spaces, and this requires the
following definition.
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Definition 5.1 A complete sequence of complex G–representations is a sequence
V D V1� V2� V3� � � � such that

S
i Vi forms a complete G –universe and the action

map �i W G! U.Vi/ factors through SU.Vi/ for each i .

Each Vi can be thought of as a complex representation, a real G –representation with
Spin structure, a real orientable G–representation, and so on, and the action maps
determine basepoints for the spaces

BGO.Vi/; BGSO.Vi/; BGSpin.Vi/; BGU.Vi/; BGSU.Vi/:

We can then define the spaces BGO;BGSO etc. as the colimit over i of the corre-
sponding spaces BGO.Vi/, BGSO.Vi/ and so on. We proved in [13] that each of
these classifying spaces has a weak G –Hopf space structure. Weak, here, means that
the associativity and unit diagrams commute up to homotopy when restricted to finite
G –CW complexes.

The group O.1/ŠZ=2, together with the trivial map G!O.1/ determines a based G –
space BGO.1/. Tensor product of line bundles induces a weak G –Hopf space structure
on BGO.1/. If V is a real G–representation whose action map � factors through
SO.V /, then the determinant O.V /! O.1/ induces a based G–map BGO.V /!

BGO.1/. If V is a complete sequence of G–representations, then each action map
�W G!O.Vi/ does factor through SO.Vi/, and the G–maps BGO.Vi/! BGO.1/

assemble to a based G –map det�W BGO!BGO.1/. Moreover, det� is a weak map
of weak G –Hopf spaces.

Lemma 5.2 For any compact Lie group G , the sequence

BGSO
j� // BGO

det� // BGO.1/

is a split fibration sequence.

Proof We may assume V1 DC is a trivial representation. Then if

i�W BGO.1/� BGO.2/D BGO.V1/! BGO

denotes the inclusion, we have det� ıi� ' id. Now let �W BGO �BGO!BGO be
the addition map, obtained from the G –Hopf space structure of BGO . Since det� is a
weak G –Hopf map, the following diagram commutes up to weak homotopy:

BGSO // BGSO�BGO.1/ //

�ı.j��i�/

��

BGO.1/

BGSO
j� // BGO

det� // BGO.1/:
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It follows from the five-lemma that � ı .j� � i�/ is a weak equivariant equivalence,
and therefore an equivariant homotopy equivalence.

Lemma 5.3 The G–connected cover of the fiber of the map BGSpin! BGSO is
BO.1/'K.Z=2; 1/ with trivial G–action. The corresponding inclusion BO.1/!

BGSpin is null-homotopic.

Proof Let Vi run over a complete sequence of complete G –representations V . Note
that for each Vi , there is a canonical homomorphism �W G ! SU.Vi/, and thus
canonical homomorphisms from G to Spin.Vi/ and SO.Vi/, endowing BSpin.Vi/

and BSO.Vi/ with G –actions as described in the comment preceding Proposition 2.2.
By Proposition 2.2, SGBGSpinD colim BSpin.Vi/ and SGBGSOD colim BSO.Vi/.
In order to establish the first claim, it suffices to show that the G–connected cover
of the fiber of BSpin.Vi/! BSO.Vi/ is K.Z=2; 1/ with trivial G–action. To show
this, we will show that for any H � G , the map Spin.Vi/

H ! SO.Vi/
H induces

an injection on �0 , and that if Vi contains a two-dimensional trivial representation,
then for any H � G , the component of the identity in Spin.Vi/

H surjects onto the
component of the identity in SO.Vi/

H , with kernel Z=2.

The kernel of the map Spin.Vi/
H!SO.Vi/

H consists of two points t and e , where e2

Spin.Vi/ is the identity. If Vi has a two-dimensional trivial subrepresentation, then there
is a path in Spin.Vi/

G connecting e to t . Also, if 
 is a path in SO.Vi/
H , and 
 .0/

is in the image of Spin.Vi/
H , then it is easy to check that either lift of 
 to Spin.Vi/

factors through Spin.Vi/
H . These facts imply that the map Spin.Vi/

H ! SO.Vi/
H

induces an injection on �0 , and that the projection from the identity component of
Spin.Vi/

H to the identity component of SO.Vi/
H is surjective with kernel Z=2.

To show that the inclusion of K.Z=2; 1/ in BGSpinG
' BSpinG is null-homotopic,

consider the fiber sequence

SOG
!K.Z=2; 1/! BSpinG :

It suffices to find a map K.Z=2; 1/! SOG inducing the nontrivial map on �1 . But
SOG

D colim SO.Vi/
G , which contains a copy of colim SO.V G

i / D SO, and the
composite SO ! SOG

� SO is homotopic to the identity. It is well-known that
nonequivariantly, there is a map K.Z=2; 1/! SO inducing a nontrivial map on �1 .

The following corollary now follows from the previous two lemmas.

Corollary 5.4 Suppose X is G–connected. Then if a G–map X ! BGO lifts to
BGSpin, that lift is unique up to homotopy.
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5.2 Lifting  k � 1

In [13], we proved that the map  k � 1W BGO ! BGO lifts to BGSpin (as in the
nonequivariant case), provided that G has odd order. We have since realized that one
can prove this for arbitrary compact Lie groups G . We now give the argument for this
claim. We first need the following elementary lemma, in which A denotes a compact
Lie group with two components (eg O.n/), and a 2A is an element of order 2 in the
nontrivial component of A (eg a reflection).

Lemma 5.5 Suppose given a homomorphism �W A!O.n/ such that the number of
negative eigenvalues of �.a/ is divisible by 4, and such that � induces the trivial map
on �1 . Then � lifts to Spin.n/.

Proof Clearly �.a/ 2 SO.n/, so by continuity � factors through SO.n/. Since
�.a/2 D �.a2/D 1, the eigenvalues of �.a/ are all ˙1. Suppose e1; e2; : : : ; e4j are
unit eigenvectors with eigenvalue �1, and e4jC1; e4jC2; : : : ; en are unit eigenvectors
with eigenvalue 1. Then the preimage of �.a/ in Spin.n/ consists of the two elements
˙e1e2 � � � e4j . Here, we have used the Clifford algebra description of Spin.n/ (see
Atiyah, Bott, and Shapiro [8]). We may let z�.a/ be e1e2 � � � e4j .

Now, let A0 � A be the component of the identity, and let A1 D A � A0 . Let
�0W A0! SO.n/ be the restriction of � to A0 . Since �0 induces the trivial map on
�1 , the composite

A0

�0 // SO.n/
k1 // K.Z=2; 1/

is trivial, where k1 denotes the first k –invariant of SO.n/. Since Spin.n/ is equivalent
to the homotopy fiber of k1 , it follows that �0 lifts up to homotopy to Spin.n/. Since
the projection � W Spin.n/! SO.n/ is a fibration, it follows that �0 lifts continuously
to a map z�0W A0! Spin.n/, and we may choose z�0 to take the identity to the identity.
Now, the map sending x 2A1 to e�.a/z�0.a

�1x/ is a continuous lift of � jA1
to Spin.n/.

Thus, we have a continuous lift z�W A! Spin.n/ taking a to e�.a/.
The lift z� induces a map z�2W A�A! Z=2� Spin.n/:

.a1; a2/! z�.a1/z�.a2/z�.a1a2/
�1:

Moreover, z�2 takes the four pairs .1; 1/, .1; a/, .a; 1/, and .a; a/ to the identity. It
follows by continuity that z�2 is trivial, so z� is a homomorphism.

Definition 5.6 We will say that a virtual orthogonal A–representation W1 �W2 of
virtual dimension 0 lifts to Spin if there exists an A–representation V such that the
action maps of W1CV and W2CV both lift to Spin.n/, where

nD dim.W1CV /D dim.W2CV /:
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Remark 5.7 To see that Definition 5.6 makes sense, we need to show that if W1�W2

and W 0
1
�W 0

2
represent the same virtual A–representation, and W1�W2 lifts to Spin,

then so does W 0
1
�W 0

2
. To see this, we may suppose there are A–representations Z and

Z0 so that W 0
1
CZ0 DW1CZ and W 0

2
CZ0 DW2CZ as actual A–representations,

and that for some A–representation V , W1 C V and W2 C V both lift to Spin as
actual representations. It is easy to show that the actual A–representation 4Z always
lifts to Spin. Thus, the actual representations

W 01C .Z
0
CV C 3Z/DW1CV C 4Z; and W 02C .Z

0
CV C 3Z/DW2CV C 4Z

both lift to Spin, so that the virtual representation W 0
1
�W 0

2
lifts to Spin, as needed.

Lemma 5.8 Let �i denote the action map of Wi for i D 1; 2. Suppose �1 and �2

each induce the same map on �1 , and that �1.a/ and �2.a/ have the same number of
negative eigenvalues modulo 4. Then W1�W2 lifts to Spin.

Proof Given the condition, the action map of W1C 3W2 induces the trivial maps on
�1 , and the number of negative eigenvalues is divisible by 4. The same holds for 4W2 ,
so we may let V D 3W2 and apply Lemma 5.5.

Since the number of negative eigenvalues of �.a/ and the map on �1 induced by � are
both additive in the representations, we can refer to the number of negative eigenvalues
or the induced map on �1 of a virtual representation. Also, we can refer to the number
of negative eigenvalues of a virtual representation. The above lemma thus implies that a
virtual A–representation lifts to Spin provided that the number of negative eigenvalues
of the virtual representation is divisible by 4, and the induced map on �1 of the virtual
representation is trivial. Now let ADO.n/, let a 2O.n/ be a reflection, and let Vn

be the standard A–representation, with action map given by the identity.

Lemma 5.9 Let k be an odd integer. Then  kVn�Vn lifts to Spin.

Proof The restriction of  kVn � Vn to the subgroup generated by a 2 O.n/ is
the trivial representation when k is odd, since  k takes the sign representation to
itself. Thus, the number of negative eigenvalues of  kVn�Vn is zero. Moreover, the
restriction of  kVn�Vn to SO.2/ takes the generator of �1.SO.2// to k � 1 times
the generator. Since k � 1 is even, the map on �1 induced by  kVn �Vn is trivial.
The claim follows from Lemma 5.8.

Remark 5.10 Suppose given a homomorphism  W G!A, endowing BGA with a
basepoint. If W is an A–representation with action map �W A!O.W /, then we may
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view W as a G –representation with action map �ı . Then � induces a based G –map
��W BGA! BGO.W /, which represents taking a .G;A/–bundle E to E �A W� . If
� lifts to Spin.W /, then �� lifts to BGSpin.W /. Using the Hopf-space structure and
homotopy inverse maps, a virtual A–representation � of virtual dimension 0 determines
a based-map ��W BGA! BGO , and if � lifts to Spin in the sense of Definition 5.6,
then �� lifts to BGSpin. Finally, the inclusion BGSpin.V /! BGSpin represents
taking a .G;Spin.V //–bundle � to the virtual bundle � �V, where V denotes the
product bundle. Thus, if � DW1�W2 , �� represents taking a .G;A/–bundle E to

.E �A W1�E �A W2/� .W1�W2/:

Now it follows from Lemma 5.9 that we can lift the virtual O.V /–representation
 kV �V to Spin, so that the map  k � 1W BGO.V /!BGO induced by  kV �V

lifts to BGSpin. It is also straightforward to show that if W is a G–representation
containing V as a subrepresentation, then we can lift  kW �W to Spin compatibly
with a chosen lift of  kV �V . Thus, we obtain a lift of  k � 1W BGO! BGO to
BGSpin. By Corollary 5.4, the restriction of this lift to SGBGO is unique.

6 The Adams–Bott cannibalistic Class

6.1 Construction of �k

Suppose V is an inner product space of dimension 8n, and let CV be the associated
Clifford algebra [8]. Then, as we discussed in [13] following the ideas of Atiyah, Bott
and Shapiro [8], there is a canonical graded CV –module �V which gives rise to a
class bV 2eKOSpin.V /.S

V /. Given any homomorphism �W H ! Spin.V /, we denote
the corresponding H –representation by V� . We may restrict bV to a class bV� in
eKOH .S

V�/. These are the equivariant Bott classes.

If �W P ! B is a principal .G;Spin.V //–bundle, then just as in the nonequivariant
context, there are a variety of ways to construct an equivariant Thom class of � .
In [13], we cited equivariant Bott periodicity [7, Theorem 6.1] to define a Thom
isomorphism ˆ� W KOG.B/!eKO G.T �/; and hence a Thom class �� Dˆ�.1/. One
could alternatively use an evident equivariant generalization of the construction in
Atiyah–Bott–Shapiro [8, Section 11], and it is not difficult to see that one gets the same
Thom class using this method. One can also construct the equivariant Thom class using
the methods of Bott in [10], and the arguments in [8, Sections 13–14] easily generalize
to the equivariant context to show that this construction is also equivalent.

The Adams–Bott Cannibalistic class �k.�/ is the element in KOG.B/ which satisfies
the equation �k.�/�� D  k.��/. The arguments of Bott in [10, Section 13] show
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that �k.�/ is induced from � by a virtual real Spin.V /–representation. To describe
this representation, we first recall from [10, Section 9] a little about the representation
theory of Spin.V /. Let T � SO.V / be a maximal torus, and let y1; : : : ;y4n denote
a choice of coordinates. Let zT be the preimage of T in Spin.V /. Then R.T / is
isomorphic to the ring of finite Laurent polynomials in y1;y2; : : : ;y4n , and R. zT / is
a quadratic extension of R.T / obtained by adjoining a square root of y1y2 � � �y4n .
Moreover, the subrings R.SO.8n// and R.Spin.8n// of R.T / and R. zT / correspond
to the rings of elements invariant under permutations of the yi and transformations
yi! y

"i

i where "i D˙1 for each i and
Q
"i D 1.

Now, there is a virtual complex representation �k.V / of Spin.V / whose character is
given by

4nY
iD1

�
y
.k�1/=2
i Cy

.k�3/=2
i C � � �Cy

.3�k/=2
i Cy

.1�k/=2
i

�
:

Since the dimension of V is divisible by 8, R.Spin.V //ŠRO.Spin.V // [10, Equa-
tion 10.9], so �k.V / is the complexification of a virtual real bundle, which we also
denote �k.V /. This is the representation inducing �k.�/. Moreover, just as in [10,
Section 13], we have  k.bV /D �k.V /bV .

Suppose �W H ! Spin.V / is a given homomorphism, and bV� 2eKOH .S
V�/ is the

associated Bott class. Let �k.V�/D �
�.�k.V //. Then  k.bV�/D �k.V�/b

V� . Now
write V� for the trivial G–bundle B �V�!B . Since the Bott class bV� is also the
orientation class of the trivial bundle V�!�, we have �k.V�/D �k.V�/D �

��k.V /.

Remark 6.1 When k is odd, the character above defines a representation �K .V / of
SO.V /, which must be real since the dimension of V is divisible by 8, and virtual
representations of SO.4m/ are all real. Thus, we can also define �k on .G;SO.V //–
bundles.

To construct �k on stable bundles, one must know that �k.V/ is a unit, where V is the
trivial bundle B �V !B for some G –representation V . In [13], we cited Hirata and
Kono [14, Corollary 2.5], which asserts that a complex analogue of �k.V/ becomes a
unit after inverting k . We used this to show that �k.V/ becomes a unit after inverting
2k . In this paper, we wish to avoid inverting 2, so we need a stronger result. We must
prepare for this with the following technical lemma.

Lemma 6.2 Suppose that k and n are relatively prime, with n even and k odd. Let
t D .nC k � 1/=2. Suppose that in .Z=2/Œx�=.xn� 1/, we have

.1CxCx2
C � � �Cxk�1/.a0C a1xC a2x2

C � � �C an�1xn�1/D xt :

Then a0 D 0.
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Proof Let r be the smallest positive integer such that rk � 1 mod n. Then r is odd,
and 1� r � n� 1. It follows that r � .r C n� 1/=2� n� 1.

Suppose first that rk � 1 mod 2n. Then .rk�1/=n is even, so in .Z=2/Œx�=.xn�1/,
we have

.1CxCx2
C � � �Cxk�1/.1Cxk

Cx2k
C � � �Cx.r�1/k/xt

D .1CxCx2
C � � �Cxrk�1/xt

D

�
rk � 1

n
.1CxCx2

C � � �Cxn�1/C 1

�
xt
D xt :

a0C a1xC � � �Can�1xn�1
D xt

CxtCk
CxtC2k

C � � �CxtC.r�1/k :Thus,

t C
.r C n� 1/

2
� k D t C

rk � 1

2
C

nk

2
�

k � 1

2
� 0 mod nNow,

since k is odd and rk � 1 mod 2n. Now, since r � .r C n� 1/=2 � n� 1, none of
the numbers t; t C k; t C 2k; : : : ; t C .r � 1/k are divisible by n. So, a0 D 0.

If, on the other hand, rk � nC 1 mod 2n, then ..n � r/k C 1/=n is even, so in
Z=2Œx�=.xn� 1/, we have

.1CxCx2
C � � �Cxk�1/.xrk

Cx.rC1/k
C � � �Cx.n�1/k/xt

D .xrk
CxrkC1

C � � �Cxnk�1/xt

D

�
� 1C

.n� r/kC 1

n
.1CxCx2

C� � �Cxn�1/

�
xt
D�xt

D xt :

a0C a1xC � � �C an�1xn�1
D xtCrk

CxtC.rC1/k
C � � �CxtC.n�1/k :Thus,

t C

�
r � 1

2
� k

�
D

nC k � 1C rk � k

2
D

rk � n� 1

2
C n� 0 mod n:Now,

Since 0� .r � 1/=2< r , none of the numbers t C rk; t C .r C 1/k; : : : ; t C .n� 1/k

are congruent to .n� .k � 1//=2 modulo n. So, again, a0 D 0.

Lemma 6.3 Suppose that k is odd and G is a finite group whose order n is relatively
prime to k . Then there is an element hn;k.V / in RO.Spin.V //Œ1=k� such that the
product �k.V / � hn;k.V / restricts to the one-dimensional trivial representation for any
homomorphism �W G! Spin.V /.

Proof Let RDR.n/k . Just as in the proof of Lemma 4.8, or the proof of Hirata and
Kono in [14], there are polynomials fn;k.x/ 2 ZŒ1=k�Œx� such that in R,

.1CxCx2
C � � �Cxk�1/fn;k.x/D 1:
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Now suppose n is even. We wish to produce a Laurent polynomial gn;k.x/ which is
invariant under x! x�1 and which satisfies�

x.1�k/=2
Cx.3�k/=2

C � � �Cx.k�3/=2
Cx.k�1/=2

�
�gn;k.x/D 1:

We can use essentially the same argument as above to find a polynomial

zgn;k.x/D b0C b1xC b2x2
C � � � bn�1xn�1

such that the formula below holds in R:

.1CxCx2
C � � �Cxk�1/zgn;k.x/D x.nCk�1/=2

By Lemma 6.2, b0 is even. Dividing both sides by x.k�1/=2 yields�
x.1�k/=2

Cx.3�k/=2
C � � �Cx.k�3/=2

Cx.k�1/=2
�
� zgn;k.x/D xn=2:

Since .x.1�k/=2Cx.3�k/=2C� � �Cx.k�3/=2Cx.k�1/=2/ and xn=2 are both invariant
under the transformation x! x�1 , it follows that in R, zgn;k.x/ must be invariant
under the transformation x! x�1 . Therefore, bi D bn�i for i D 1; 2; : : : ; n�1. Thus,
we can write the Laurent polynomial gn;k.x/ WD zgn;k.x/ �x

�n=2 in the form

b0

2
x�n=2

C b1x1�.n=2/
C � � �C b1x.n=2/�1

C
b0

2
xn=2

which is invariant under the transformation x! x�1 . The case when n is odd follows
similarly, but does not require Lemma 6.2.

Now,
Q4n

iD1 gn;k.yi/ is invariant under permutations of yi and under transformations
yi ! y

"i

i , and therefore defines a character of Spin.V /. Since the dimension of V

is divisible by 8, RO.Spin.V // is isomorphic to R.Spin.V // [10, Equation 10.9],
so that

Q4n
iD1 gn;k.yi/ is the character of a real virtual Spin.V /–representation. We

denote this representation by hn;k.V /.

For each g 2G , we may assume by conjugation in Spin.V / that �.g/ 2 zT � Spin.V /.
We write the image of �.g/ in T as .�1.g/; �2.g/; : : : ; �4n.g//. Then for each i ,
�i.g/

nD �i.g
n/D 1. Therefore, the character of �k.V / �hn;k.V / at �.g/ is 1. Since

this holds for all g 2 G , it follows that ��.�k.V / � hn;k.V // is the one-dimensional
trivial representation.

We write a stable Spin bundle as a difference ��V� , where � is a .G;Spin.V //–bundle.
Therefore, we may define �k.� �V�/ in KOG.B/Œ1=k� as �k.�/=�k.V�/.
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Remark 6.4 It is clear from the proof of Lemma 6.3 that hn;k.V / may be viewed
as an element in RO.SO.V //Œ1=k�. Thus, by Remark 6.1, if � is a .G;SO.V //–
bundle and �W G! SO.V / is a given homomorphism, we can define �k.� �V�/ as
�k.�/=�k.V�/.

We can define �k on classifying spaces in two different ways, both of which play a role
in our work. On the one hand, we can use a definition analogous to that of May [16],
just as described in [13]. First, recall from Section 2 that Bj^p is equal to the composite
below:

BGSpin
g^p // BG.S

^
p IKO^p /

q // BG.S
^
p /

As shown in [13, Section 9], there is a map �W Fib.q/!�KO^p
� . Indeed, a KO^p –

orientation of a trivial GF.S^p /–fibration over a based G –space X is just given by a
class in KOG.X /

^
p which maps to a unit upon restriction to the basepoint of X .

If k is prime to p and jGj, then for a G–representation V� (with dimension 8n)
with Spin structure �W G! Spin.V / as in Lemma 6.3, the operation  k=�k.V�/ on
KO^p –theory induces a self-map  k

V�
of �1KO^p which preserves the Bott class

bV� . The collection ‰k D f k
V�
g then induces a map c.‰k/ from BG.S

^
p IKO^p /

to the homotopy fiber of q , or by inclusion to �1KO^p
� . Since the basepoint

component of �1KO^p
� is homotopy equivalent to BGO˝

^
p , c.‰k/ ıg^p factors

through a map �k W BGSpin!BGO˝
^
p , which represents the operation �k described

above on .G;Spin/–bundles. Also, if � W BGO˝
^
p ! BG.S

^
p IKO^p / is the inclusion

of the basepoint component of the homotopy fiber of q , then c. k/ ı � '  k=1 (see
Remark 4.13 in [13].)

On the other hand, the representation �k.V / of Spin.V / clearly lifts to Spin in the sense
of Definition 5.6, since Spin.V / is itself simply connected. Thus, if �W G! Spin.V /
is a distinguished Spin–structure for V (giving BGSpin.V / a basepoint), then �k.V /

induces a based G –map BGSpin.V /!BGSpin by Remark 5.10. This map represents
replacing a Spin.V /–bundle � with the virtual 0–dimensional bundle �k.�/��k.V�/.
If jGj D n, then the element hn;k.V / 2 RO.Spin.V //Œ1=k� of Lemma 6.3 lifts to
Spin, and multiplication by the element ��hn;k.V / 2RSpin.G/Œ1=k��RSpin.G/^p
induces a map BGSpin!BGSpin^p . Adding a 1–dimensional trivial bundle induces
a map BGSpin^p ! BGSpin˝

^
p . Then the composite

BGSpin.V /
�k.V / // BGSpin

���hn;k.V / // BGSpin^p
C1 // BGSpin˝

^
p

represents the functor taking � to �k.�/=�k.V�/D �k.� �V�/. If V is a complete
sequence of complex G–representations, then each Vi comes equipped with a map
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�W G! Spin.Vi/, and by taking a colimit over the spaces BGSpin.Vi/, we get a map
BGSpin! BGSpin˝

^
p representing �k .

Remark 6.5 Using this method, we could define a map �k W BGSO ! BGSO˝^p
representing �k as in Remark 6.4.

6.2 Comparison of �k and �k

By Remark 6.5, when k is odd, the Adams–Bott cannibalistic class �k can also be
viewed as a map from SGBGSO to SGBGSO˝^p . We next show that �k is homotopic
to �k . The basic idea of the argument below is the same as that in [13], when we
proved the statement assuming G has odd order and p is odd.

First, in the complex case, it is easy to show using the splitting principle that the
Adams–Bott cannibalistic class commutes with Adams operations. Since we do not
know of a splitting principle for KO –theory, we give a proof for the following lemma.

Lemma 6.6 The map �k W BGSO! BGSO˝^p commutes with  k .

Proof The map �k is induced by a natural exponential map RSO.G/! RSO.G/
for connected compact Lie groups G . Now, if T is a torus, then  k W R.T /!R.T /

coincides with the map p�
k

, where pk W T ! T is given by pk.y1;y2; : : : ;yn/ D

.yk
1
;yk

2
; : : : ;yk

n /. Since cW RSO.T /!R.T / is an injection and commutes with both
 k and p�

k
, it follows that  k W RSO.T /!RSO.T / also coincides with p�

k
. Now,

since �k is natural, �k W RSO.T /!RSO.T / must commute with p�
k

and hence  k .
Finally, if i W T !G is the inclusion of a maximal torus in G , then since cW RSO.G/!
R.G/ and i�W R.G/!R.T / are both injections, i�W RSO.G/!RSO.T / must also
be an injection. It follows that �k commutes with  k .

It follows that the diagram below commutes whether the left vertical map is �k or �k :

SGBGSO
 k�1 //

�k

��
�k

��

SGBGSO

�k

��
SGBGSO˝^p

 k=1 // SGBGSO˝^p

Lemma 6.7 The map

 k=1W SGBGSO˝^p Œ1=p�! SGBGSO˝^p Œ1=p�

is an equivalence.
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Proof We briefly sketch the argument (see Proposition 10.3 in [13]). It suffices to
show that for any subgroup H �G , and any n� 1, the map

1CAKSOH .S
n/˝Q^p

 k=1 // 1CAKSOH .S
n/˝Q^p

is an isomorphism. Since the additive and multiplicative structures on AKSOH .S
n/

agree for n� 1, and complexification is injective on AKSOH .S
n/˝Q^p (where 2 is

invertible regardless of p ), it suffices to show that

zKH .S
n/˝Q^p

 k�1 // zKH .S
n/˝Q^p

is one-to-one (both sides being finite dimensional vector spaces of the same dimension).
But zKH .S

n/ is isomorphic to R.H /˝ zK.Sn/, which is in turn isomorphic to R.H /

when n is even, and 0 when n is odd. Moreover, the action of  k on zKH .S
n/

corresponds to the action of kn=2 k on R.H /. Using the periodicity of  k on R.G/,
it is straightforward to show that kn=2 k � 1 is injective.

Thus, the two composites below are homotopic.

SGBGSO
�k

//

�k

// SGBGSO˝^p // SGBGSO˝^p Œ1=p�

Lemma 6.8 The map below is injective.�
SGBGSO;SGBGSO˝^p

�
G
!
�
SGBGSO;SGBGSO˝^p Œ1=p�

�
G

Proof We again sketch the argument (see Proposition 10.6 of [13]). By Proposition
2.2, SGBGSO ' colimV BSO.V /, where V runs over the G–representations of a
complete sequence (recall Definition 5.1). It therefore suffices to show that

KSOG.BO.V //˝Z^p !KSOG.BO.V //˝Q^p

is injective. Thus, it suffices to show that KSOG.BO.V // has no torsion. Since
KSOG.X /Š ŒX;BGSO�G , and BGSO is a factor of BGO by Lemma 5.2, it suffices
to show that KOG.BO.V // has no torsion.

Now the G –action on O.V / determines a group GÌO.V / which has a canonical right
action on O.V /. If we let EO.V /DB.�;O.V /;O.V //, then the G –action on O.V /

through conjugation and the right O.V / action on B.�;O.V /;O.V // determine an
action of G Ì O.V / on EO.V /, with O.V / acting freely, and EO.V /=O.V / D

BO.V /. Therefore,

KOG.BO.V //ŠKOGÌO.V /.EO.V //:
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Now, if ƒ � G Ì O.V /, and H.ƒ/ is the image of ƒ in G , then EO.V /ƒ D

B.�;O.V /H .ƒ/;O.V /ƒ/. In particular, if H is a subgroup of G �G Ì O.V /, then
EO.V /H DB.�;O.V /H ;O.V /H /'�. Conversely, if EO.V /ƒ is nonempty, then
O.V /ƒ must be nonempty, so for some u 2 O.V /, g�1ugs D u for all .g; s/ 2 ƒ.
But this implies that u�1guD gs in G Ì O.V /, so ƒ is conjugate to H.ƒ/. Thus, if
we let F denote the family of subgroups of G Ì O.V / consisting of subgroups which
are conjugate to a subgroup of G , then EO.V /ƒ ' � for ƒ 2 F and EO.V /ƒ D∅
for ƒ … F . Thus, EO.V /'EF .

Now, Adams, Haeberly, Jackowski, and May [5] proved that eKO GÌO.V /.EF/ is
the completion of RO.G Ì O.V // with respect to products of powers of the ideals
IƒDKer.RO.G ÌO.V //!RO.ƒ// for ƒ2F . Since IG � Iƒ for all ƒ2F , this
is RO.G ÌO.V // yIG

. Since RO.G ÌO.V // is Noetherian, RO.G ÌO.V // yIG
is flat

over RO.G ÌO.V //. Since RO.G ÌO.V // is itself torsion free, RO.G ÌO.V // yIG

is also torsion free.

Corollary 6.9 The restrictions of the maps �k and �k to SGBGSO are homotopic.

Remark 6.10 As we noted in Remark 2.7, we have some flexibility in defining 
 k .
We now explain how to define 
 k in a way that will allow us to prove Lemma 6.11
below, concerning �k on �1 . By Lemma 5.2 we may define 
 k separately on the
factor SGBGO.1/�SGBGO . By Proposition 2.2, SGBGO.1/'BO.1/. Now, since
k is odd,  k � 1 induces the trivial map on BO.1/, as can be seen by considering the
restriction of the virtual representation inducing  k �1 to O.1/. Therefore, it suffices
to define a map from BO.1/ to SG�BG.S

^
p /, which is equivalent by Corollary 2.3 to

.SGFG/
^
p .

When p is odd, we choose the trivial map. When p D 2, k D 3, and we define 
 3 on
BO.1/ as follows. By Lemma 5.3, there is a G–map from BO.1/ to SG�BGSO'
SGO inducing a nontrivial map on �1 . The inclusion of SGO in SGFG induces an
isomorphism on �1 nonequivariantly (this is just the inclusion of SO in SF). We define

 3 on BO.1/ to be the composite

BO.1/! SGO! SGFG! .SGFG/
^
p ! SGFib.Bj^p /:

Then 
 3 induces an injective map on �1 nonequivariantly, since �2.BSpin/D0. Since
BO.1/ has trivial G–action, the map BO.1/H ! Fib.Bj^p /

H induces an injective
map on �1 for any H �G .

Lemma 6.11 With 
 3 chosen as in Remark 6.10, the composite

BO.1/ // SGBGO
�3

// SGBGO˝
^
2

det� // SGBGO.1/^
2

induces an isomorphism on �1 when restricted to H fixed points for any H �G .
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Proof Again, by Proposition 2.2, SGBGO.1/ ' BO.1/. Since the G–action on
BO.1/ is trivial, and since �1.BO.1//Š Z=2, the claim is reduced to showing that
the displayed map induces a nontrivial map on �1 nonequivariantly. The inclusion
BO.1/! BO and the map from BO˝ to BO.1/ induced by the determinant both
induce isomorphisms on �1 . Now, �3D i ıf ı
 3 . By Remark 6.10, 
 3W SGBGO!

SGFib.Bj^p / induces a nontrivial map on �1 . Finally, it follows from May [16,
Chapter V, Corollary 3.3] that the map

i ıf W SGFib.Bj^p /! SGFib.q/� SGBGO˝
^
p

induces an isomorphism on �1 nonequivariantly.

7 Appendix

7.1 The zeroth space of an equivariant sphere spectrum

Given a G–space X , let zA.X / denote the monoid of self-maps of X which are
nonequivariant equivalences, with G acting by conjugation. We showed in [13, Sec-
tion 8] that if G is a p–group (p odd), and V is a G–representation large enough
that ŒSV ;SV �G ŠA.G/, then �BG.S

V^
p/�G

zA.SV^
p/. This does not generally hold

when G is not a p–group. For example, consider the case G D Z=q , where q is an
odd prime distinct from p . Then A.G/ Š ZŒx�=.x2 � qx/. After completing at p ,
the element x , though not a unit, maps to a unit by the augmentation homomorphism
A.G/^p ! Z^p . Thus, there exists an equivariant self-map of SV^

p which is a nonequiv-
ariant equivalence, but not an equivariant equivalence. Therefore, �0. zA.S

V^
p/

G/ is
not a group, so zA.SV^

p/ cannot be a loop space.

In order to state what we can show, we must first recall some notation from Elmen-
dorf [12]. Let GT be the category of based G –spaces, let OG denote the orbit category
of G , and let OGT denote the category of OG –spaces, or OG –shaped diagrams in T .
Let ˆW GT !OGT be the functor given by ˆ.X /.G=H /DX H . There is a functor
C W OGT ! GT , along with natural transformations ˆC ! id and Cˆ! id. The
first of these natural transformations induces a levelwise homotopy equivalence for
each object in OGT , and the second induces an equivariant weak equivalence for each
G–space. Our goal in this section is to prove the following, where G is an arbitrary
finite group.

Proposition 7.1 If F is a set of fibers with distinguished fiber F� , then the spaces
�BG.F/ and C.A.F�;�// are weakly G –equivalent.
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Lemma 7.2 If T is an OG –space and �T is defined by .�T /.G=H /D�.T .G=H //,
then C�T is weakly G –equivalent to �C T .

Proof It is not hard to check that a map T1 ! T2 of OG –spaces is a levelwise
weak equivalence if and only if C T1 ! C T2 is a weak G–equivalence. There-
fore, the levelwise weak equivalence ˆC T ! T induces a weak G–equivalence
C�ˆC T ! C�T . Clearly, ˆ commutes with �. Finally, there is a weak G–
equivalence Cˆ�C T !�C T .

We will mostly be interested in the following OG –spaces.

Definition 7.3 Given a G –space F , let A.F;H /� zA.F /H be the submonoid consist-
ing of H –equivariant self-maps which are H –equivariant equivalences. Let A.F;�/
denote the corresponding OG –space.

We now prove Proposition 7.1.

Proof Let A.F/0 denote the full subcategory of A.F/ whose objects are of the form
G �H F�jH !G=H . Then by Lemma 3.15 in [13], the inclusion B.�;A.F/0;O/!
B.�;A.F/;O/ is a G –connected cover, so that the induced map on loop spaces is an
equivalence. Therefore, it suffices to prove the proposition after replacing BG.F/D
B.�;A.F/;O/ with B.�;A.F/0;O/.

Given a category C and a covariant functor F W C ! U , we have a category CF

whose objects are pairs .c;x/ with c 2 obj.C/ and x 2 F.c/, and whose morphisms
.c;x/! .c0;x0/ are maps f W c! c0 such that F.f /.x/Dx0 . A natural transformation
of functors F ! F 0 induces a functor CF ! CF 0 . Let OH W A.F/0 ! GU be the
functor taking the object G �K F�jK ! G=K to the set of G–maps G=H ! G=K .
In particular, we have a category .A.F/0/OH , and it is easy to check that

B ..A.F/0/OH /Š B.�;A.F/0;OH /Š B.�;A.F/0;O/H :

We can describe a map in .A.F/0/OH by a commutative diagram

G �K F�jK
x� //

��

G �K 0 F�jK 0

��
G=H

˛ // G=K
z� // G=K0:

We will denote this map simply by .˛; z�; x�/.
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Viewing A.F�;H / as a category with one object, let l W A.F�;H /! .A.F/0/OH be
the functor taking this unique object to

�
.G �H F�!G=H /; idG=H

�
; and taking an

H –map �W F�!F� to the map .1; 1; 1��/. Let r W .A.F/0/OH !A.F�;H / be the
functor taking each object to the unique object of A.F�;H /, and taking a map .˛; z�; x�/
to the map � determined by x�.g;g�1f /D .gg0; .gg0/�1�.f //, where ˛.eH /D gK

and z�.eK/ D g0K0 . It is easy to check that this definition does not depend on our
choices of g or g0 . Now, l and r form an adjoint pair, so r induces an equivalence

B.�;A.F/0;O/H ' B.A.F�;H //:

A map z� W G=H ! G=K with z�.eH /D gK determines a functor z��W A.F�;K/!
A.F�;H / defined by z��.f /D lg ıf ı lg�1 , as well as a functor z��W .A.F/0/OK !

.A.F/0/OH , induced by the natural transformation OK ! OH determined by z� .
Moreover, the following diagram commutes:

.A.F/0/OK

z��

��

r // A.F�;K/

z��

��
.A.F/0/OH

r // A.F�;H /

Taking classifying spaces, we obtain have a levelwise homotopy equivalence of OG –
spaces

ˆB.�;A.F/0;O/! BA.F�;�/
inducing a weak equivalence of G –spaces

B.�;A.F/0;O/ CˆB.�;A.F/0;O/
'oo ' // CBA.F�;�/:

By Lemma 7.2, we get a weak G–equivalence �B.�;A.F/0;O/' C�BA.F�;�/.
But the map of OG –spaces A.F�;�/!�BA.F�;�/ is a levelwise weak equivalence,
since A.F�;H / is grouplike for each H �G . Thus �B.�;A.F/0;O/ is equivalent
to CA.F�;�/.

Corollary 7.4 The space SG�BG.F/ is G –equivalent to SG
zA.F�/.

Proof For any H � G , the basepoint component of A.F�;H / and the basepoint
component of zA.F�/H each coincide with the set of H equivariant self-maps of F�
which are H –equivariantly homotopic to the identity. It follows that the map

SG�BG.F/' SGCA.F�;�/! SGCˆ. zA.F�//' SG. zA.F�//

is an equivalence.
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We now prove Corollary 2.3.

Proof For a given G–representation V (with nontrivial G–fixed points), we have
that SG�BG.S

V^
p/ is G–equivalent to SG

zA.SV^
p/ by Corollary 7.4. If we let

F.SV^
p ;S

V^
p/ denote the G–space of self-maps of SV^

p , based at the identity, then
the inclusion of zA.SV^

p/ in F.SV^
p ;S

V^
p/ induces a weak G –equivalence

SG
zA.SV^

p/! SGF.SV^
p ;S

V^
p/;

since an H –equivariant map homotopic to the identity is necessarily an H –equivariant
equivalence. Moreover, SGF.SV^

p ;S
V^

p/ is the p–completion of SG�
V SV . Af-

ter taking a colimit over a complete sequence of G–representations, we see that
SG�BG.S

^
p /�G .SGFG/

^
p .

For n�2, the second statement follows from the first. For nD1, Proposition 7.1 implies
that �BG.S

V^
p/ and C.A.SV^

p ;�// are weakly G –equivalent, so �1.BG.S
V^

p/
H /D

�0.A.SV^
p ;H //, which is isomorphic to the units in the p–completed Burnside ring

A.H /^p for V sufficiently large. But the units in A.H /^p are closed and therefore
p–complete.

7.2 Proof of Theorem 2.11

In this subsection, we prove the following proposition, which implies Theorem 2.11.

Proposition 7.5 Suppose p is prime and G a finite group such that one of the prime
divisors q of jGj is congruent to 1 modulo p . Then there is a G–space X such that
eKOG.X / has trivial multiplication, and there are elements �1; �2; �1; �2 2 eKO G.X /

^
p

such that

(1) �k.�1/D . 
k=1/.1C �1/;

(2) �k.�2/D . 
k=1/.1C �2/C �1;

(3) �2 is not in TG.X /
^
p .

If p D 2, then in fact, we may take �1 , �1 and �2 all to be 0.

Before turning to the proof, we show how Proposition 7.5 implies Theorem 2.11.
Given the proposition and assuming the hypotheses of Theorem 2.11, we may write
�1D a1Cb1 and �2D a2Cb2 for unique elements a1; a2 2A.X / and b1; b2 2B.X /.
If a1 is not in the image of  k �1, then projecting the first equation into A.X / yields
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the claim. Otherwise, we may write a1D . 
k�1/.a0

1
/. Then from the second equation

above, since the multiplication in eKOG.X /
^
p is trivial, we have

�k.�2/D . 
k=1/.1C �2/C . 

k
� 1/.a01/C b1 D . 

k=1/.1C �2C a01/C b1:

Projecting this equation into A.X /, we find that �k.a2/ is in the image of  k=1. If
a2 is in the image of  k � 1, then a2 2 TG.X /

^
p . Since b2 2 TG.X /

^
p , this would

imply �2 2 TG.X /
^
p , contradicting our third statement above. Thus, a2 cannot be in

the image of  k � 1, yielding the claim.

It is easy to reduce Proposition 7.5 to the case in which G is cyclic of order q .
Indeed, if q is a prime divisor of jGj, then G must contain a subgroup Cq which is
cyclic of order q . Then, given a Cq –space X and letting X 0 DGC ^Cq

X , we have
eKOG.X

0/ŠeKOCq
.X /. This isomorphism is compatible with Adams operations and

�k . Thus, if Proposition 7.5 holds for Cq , then it holds for G . We now, therefore,
assume that G is cyclic of order q .

We will first consider the case when p is odd. The case when pD 2 is actually simpler,
and is described at the end of the section. Let X D S2.p�1/ with trivial G–action.
Then we have a decomposition zKG.X /ŠR.q/˝ zK.X /. Let �2;c 2 zKG.X / be the
element corresponding to .zC z�1� 2/˝yp�1 . We will use the following remark to
show that there is a unique element �2 2 eKO G.X /

^
p such that �2;c D c.�2/.

Remark 7.6 Since cr D 1C �1 and 2 is invertible in zKG.X /
^
p , it follows that any

element x 2 zKG.X /
^
p which is invariant under  �1 is in the image of the complexifi-

cation map. To see this, just note that if  �1x D x , then cr.x/D .1C �1/x D 2x ,
so x D c.rx=2/. The converse is also true, since for any y 2eKOG.X /

^
p , we have

 �1.cy/D  �1.cr.cy=2// and  �1 ı .cr/D  �1 ı .1C �1/D cr . Finally, note
that c is injective since rc D 2.

Now, since  �1.�2;c/D .z
�1Cz�2/˝.�1/p�1yp�1D �2;c , it follows that there is an

element �2 such that �2;cD c.�2/. We next consider �k
c .c�2/D�

k
c ..zCz�1�2/yp�1/.

Remark 7.7 It follows as in the proof of Theorem 4.1 that

�k
c .c�2/D c�k.rc�2/D c�k.�2/

2:

By Corollary 4.13, we have the following equation in 1C zKG.X /Q :

�k
c .z

syp�1/D . k=1/.1C p̨�1.z
s/yp�1//D 1C . k

� 1/. p̨�1.z
s/yp�1/
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�k
c .c�2/D

�k
c .zyp�1/�k

c .z
�1yp�1/

�k
c .y

p�1/2
Thus,

D 1C . k
� 1/.

�
p̨�1;1C p̨�1;�1� 2 p̨�1;0

�
yp�1/:

Since q is invertible in Z^p , it follows from Lemma 4.3 that R.q/^p ŠR1^
p �Rq^

p .
Thus, we can define an element ˇ 2R.q/^p by specifying a pair .ˇ1; ˇq/2R1^

p �Rq^
p .

Recall that p̨�1;0;q D ˛
0
p�1

, which, Adams proved [2, Theorem 2.6], has p–adic
valuation �1. Thus, since p divides q � 1, .q � 1/ p̨�1;0;1 2 Z^p DR1^

p . We let
ˇ1 D 2.1� q/ p̨�1;0;1 .

We now claim that p̨�1;1;q and p̨�1;�1;q are contained in Rq^
p . To see this, we will

show that z� 1 and z�1� 1 are invertible after inverting q . In fact,

.z� 1/.1C 2zC 3z2
C � � �C qzq�1/D�1� z� z2

� � � � � zq�1
C q D q:

A similar argument would show that p̨�1;i;q is contained in Rq^
p for each i , and in

particular for i D�1.

So we may let ˇqD p̨�1;1;qC p̨�1;�1;q 2Rq^
p . Similarly, let 
1D2.q� 1/ p̨�1;0;12

R1^
p and let 
q D�2 p̨�1;0;q 2R

q
Q . These define an element 
 2R.q/Q .

Next, we observe that zC z2C z3C� � �C zq�1 2R.q/q corresponds to .q� 1;�1/ 2

R1
q �R

q
q . Therefore, in R.q/Q , we have 
 D 2 p̨�1;0.zC z2C � � � C zq�1/. Since

 k
 D 
 and  k.yp�1/D kp�1yp�1 , we have

. k
� 1/.
yp�1/D .kp�1

� 1/2 p̨�1;0.zC z2
C � � �C zq�1/yp�1

in zKG.X /Q . Since kp�1� 1 is divisible by p , and p̨�1;0;q D p̨�1;0;1 has p–adic
valuation �1, the same equation holds in zKG.X /

^
p .

Now, p̨�1;1;1 D p̨�1;0;1 D p̨�1;�1;1 , so in R1
Q , p̨�1;1C p̨�1;�1� 2 p̨�1;0 D 0.

It follows that
ˇC 
 D p̨�1;1C p̨�1;�1� 2 p̨�1;0:

So, in 1C zKG.X /
^
p , we have

�k
c .c�2/D 1C . k

� 1/.ˇyp�1/C .kp�1
� 1/2 p̨�1;0.zC z2

C � � �C zq�1/yp�1:

Now let �2;c D ˇyp�1 , and let �1;c D .kp�1� 1/2 p̨�1;0.zC z2C� � �C zq�1/yp�1 .
By Remark 7.6 and since 2 is invertible, there are unique elements �2; �1 2eKOG.X /

^
p

such that c.2�2/D �2;c and c.2�1/D �1;c . So, by Remark 7.7, we have

c�k.�2/
2
D 1C . k

� 1/.c.2�2//C c.2�1/;

�k.�2/D 1C . k
� 1/.�2/C �1 D . 

k=1/.1C �2/C �1:so
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This is Equation (2) of Proposition 7.5.

We next consider �k
c .c�1/. Using Corollary 4.13 as above,

�k
c ..zC z2

C � � �C zq�1/yp�1/D 1C . k
� 1/

  
q�1X
iD1

p̨�1;i

!
yp�1

!
:

But
Pq�1

iD1 p̨�1;i;1 D .q � 1/ p̨�1;0;1 , and this is contained in R1^
p , since p̨�1;0;1

has p–adic valuation �1 and p divides q�1. Now, p̨�1;i;q is contained in Rq^
p for

each i , so
Pq�1

iD1 p̨�1;i 2R.q/^p .

Let �1;c be equal to

.kp�1
� 1/ p̨�1;0 �

 
q�1X
iD1

p̨�1;i

!
yp�1:

Thus, �k
c .c�1/ D 1 C . k � 1/.�1;c/. As above, there is a unique element �1 2eKOG.X /
^
p such that c.2�1/D �1;c . Moreover,

�k
c .c�1/D c�k.rc�1/D c�k.�1/

2:

These equations then imply that

�k.�1/D 1C . k
� 1/.�1/D . 

k=1/.1C �1/;

which is Equation (1) of Proposition 7.5.

Finally, suppose �2 2 TG.X /
^
p . This would imply that we have an equation

�2;c D c�2 D
X

. ki � 1/.�i ˝yp�1/D
�X

kp�1 ki�i � �i

�
˝yp�1

where �i 2R.q/ for each i and ki is relatively prime to p and q for each i . Thus, in
R.q/=p , we have

zC z�1
� 2D

X
. ki�i � �i/:

Since ki is relatively prime to q , the coefficient of z0 in  ki�i � �i must be 0 for
each i . But the coefficient of z0 in zC z�1� 2 is 2¤ 0. Thus, �2 is not in TG.X /

^
p ,

which completes the proof of Proposition 7.5 for p odd.

Now suppose pD 2. Let X DS6 , with trivial G –action. (Here GDCq , where q is an
odd prime.) Then zKG.X /ŠR.G/˝ zK.X /, while eKO G.X /ŠR.GIC/˝ zK.S6/.
(Since G is cyclic, R.GIH/ is trivial, and since X D S6 , eKO .X / is trivial.) Here,
R.GIC/ is generated by representations of the form ztCz�t , where 1� t � .q�1/=2.
Moreover, the complexification map cW eKO G.X /! zKG.X / corresponds under these
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isomorphisms to the inclusion of R.GIC/ in R.G/ tensored with the identity on
zK.X /.

Let �2 2 eKO G.X / be the element corresponding to .z C z�1/ ˝ y3 . Note that
c.�2/ 2 zKG.X / likewise corresponds to .zC z�1/˝ y3 . As above, using Corollary
4.13, we find that

�k
c .c�2/D �

k
c .zy3/�k

c .z
�1y3/D 1C . k

� 1/..˛3;1C˛3;�1/y
3/:

Now, ˛3;1;qC˛3;�1;q is the coefficient of x3=3! in

log
zex � 1

z� 1
C log

z�1ex � 1

z�1� 1
D log

�
zex � 1

z� 1
�
z�1ex � 1

z�1� 1

�
D log

�
ex
�
zex=2� e�x=2

z� 1
�
ex=2� ze�x=2

1� z

�
D xC log

�
zex=2� e�x=2

z� 1
�
ze�x=2� ex=2

z� 1

�
:

Since
zex=2� e�x=2

z� 1
�
ze�x=2� ex=2

z� 1

is an even function in x , the coefficient mentioned above is 0. Similarly, ˛3;1;0C

˛3;�1;0D 0, since the coefficient of x3 in log..ex�1/=x/ is 0. Together, these imply
that

˛3;1C˛3;�1 D 0:

Thus, �k
c .c�2/D 1. This implies c�k.rc�2/D c.1/, so �k.�2/

2 D 1, so �k.�2/D 1.

Finally, suppose �2 2 TG.X /
^
2

. This would imply that we have an equation

c�2 D
X

. ki � 1/.�i ˝y3/D
�X

k3 ki�i � �i

�
˝y3

where each �i is of the form zti C z�ti for some ti , and ki is relatively prime to 2

and q for each i . Thus, in R.q/=4, we have

zC z�1
D

X
.k3

i zki ti C k3
i z�ki ti � zti � z�ti /:

For each i , the sum of the coefficients of k3
i zki ti Ck3

i z�ki ti � zti � z�ti is 2.k3
i �1/,

which is divisible by 4, since each ki is odd. Thus, the sum of the coefficients of
zC z�1 , which is 2, would have to be divisible by 4, a contradiction. This completes
the proof of Proposition 7.5 for p D 2.
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