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Tangle analysis of difference topology experiments:
Applications to a Mu protein-DNA complex

ISABEL K DARCY

JOHN LUECKE

MARIEL VAZQUEZ

We develop topological methods for analyzing difference topology experiments
involving 3–string tangles. Difference topology is a novel technique used to unveil
the structure of stable protein-DNA complexes. We analyze such experiments for the
Mu protein-DNA complex. We characterize the solutions to the corresponding tangle
equations by certain knotted graphs. By investigating planarity conditions on these
graphs we show that there is a unique biologically relevant solution. That is, we show
there is a unique rational tangle solution, which is also the unique solution with small
crossing number.

57M25, 92C40

Introduction

Bacteriophage Mu is a virus that infects bacteria. Mu transposase is involved in
transposing the Mu genome within the DNA of the bacterial host. In [38], Pathania et al
determined the shape of DNA bound within the Mu transposase protein complex using
an experimental technique called difference topology; see Harshey and Jayaram [26;
30], Kilbride et al [31], Grainge et al [24], Pathania et al [38; 39] and Yin et al [59;
60]. Their conclusion was based on the assumption that the DNA is in a branched
supercoiled form as described near the end of Section 1 (see Figures 9 and 25). We
show that this restrictive assumption is not needed, and in doing so, conclude that the
only biologically reasonable solution for the shape of DNA bound by Mu transposase
is the one found in [38] (shown in Figure 1). We will call this 3–string tangle the
PJH solution. The 3–dimensional ball represents the protein complex, and the arcs
represent the bound DNA. The Mu-DNA complex modeled by this tangle is called the
Mu transpososome.

The topological structure of the Mu transpososome will be a key ingredient in deter-
mining its more refined molecular structure and in understanding the basic mechanism
of Mu transposase. See for example Mouw et al [37] and Li et al [34] where x-ray
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Figure 1

crystallographic data is combined with the known Tn3 resolvase topological mecha-
nisms of binding and strand-exchange to piece together a more detailed geometrical
picture of two resolvase-DNA complexes (Sin and 
 ı ).

In Section 1 we provide some biological background and describe eight difference
topology experiments from [38]. In Section 2, we translate the biological problem
of determining the shape of DNA bound by Mu into a mathematical model. The
mathematical model consists of a system of ten 3–string tangle equations (Figure 11).
Using 2–string tangle analysis, we simplify this to a system of four tangle equations
(Figure 24). In Section 3 we characterize solutions to these tangle equations in terms
of knotted graphs. This allows us to exhibit infinitely many different 3–string tangle
solutions. The existence of solutions different from the PJH solution raises the possi-
bility of alternate acceptable models. In Sections 3–5, we show that all solutions to the
mathematical problem other than the PJH solution are too complex to be biologically
reasonable, where the complexity is measured either by the rationality or by the minimal
crossing number of the 3–string tangle solution.

In Section 3, we show that the only rational solution is the PJH solution. In particular
we prove the following corollary.

Corollary 3.32 Let T be a solution tangle. If T is rational or split or if T has parallel
strands, then T is the PJH solution.

In Section 4 we show that any 3–string tangle with fewer than 8 crossings, up to
free isotopy (ie allowing the ends of the tangle to move under the isotopy), must be
either split or have parallel strands. Thus Corollary 3.32 implies that any solution T
different from the PJH solution must have at least 8 crossings up to free isotopy. Fixing
the framing of a solution tangle (the normal framing of Section 2) and working in
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the category of tangle equivalence – ie isotopy fixed on the boundary – we prove the
following lower bound on the crossing number of exotic solutions:

Proposition 5.1 Let T be an in trans solution tangle. If T has a projection with fewer
than 10 crossings, then T is the PJH tangle.

The framing used in [38] is different than our normal framing. With the framing of [38],
Proposition 5.1 says that if Mu binds fewer than 9 crossings, then the PJH solution is
the only solution fitting the experimental data. The PJH solution has 5 crossings.

We interpret Corollary 3.32 and Proposition 5.1 as saying that the PJH solution is the
only biologically reasonable model for the Mu transpososome. The short length of
the DNA strands (50, 175 and 190 base pairs) in the transpososome and the nature
of its assembly require a simple solution. Rational tangles are then a natural class
in which to look for feasible solutions. They form a general class of simple tangles.
Furthermore, they are freely isotopic to the trivial tangle, and one can imagine free
isotopy as describing the assembly of the DNA strands within the complex. Corollary
3.32 says that the PJH solution is the unique solution in this class. In a similar vein, the
shortness of the DNA strands suggest that the complex should have a projection with
small crossing number. Proposition 5.1 addresses uniqueness from this point of view.

Although we describe 8 experiments from [38], we show that only 3 experiments (in
cis deletion) are needed to prove the main result of Sections 3 (Corollary 3.21) and 4.
A fourth experiment (in trans deletion) allows us to rule out some solutions (Section 3)
and is required for the analysis in Section 5. Distinguishing which assumptions are
needed for which conclusions is significant in that it allows designing the smallest
number of experiments so as to minimize lab time. The remaining four experiments
(inversion) were used in [38] to determine an appropriate framing for their tangle model.
These four experiments are not needed in our analysis. It is interesting that, in contrast
to the three in cis deletion experiments, the four inversion experiments do not determine
a unique 3–string tangle among rational tangles.

The results in Sections 2–4 extend to analyzing experimental data such as Pathania
et al [39] and Yin et al [59; 60] where the products are .2;L/ torus links (see Hirasawa
and Shimokawa [27]) or the trefoil knot (see Kronheimer et al [33]). The work in
Section 3 involves the analysis of knotted graphs as in Gordon [22], Scharlemann and
Thompson [45], Thompson [49], Wu [57] and Robertson et al [40]. As a by-product,
we prove Theorem 3.34 and Corollary 3.37. Here if G is a graph embedded in S3 ,
then nbhd.G/ denotes a neighborhood of G in S3 and X.G/D S3� nbhd.G/ is the
exterior of that graph.
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Theorem 3.34 Let yG be a tetrahedral graph embedded in S3 . Then yG is planar if
and only if

(1) the exterior of yG has compressible boundary; and

(2) there is an edge, �0 , of yG such that for any edge e ¤ �0 of yG , yG � e is planar.

Corollary 3.37 Suppose yG is a tetrahedral graph embedded in S3 with the following
properties:

(1) There exists three edges e1 , e2 , e3 such that yG � ei is planar.

(2) The three edges e1 , e2 , e3 share a common vertex.

(3) There exists two additional edges, b12 and b23 such that X. yG � b12/ and
X. yG � b23/ have compressible boundary.

(4) X. yG/ has compressible boundary.

Then yG is planar.

In Section 3.4 we also give several examples of nonplanar tetrahedral graphs to show
that none of the hypotheses in Corollary 3.37 can be eliminated.
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1 Biology background and experimental data

DNA topology is the study of geometrical and topological properties of DNA loops
and circular DNA molecules; see Bates and Maxwell [4] and Calladine et al [10]. Of
particular interest are the entanglement of biopolymers and DNA protein interactions
(eg Sumners [47], Bauer et al [5], Colloms et al [13], Grainge et al [24], Kilbride et
al [31], Pathania et al [38] and Sumners et al [48]).
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Transposable elements, also called mobile elements, are fragments of DNA able to
move along a genome by a process called transposition. Mobile elements play an
important role in the shaping of a genome (see Deininger et al [18] and Sankoff [43]),
and they can impact the health of an organism by introducing genetic mutations. Of
special interest is that transposition is mechanistically very similar to the way certain
retroviruses, including HIV, integrate into their host genome.

Bacteriophage Mu is a system widely used in transposition studies due to the high
efficiency of Mu transposase (reviewed in Chaconas and Harshey [12]). The MuA
protein performs the first steps required to transpose the Mu genome from its starting
location to a new DNA location. MuA binds to specific DNA sequences which we
refer to as attL and attR sites (named after Left and Right attaching regions). A third
DNA sequence called the enhancer (E) is also required to assemble the Mu transposo-
some. The Mu transpososome is a very stable complex consisting of 3 segments of
double-stranded DNA captured in a protein complex (see Baker and Miziuuchi [3]
and Miziuuchi et al [36]). In this paper we are interested in studying the topological
structure of the DNA within the Mu transpososome. This topological structure may be
of use in determining a detailed molecular structure of the Mu transpososome and in
understanding the basic mechanism of action of the Mu transposase on DNA.

Understanding the topology of an enzyme-DNA complex is important when composing
a more detailed picture of enzymatic binding and mechanism of action, as illustrated
in the following two examples. First, topological mechanisms of binding and strand-
exchange for the Tn3 resolvase were proposed in [54; 46]: three negative supercoils are
bound by the enzymes prior to recombination, and recombination happens via a 180o

rotation of the strands. This topological mechanism was confirmed mathematically by
tangle analysis in the seminal paper by Ernst and Summers [20] (reviewed in Sumners et
al [48]). The understanding of the topology of Tn3 resolvase-DNA complex has recently
been used in Li et al [34] and in Mouw et al [37] in piecing together a physical model
for the enzymatic binding based on the corresponding cocrystal structure for resolvases
Sin by Rowland et al [41] and 
 ı , respectively. The second example deals with the
site- specific recombinases XerC and XerD from Escherichia coli. The topological
mechanism for XerC/XerD recombination at psi sites proposed in Colloms et al [13],
was confirmed mathematically using the tangle method in Darcy [14] and Vasquez et
al [50]. In [50] the results from tangle analysis were integrated with biochemical data
from XerC/XerD in Alén et al [1] and Colloms et al [13], and with x-ray crystallographic
data from Cre-loxP in Guo [25], to propose a more detailed molecular model for the
binding of XerC/XerD enzymes to their DNA substrate.
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1.1 Experimental design

We base our study on the difference topology experiments of [38]. In this technique,
circular DNA is first incubated with the protein(s)1 under study (eg MuA), which bind
DNA. A second protein whose mechanism is well understood is added to the reaction
(eg Cre). This second protein is a protein that can cut DNA and change the circular
DNA topology before resealing the break(s), resulting in knotted or linked DNA. DNA
crossings bound by the first protein will affect the product topology. Hence one can gain
information about the DNA conformation bound by the first protein by determining the
knot/link type of the DNA knots/links produced by the second protein.

In their difference topology experiments, Pathania et al [38] studied the Mu transposo-
some using Cre recombinase as the second protein. Cre is a site-specific recombinase
from the virus Bacteriophage P1 which binds to recombination sites called loxP (lox
stands for “locus of crossing-over”– ie, integration/deletion of DNA – and P refers to
P1 [28]). First, circular unknotted DNA is created containing the three binding sites for
the Mu transpososome (attL, attR, E) and two binding sites for Cre (two loxP sites). We
will refer to this unknotted DNA as substrate. The circular DNA is first incubated with
the proteins required for Mu transposition, thus forming the transpososome complex.
This complex leaves three DNA loops free outside the transpososome (Figure 2). The

loxP
loxP

enhancer

attL attR

Figure 2

two loxP sites are strategically placed in two of the three outside loops. The complex is
incubated with Cre enzymes, which bind the loxP sites, introduce two double-stranded

1Although we use the singular form of protein instead of the plural form, most protein-DNA complexes
involve several proteins. For example formation of the Mu transpososome involves four MuA proteins and
the protein HU. Also since these are test tube reactions and not single molecule experiments, multiple
copies of the DNA-protein complex are formed by incubating many copies of the DNA substrate with a
specified concentration of protein.
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breaks, recombine the loose ends and reseal them. A possible 2–string tangle model
for the local action of Cre at these sites is shown in Figure 3 [25]. This cut-and-paste
reaction may change the topology (knot/link type) of the DNA circle. Changes in the
substrate’s topology resulting from Cre action can reveal the structure within the Mu
transpososome.

Cre

Figure 3

By looking at such topological changes, Pathania et al [38] deduced the structure of the
transpososome to be that of Figure 1 (the PJH solution). In this paper we give a knot
theoretic analysis that supports this deduction. We show that although there are other
configurations that would lead to the same product topologies seen in the experiments,
they are necessarily too complicated to be biologically reasonable.

If the orientation of both loxP sites induces the same orientation on the circular substrate
(in biological terms, the sites are directly repeated), then recombination by Cre results
in a link of two components and is referred to as a deletion (Figure 4, left). Otherwise
the sites are inversely repeated, the product is a knot, and the recombination is called
an inversion (Figure 4, right).

= =

Direct repeats Inverted repeats

Figure 4

In [38] six out of eight experiments were designed by varying the relative positions
of the loxP sites and their relative orientations. The last pair of experiments involved
omitting one of the Mu binding sites on the circular substrate and placing that site on a
linear piece of DNA to be provided in trans as described below (Figure 5).

In the first pair of experiments from [38], loxP sites were introduced in the substrate
on both sides of the enhancer sequence (E) (Figure 2). The sites were inserted with ori-
entations to give, in separate runs, deletion and inversion products. The transpososome
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was disassembled and the knotted or linked products analyzed using gel electrophoresis
and electron microscopy. The primary inversion products were .C/ trefoils, and the
primary deletion products were 4–crossing right-hand torus links (.2; 4/ torus links).

The assay was repeated, but now the loxP sites were placed on both sides of the attL
sequence. The primary products were .2; 4/ torus links for deletion, and trefoils for
inversion. In a third set of experiments, the assay was repeated with the loxP sites
on both sides of the attR sequence. The primary products were .2; 4/ torus links for
deletion, and 5–crossing knots for inversion.

enhancer E

attL
attR

loxP

loxP

Figure 5

Recall that in these first six experiments, the three Mu binding sites, attL, attR, and
the enhancer, are all placed on the same circular DNA molecule. We will refer to
these six experiments as the in cis experiments to differentiate them from the final
set of experiments, the in trans assay. In the in trans assay, circular DNA substrates
were created that contained attL and attR sites but no enhancer site. Each loxP site
was inserted between the attL and attR sites as shown in Figure 5. The enhancer
sequence was placed on a linear DNA molecule. The circular substrate was incubated
in solution with linear DNA molecules containing the enhancer sequence and with the
proteins required for transpososome assembly. In this case, we say that the enhancer is
provided in trans. The loxP sites in the resulting transpososome complex underwent
Cre recombination. After the action of Cre and the disassembly of the transpososome
(including the removal of the loose enhancer strand), the primary inversion products
were trefoil knots, and the primary deletion products were (2,2) torus links (Hopf links).

Algebraic & Geometric Topology, Volume 9 (2009)



Tangle analysis of difference topology experiments 2255

The results of these experiments from [38] are summarized in Table 12. Vertical columns
correspond to the placement of loxP sites, eg the attL column shows inversion and
deletion products when the loxP sites were placed on both sides of the attL sequence.

enhancer attL attR in trans

Inversion .C/–trefoil trefoil 5–crossing knot trefoil

Deletion .2; 4/ torus .2; 4/ torus link .2; 4/ torus link .2; 2/ torus link

Table 1

1.2 Tangle model

Tangle analysis is a mathematical method that models an enzymatic reaction as a system
of tangle equations [20; 48]. As enzymes are often globular in shape, a protein-DNA
complex is modelled as a 3–ball (the protein) with properly embedded strings (the
DNA segments). 2–string tangle analysis has been successfully used to solve the
topological mechanism of several site-specific recombination enzymes [20; 21; 48; 24;
14; 42; 51; 50; 7; 17; 61; 23; 15; 2]. The Mu transpososome is better explained in
terms of 3–string tangles. Some efforts to classifying rational n–string tangles and
solving n–string tangle equations are underway [8; 9; 19; 16; 32]. In this paper we find
tangle solutions for the relevant 3–string tangle equations; we characterize solutions in
terms of certain knotted graphs called solution graphs and show that the PJH solution
(Figure 1) is the unique rational solution.

The unknotted substrate captured by the transpososome is modeled as the union of
the two 3–string tangles T0[ T , where T is the transpososome tangle and T0 is the
tangle outside the transpososome complex. T0[ T is represented in Figure 2. Notice
that in this figure the loxP sites are placed on both sides of the enhancer sequence, but
the placement of these sites varies throughout the experiments.

Figure 6 shows the action of Cre on the transpososome proposed in [38]. The exper-
imentally observed products are indicated in this figure. For example, E–inversion
refers to the product corresponding to inversely repeated loxP sites introduced on both
sides of the enhancer sequence. However, there are other 3–string tangles, assuming
the same action of Cre, that give rise to the same products. Figures 7 and 8 show two

2The chirality of the products was only determined when the loxP sites were placed on both sides of the
enhancer sequence. We here assume the chirality in Table 1, where (2,4) torus link denotes the 4–crossing
right-hand torus link. If any of the products are left-hand (2, 4) torus links, the results of Sections 2–5
applied to these products leads to biologically unlikely solutions.
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L E

R

L–inversionD trefoil L–deletionD .2; 4/ torus

R–inversionD .2; 5/ torus R–deletionD .2; 4/ torus

E–inversionD trefoil E–deletionD .2; 4/ torus

in trans inversionD trefoil in trans deletionD Hopf link

Figure 6

such examples. If one replaces the tangle of Figure 1 with either that of Figure 7 or 8
in Figure 6, the captions remain valid.

The loxP sites were strategically3 placed close to the Mu transpososome binding
sites in order to prevent Cre from trapping random crossings not bound within the
Mu transpososome. In half the experiments it was assumed that Cre trapped one
extra crossing outside of the Mu transpososome in order to obtain the loxP sequence
orientation of Figure 3 (indicated by the arrows). It was also assumed that this occurred

3Although we here describe only 8 experiments from [38], a number of experiments were performed
to determine and check the effect of site placement.
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Figure 7 Figure 8

with the higher crossing product when comparing inversion versus deletion products.
Hence a crossing outside of the Mu transpososome can be seen in Figure 6 in the case
of E–deletion, L–deletion, R–inversion, and in trans inversion. In all other cases, it
was assumed that Cre did not trap any extra crossings outside of the Mu transpososome.

The shape of DNA within the Mu transpososome was determined in [38] to be the PJH
solution (Figure 1) by making a restrictive assumption regarding this DNA conformation.
In their analysis, Pathania et al looked at only the most biologically likely shape: a
3–branched supercoiled structure similar to that shown in Figure 94. The standard
form of DNA has a helical pitch of about 10.5 bp per turn of the helix [55; 53]. When
the double helix is underwound or overwound, the excess torsional stress is converted
into writhe, whereby the axis of the DNA double-helix crosses over itself in the form
of supercoils [4; 5; 10]. In Figure 9, the supercoils in an unknotted, circular DNA
molecule are partitioned among three branches, thus forming a branched supercoiled
structure.

In terms of tangles, the assumption that the DNA is in branched supercoiled form is
equivalent to asking that the three strands of bound DNA form a tangle as in Figure 25
(ie in the terminology of Section 3, that it is a standard tangle as defined in Section
3.1).

By assuming a branched supercoiled structure, [38] used their experimental results to
determine the number of crossings trapped by Mu in each of the three branches. In
Sections 2–5 we show that we are able to reach the same conclusion as [38] without
assuming a branched supercoiled structure within the Mu transpososome.

4Electron microscopy of supercoiled DNA courtesy of Andrzej Stasiak, University of Lausanne.
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Figure 9

2 Normal form

2.1 Normal form

The substrate for Cre recombination in [38] is modeled as the 3–string tangle union
T [ T0 . We here introduce a framing for T called the normal form, which is different
from that in the PJH solution (Section 1). The choice of framing affects only the
arithmetic in Section 2 and does not affect any of the results in Sections 3 or 4. The
results of Section 5 on the crossing number of T are made with respect to the normal
form framing.

In Figure 10, let c1; c2; c3 be the strings of T0 and s12; s23; s31 be the strings of T .
The substrate is the union of the ci ’s and the sij ’s. We assume there is a projection
of T [ T0 so that c1; c2; c3 are isotopic (relative endpoints) onto the tangle circle and
so that the endpoints of sij are contiguous on the tangle circle (Figure 10). Note that

c1

c2

c3

s12

s23

s31

TT0

Figure 10
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this projection is different from that in [38]. It is a simple matter to convert between
projections, as described below.

In each experiment the two recombination sites for Cre (loxP sites) are located on
two strings ci and cj (i ¤ j ). Cre bound to a pair of strings ci [ cj can be modeled
as a 2–string tangle P of type 0=1. See Figure 16 where P is represented by the
smaller hashed 2–string tangle with two horizontal strands. Earlier studies of Cre
support the assumption that Cre recombination takes P D 0=1 into RD 1=0, where
for both tangles, the Cre binding sites are in antiparallel orientation (Figure 3) [38; 24;
25; 31]. Note that from a 3–dimensional point of view, the two sites can be regarded
as parallel or antiparallel as we vary the projection [48; 50; 52]. With our choice
of framing any Cre-DNA complex formed by bringing together two loxP sites ( eg
strings ci and cj ) results in P D .0/ with antiparallel sites when the loxP sites are
directly repeated. Furthermore, it is possible that Cre recombination traps crossings
outside of the Mu and Cre protein-DNA complexes. For mathematical convenience
we will enlarge the tangle representing Cre to include these crossings which are not
bound by either Mu or Cre but are trapped by Cre recombination. That is, the action
of Cre recombination on ci [ cj will be modeled by taking P D 0=1 into RD 1=d

for some integer d . Hence the system of tangle equations shown in Figure 11 can be
used to model these experiments where the rational tangles 1=di , 1=vi , 1=dt , 1=vt

represent nontrivial topology trapped inside R by Cre recombination, but not bound
by Mu. The tangle T , representing the Mu transpososome (ie the Mu-DNA complex),
is assumed to remain constant throughout the recombination event [48; 38]. Recall
that the first six experiments where the three Mu binding sites, attL, attR, and the
enhancer, are all placed on the same circular DNA molecule will be referred to as
the in cis experiments. The remaining two experiments will be referred to as the in
trans experiments since the enhancer sequence is provided in trans on a linear DNA
molecule separate from the circular DNA molecule containing the attL and attR sites.
The tangle equation (1) in Figure 11 corresponds to the unknotted substrate equation
from the first six experiments. Equations (2)–(4) correspond to three product equations
modeling the three in cis deletion experiments, while Equations (5)–(7) correspond to
the three product equations modeling the three in cis inversion experiments. Equation
(8) corresponds to the unknotted substrate equation for the two in trans experiments,
while Equations (9) and (10) correspond to the product equations modeling in trans
deletion and in trans inversion, respectively. In addition to modeling experimental
results in [38], these equations also model results in [39; 59; 60].

Figure 10 partially defines a framing for the tangle T . One can go further by specifying
values for d1; d2; d3 for the three in cis deletion experiments. We define the normal
form equations to be the system of Equations (1)–(4) in Figure 11 (corresponding to the
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1
d3

T
D right-handed
.2; 4/ torus link

(2) (L–del)

T 1
d
2

D right-handed
.2; 4/ torus link

(3) (R–del)

1 d
1

T

D right-handed
.2; 4/ torus
link

(4) (E–del)

(1) T Dunknot

1
v3

T D trefoil (5) (L–inv)

T 1
v
2

D 5–crossing knot (6) (R–inv)
1 v
1

T D trefoil (7) (E–inv)

In trans:

(8) T–s23 D unknot

T–s23
1

dt
D .2; 2/ torus link (9) (in trans del)

T–s23
1
vt
D trefoil (10) (in trans inv)

where
P D

or
ni

nj

, niCnj

D n;
and
RD

if
nD 0,

or
RD

1
n

if
n> 0,

or
RD

if
n< 0

Figure 11

in cis deletion experiments) with the additional requirement that d1D d2D d3D 0. We
focus first on these four equations as only the in cis deletion experiments are needed for
our main results. The four inversion experiments were important experimental controls
and were by [38] to determine the tangle model for the Mu transpososome. These four
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experiments are not needed in our analysis. It is interesting that, in contrast to the three
in cis deletion experiments, the four inversion experiments do not determine a unique
3 string tangle among rational tangles.

Definition 2.1 A 3–string tangle T is called a solution tangle if and only if it satisfies
the four normal form equations.

In the normal form equations, the action of Cre results in replacing P D ci [ cj D 0=1

with RD 1=0 for the three in cis deletion experiments. If we wish to instead impose a
framing where P D ci [ cj D 0=1 is replaced by RD 1=dk for given dk , k D 1; 2; 3,
we can easily convert between solutions. Suppose T is a solution to this nonnormal
form system of equations. We can move ni twists from R into T at ci , for each i

where niCnj D dk (Figure 12). Hence T with ni crossings added inside T at ci for

T

n1

n2

n3

Figure 12

each i is a solution tangle (for the normal form equations). Note the ni are uniquely
determined. Similarly, if T is a solution tangle (for the normal form equations), then
for given dk we can add �ni twists to T at ci to obtain a solution to the nonnormal
form equations.

Remark For biological reasons Pathania et al chose d1D�1, d2D 0, d3D�1 [38].
Hence n1 D 0, n2 D�1, n3 D 0. This corresponds to adding a right-hand twist at c2

to a solution in the PJH convention (such as Figure 1) to obtain a solution tangle (such
as Figure 13). Conversely, by adding a single left-hand twist at c2 to a solution tangle,
we get the corresponding solution in the PJH convention (eg from the solution tangle
of Figure 13 to the PJH solution of Figure 1).

Remark We will show that knowing the number of crossings trapped by Cre outside
of the Mu transpososome in the three in cis deletion experiments is sufficient for
determining the number of crossings trapped outside the Mu transpososome in all
experiments. In other words choosing d1; d2; d3 determines v1; v2; v3; vt ; and dt .
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Next we apply traditional 2–string tangle calculus [20] to the equations arising from
the in cis deletion experiments.

2.2 The three in cis deletion tangle equations

With abuse of the ci notation of Figure 10, let the tangle circle be the union of arcs
c1 [ x12 [ c2 [ x23 [ c3 [ x31 (Figure 13). We think of these arcs as providing a
framing for the tangle T .

c1

c2

c3

x12

x23

x31

Figure 13

Let Oi D T [ci be the 2–string tangle obtained by capping off sji[sik with ci . Then
skj is one of the strings of the 2- string tangle Oi , let ysi denote the other (Figure 14)

O1 D T [ c1

s23

ys1

Figure 14

By capping T along each ci , we approach the problem of finding all possible 3–string
tangles for the Mu transpososome by first solving three systems of two 2–string tangle
equations (one for each ci ). Figure 15 illustrates the definitions of 2–string tangle
addition .C/ and numerator closure (N ). Figure 16 shows a system of two 2–string
tangle equations arising from Cre recombination on the Mu transpososome. T [ c2

is represented by the 2–string tangle which is shaded light and dark grey. The light
grey portion of this 2–string tangle represents T . The smaller hashed 2–string tangle
represents Cre bound to loxP sites before (left) and after (right) recombination. Recall
that the hashed 0=1 tangle is referred to by P (before recombination) and the hashed
1=0 tangle by R (after recombination).
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A C A

ACC N.A/

Figure 15

==T T

N.O2C 0=1/D unknot N.O2C 1=0/D .2; 4/ torus link

Figure 16

Lemma 2.2 (in cis deletion) Let T be a solution tangle. That is, consider the three in
cis deletion experiments which convert unknotted substrates to right-hand .2; 4/ torus
links. Let Oi D T [ ci be the 2–string tangle obtained by capping T along ci . Then
Oi is the �1=4 tangle, i D 1; 2; 3.

Proof All the in cis deletion events, modeled by replacing P D cj [ ck D 0=1 by
R D 1=0 in normal form (see Figure 17), lead to identical systems of two 2–string
tangle equations:

N.Oi C 0=1/D unknot

N.Oi C 1=0/D .2; 4/ torus link

By Hirasawa and Shimokawa [27], Oi is a rational tangle. By tangle calculus, the
system admits a unique solution Oi D�1=4, i D 1; 2; 3 by Ernst and Sumners [20]

T [ ci

cj

ck

T [ ci

unknot torus link
Figure 17

(see also Darcy [14] and Vasquez et al [50]).
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2.3 The three in cis inversion tangle equations

Each Cre inversion experiment is also modeled as a system of tangle equations:

N.Oi C 0=1/D unknot

N.Oi C 1=vi/D inversion product

If we assume that the DNA-protein complex is constant for each pair of deletion/inver-
sion experiments, then by Lemma 2.2, O1 D O2 D O3 D �1=4. If the inversion
products are known, then vi can be determined by tangle calculus for i D 1; 2; 3.
From [38] we know that both L–inversion and E–inversion produce the .C/–trefoil.
Also R–inversion produces a 5–crossing knot (see Table 1), which must be a 5–torus
knot since O2 D �1=4. We assume this is the .C/5–torus knot, for if it were the
.�/5–torus knot then v2D9 which is biologically unlikely. Hence the only biologically
reasonable solutions to the inversion equations, with Oi D�1=4, i D 1; 2; 3 are:

L–inversion, P D 0=1 and RD 1=1, productD .C/–trefoil

R–inversion, P D 0=1 and RD�1=1, productD .C/5–torus knot

E–inversion, P D 0=1 and RD 1=1, productD .C/–trefoil

(2-1)

Other possible solutions exist if Oi is allowed to change with respect to the deletion
versus inversion experiments. However, it is believed that the orientation of the Cre
binding sites (inverted versus direct repeats, Figure 4) does not affect the transpososome
configuration.

2.4 Linking number considerations

In Lemma 2.3 we compute linking numbers related to the deletion experiments.

Assume T is a solution tangle. First, let yxi be the arc on the tangle circle given by
xji [ ci [xik . We compute the linking number between xjk [ sjk and ysi [ yxi , using
the orientation induced from the tangle circle into each component and using the sign
convention in Figure 18. The linking number quantifies the pairwise interlacing of arcs
after capping off.

Second, we compute the linking number of xij [ sij and xki [ ski , with sign and
orientation conventions as before. This linking number calculation quantifies the
interlacing between any two arcs in T .

Lemma 2.3 Assume T is a solution tangle. Then

`k.xjk [ sjk ; ysi [ yxi/ D �2

`k.xij [ sij ;xki [ ski/ D �1
fi; j ; kg D f1; 2; 3g:
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.C/ .�/

Figure 18

Proof The first equation follows from Lemma 2.2.

To get the second equation we note that ysi[yxi can be obtained via a banding connecting
xij[sij with xki[ski along ci as indicated in Figure 19. Then for fi; j ; kgDf1; 2; 3g,

�2D `k.xjk [ sjk ; ysi [ yxi/D `k.xjk [ sjk ;xij [ sij /C `k.xjk [ sjk ;xki [ ski/ :

Solving three equations (fi; j ; kgD f1; 2; 3g), we obtain `k.xij[sij ;xjk[sjk/D�1.

ci

xij

sij

ski

xki

ci

xij

sij

sjk

ski

xik

banding

Figure 19

In the next section we will see how the in cis deletion results extend to the analysis of
the remaining experiments (in trans deletion and inversion).

2.5 In trans experiments

In the in trans portion of [38] (described in Section 1) the enhancer sequence is not
incorporated into the circular DNA substrate; it remains separate in solution on its own
linear molecule when the transpososome is formed (Figure 20). Assuming the trans-
pososome complex forms the same 3–string tangle in this context, the transpososome
writes the substrate as a union of two 2–string tangles: T 0

0
, a trivial tangle outside
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the transpososome; and T 0 D T � s23 , the tangle formed by the attR and attL strands
(where s23 is the enhancer strand in T ).

c1

Figure 20

Lemma 2.4 (in trans deletion) Let T be a solution tangle. Suppose T also satisfies
equations (8) and (9) in Figure 11 where dt is as shown in this figure. Then dt D 0; 4

and T � s23 D 1=�2.

Proof When Cre acts on the loxP sites in the in trans experiment, we assume that
it takes the 0=1 tangle to 1=dt (Figure 21). The Cre deletion product in trans is a

T � s23 T � s23

unknot Hopf link

D

Figure 21

Hopf link (ie a .2; 2/ torus link). Hence we are solving the 2–string tangle equations,
N..T �s23/C0=1/D unknot, N..T �s23/C1=dt /D .2; 2/ torus link. By [6] T �s23

is rational, and by tangle calculus [20], T � s23 D 1=.˙2� dt /, which implies that
`k.x31[s31;x12[s12/D .˙2�dt /=2. By Lemma 2.3, `k.x31[s31;x12[s12/D�1.
Hence .˙2� dt /=2D�1. Thus dt D 0; 4 and T � s23 D 1=�2.

Remark (In trans inversion) If T � s23 D 1=�2, then the in trans Cre inversion
product is N..T � s23/C 1=vt /DN.1=�2C 1=vt /D .2; 2� vt / torus knot. A (2, 3)
torus knot (ie the trefoil) in trans inversion product implies vt D�1.
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2.6 Summary

The next proposition summarizes the results in this section.

Proposition 2.5 Let T be a solution tangle which also satisfies the in trans deletion
experiments, and let s23 correspond to the enhancer strand in the [38] experiments.
Then

(2-2) Oi D T [ ci D�
1

4
; T � s23 D�

1

2

The in trans deletion reaction of Cre is modeled by replacing c1[.c2[x23[c3/D 0=1

by the 1=0 or 1=4 tangle (ie dt D 0; 4; see Figure 23).

c1

c2
c3

x12

x23

x31
s12

s23

s31

Figure 22 Figure 23

Remark In declaring Oi D�1=4 we are using the framing coordinate of the tangle
circle with cj [ ck D 0=1;xjk [ yxi D 1=0.

Proposition 2.5 can be generalized to products of deletion that are .2;Li/ torus links,
and a .2;Lt / torus link for the in trans experiment:

Proposition 2.6 Let T satisfy Equations (1)–(4), (8)–(9) of Figure 11 except that the
in cis deletion experiments produce .2;Li/ torus links, Li 6D˙2, for iD1; 2; 3 and the
in trans deletion experiment results in a .2;Lt / torus link. Assume d1 D d2 D d3 D 0

and that s23 corresponds to the enhancer strand. Then

(2-3) Oi D T [ ci D�
1

Li
; T � s23 D

1

.L2CL3�L1/=2
:

If jLt j D 2, then dt D .�Lj CLiCLk˙4/=2. If jLt j 6D 2, then dt D .�Lj CLiC

Lk � 2Lt /=2.
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Note similar results hold if Li D ˙2 for i D 1; 2, and/or 3, but as this breaks into
cases, we leave it to the reader.

Remark Sections 3 and 4 rely on the fact the tangles in Figure 24 are all of the form
1=mi . This would still be the case no matter the choice of framing (discussed at the
beginning of this section) or the type of the .2;Li/ torus link products. Hence the
results of Sections 3 and 4 apply more generally.

Note that a 3–string tangle T is a solution tangle if and only if it satisfies the condition
Oi D T [ ci D �1=4 for i D 1; 2; 3 (see Definition 2.1 and Lemma 2.2). This
corresponds to the first three equations in Figure 24. The main result in Section 3
(Corollary 3.32) only depends on the three in cis deletion experiments.

=

=

=

=

T

T

T

T � s23

Figure 24

If in addition a solution tangle satisfies the in trans deletion equation, then we call it an
in trans solution tangle:

Definition 2.7 A 3–string tangle T is called an in trans solution tangle if and only if
it satisfies Equation (2-2) of Proposition 2.5. This is equivalent to a tangle satisfying
all the equations of Figure 24.
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Note: Proposition 2.5 reduces the study of transpososome tangles to that of in trans
solution tangles. In Section 3 we classify solution tangles in terms of solution graphs
and use this to show that the only solution tangle (and hence the only in trans solution
tangle) that is rational is the PJH tangle.

Remark The proof of Propositions 2.5 and 2.6 use the deletion products only. As
the remaining analysis depends only on Proposition 2.5, we see that the inversion
products are unnecessary for our analysis. However, the inversion products were used
to determine the framing in [38].

3 Solution graphs

In Sections 3.1 and 3.2 we relate solution tangles to wagon wheel graphs and tetrahedral
graphs. We use wagon wheel graphs to find an infinite number of solution tangles
in Section 3.1. Recall by Definition 2.1 that a solution tangle is a 3–string tangle
satisfying the three in cis deletion equations (ie Oi D T [ ci D�1=4 for i D 1; 2; 3

in Equation (2-2) of Proposition 2.5, the first three equations of Figure 24), while by
Definition 2.7, an in trans solution tangle is a solution tangle which also satisfies the in
trans deletion equation T � s23 D�1=2. In Section 3.3 we show that the only rational
solution tangle is the PJH tangle. In Section 3.5, we extend this result to tangles which
are split or have parallel strands using results in Section 3.4 regarding the exterior
of a solution graph. In Section 3.6, we show that if a solution tangle is also an in
trans solution tangle, then its exterior is a handlebody. We use this in Section 3.7 to
investigate the planarity of tetrahedral graphs.

3.1 Solution tangles are carried by solution graphs

Definition 3.1 A 3–string tangle is standard if and only if it can be isotoped rel
endpoints to Figure 25. A standard tangle with ni D�2 is called the PJH tangle.

n1

n
2 n3 ni D

8̂<̂
:

ni right-handed
twists if ni < 0

ni right-handed
twists if ni < 0

Figure 25

Note that a standard tangle is one that can be put in branched supercoiled form.

Algebraic & Geometric Topology, Volume 9 (2009)



2270 Isabel K Darcy, John Luecke and Mariel Vazquez

Lemma 3.2 If a solution tangle is standard, then it is the PJH tangle.

Proof Write and solve the three equations, ni C nj D �4, describing the integral
tangles resulting from capping along individual ck .

Lemma 3.3 If an in trans solution tangle is standard, then it is the PJH tangle.

Proof By Lemma 3.2, since an in trans solution tangle is also a solution tangle.

Remark The assumption in [38] of the branched supercoiled structure (see the end of
Section 1) is equivalent to assuming the in trans solution tangle is standard. In that
paper, the authors deduced the transpososome configuration with a method similar to
that of Lemma 3.2. The PJH solution thus obtained is equivalent to our PJH tangle
when normal framing is imposed.

Definition 3.4 The abstract wagon wheel is the graph of Figure 26. The vertices
are labelled v1; v2; v3 ; the edges labelled e1; e2; e3; b12; b23; b31 . A wagon wheel
graph, G , is a proper embedding of the abstract wagon wheel into B3 with the
endpoints of the ei in the 10, 2, and 6 o’clock positions on the tangle circle (eg Figure
27). Two wagon wheel graphs are the same if there is an isotopy of B3 , which is fixed
on @B3 , taking one graph to the other.

e1

e2 e3

v1

v2 v3

b12

b23

b31

Figure 26

e1

e2
e3

v1
v2

v3

b12

Figure 27

Definition 3.5 If a properly embedded graph lies in a properly embedded disk in the
3–ball, we call it planar.

Figure 28 gives examples of planar and nonplanar wagon wheel graphs. Note that the
nonplanar graph in Figure 28 contains the knotted arc e2[b23[e3 . The disk in which
a planar wagon wheel lies may be taken to be the one given by the plane of the page,
whose boundary is the tangle circle.
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e1

e2 e3

b12

e1

e2 e3

b23

planar nonplanar

Figure 28

Definition 3.6 Let G be a wagon wheel graph, and let nbhd.G/ denote a regular
neighborhood of G in the 3–ball. Let J1;J2;J3 be meridian disks of nbhd.G/
corresponding to edges e1; e2; e3 . Let Ji D @Ji . Let �12; �23; �31 be meridian disks
of nbhd.G/ corresponding to edges b12; b23; b31 . Let 
ij D @�ij . See Figure 29.

T1

T2 T3

�12

�23

�31
nbhd.G/

Figure 29

Definition 3.7 X.G/ D exterior of G D B3 � .nbhd.G/[ nbhd.@B3//. Note that
@X.G/ is a surface of genus 3.

Definition 3.8 G is a solution graph if and only if it is a wagon wheel graph with the
property that deleting any one of the edges fe1; e2; e3g from G gives a subgraph that
is planar.

Definition 3.9 G is an in trans solution graph if and only if it is a wagon wheel graph
with the property that deleting any one of the edges fe1; e2; e3; b23g from G gives a
subgraph that is planar.
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G T .G/

G T .G/

e2

e3

e1

Figure 30

The graphs G in Figure 30 are in trans solution graphs.

Definition 3.10 Let G be a wagon wheel graph. A 3–string tangle T is carried
by G , written T .G/, if and only if its 3–strings s12; s23; s31 can be (simultaneously)
isotoped to lie in @ nbhd.G/ such that

(1) sij intersects each of Ji ;Jj once;

(2) sij intersects 
ij once and is disjoint from the remaining 
st .

Figure 30 gives examples of tangles carried by wagon wheel graphs.

Lemma 3.11 If T1; T2 are both carried by G , then they are isotopic in B3 (rel
endpoints) up to twisting nbhd.G/ along the Ji (ie they differ by twists at the ends).

Proof Left to the reader.
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Lemma 3.12 If a 3–string tangle T is carried by a planar wagon wheel graph G then
T is standard.

Proof There is an isotopy of B3 , keeping the boundary of B3 fixed, taking G to the
planar wagon wheel graph of Figure 30 (upper left). Apply Lemma 3.11 to see T as
standard.

The following theorem and corollary let us work with graphs rather than tangles. The
solution graph economically encodes the conditions needed for a solution tangle.

Theorem 3.13 Let T be a solution tangle, then T is carried by a solution graph.
Conversely, a solution graph carries a unique solution tangle.

Proof Let T be a solution tangle with strands s12; s23; s31 . We show that T is carried
by a solution graph G . Let C D c1 [ s12 [ c2 [ s23 [ c3 [ s31 , recalling that the ci

are the capping arcs of Figure 22. For each i D 1; 2; 3, let Pi be a point in ci . Isotop
C into the interior of B3 by pushing each ci slightly to the interior. Under the isotopy
Pi traces out an arc ei from Pi 2 @B3 to C . Define G D C [ e1 [ e2 [ e3 . See

>

> >

>

T G

e1

e2 e3

C

H)

Figure 31

Figure 31. G is a wagon wheel graph that carries T . Note that the strings sij of T
correspond to the edges bij of G . The conditions for T to be a solution tangle now
correspond to those defining G as a solution graph. For example, if T is a solution
tangle, s23[ .s12[ c1[ s31/[ c2[ c3 (where c1 has been pushed into the interior of
B3 ) lies in a properly embedded disk D in B3 . Hence G� e1 lies in D and is planar.
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nbhd.G/ n1

n2
n3

Figure 32

We now show that a solution graph carries a unique solution tangle. By Lemma 3.11 the
tangles carried by G are parameterized by integers n1; n2; n3 as in Figure 32 (where the
boxes are twist boxes). Denote these tangles by T .n1; n2; n3/. As G is a solution graph,
T .0; 0; 0/[ci will be the 2–string tangle 1=fi , where fi 2Z. Then T .n1; n2; n3/[ci

will be the 2–string tangle 1=.fi C nj C nk/ where fi; j ; kg D f1; 2; 3g.

Based on Lemma 2.2, we choose ni ; nj ; nk to satisfy

n1C n2Cf3 D�4;

n2C n3Cf1 D�4;

n3C n1Cf2 D�4:

Since f1Cf2Cf3 is even, this has a unique integer solution. Then T .n1; n2; n3/[ciD

1=�4 tangle for each i . Thus T is a solution tangle.

The uniqueness of T follows from the parameterization of the tangles by the ni and
the fact that T [ ci D 1=�4 tangle.

Corollary 3.14 Let T be an in trans solution tangle, then T is carried by an in trans
solution graph. Conversely, an in trans solution graph carries a unique in trans solution
tangle.

Proof Let T be an in trans solution tangle. Since T is an in trans solution tangle, T
is a solution tangle. Hence T is carried by a solution graph, G . G � b23 corresponds
to the graph s12 [ c1 [ s31 [ e1 . As T is an in trans solution tangle, s12 [ c1 [ s31

lies in a properly embedded disk D in B3 . Hence G � b23 lies in D and is planar.
Thus G is an in trans solution graph.

Suppose G is an in trans solution graph. Thus G is a solution graph and carries
a solution tangle T .n1; n2; n3/ (in the notation of the preceding theorem). Since
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G is an in trans solution graph, G � b23 is also planar. Then the 2–string tan-
gle T .n1; n2; n3/� s23 D 1=f for some integer f . Furthermore, we have chosen
n1; n2; n3 so that `k.xij [ sij ; ysi [ yxi/D�2. The argument of Lemma 2.3 shows that
`k.x12[ s12;x31[ s31/D�1. Thus T .n1; n2; n3/� s23 D 1=�2 tangle. Therefore
T is an in trans solution tangle. T is unique by Theorem 3.13.

Corollary 3.14 allows us to construct infinitely many in trans solution tangles, via
in trans solution graphs. Recall that a Brunnian link, L, is one such that once any
component is removed the remaining components form the unlink. By piping a Brunnian
link to a given in trans solution graph, we generate a new in trans solution graph as
pictured in Figure 33 (where we have begun with the second solution graph of Figure 30).
Similar results hold for solution tangles.

e1

e2

e3

b23

Figure 33

3.2 Wagon wheel graphs and tetrahedral graphs

Attaching a 3–ball, B0 , to the 3–ball B3 in which G lies, then collapsing B0 to a
point, gives a new graph, yG , in the 3–sphere. yG is a tetrahedral graph in S3 , ie a
graph abstractly homeomorphic to the 1–skeleton of a tetrahedron. The edges of yG
are those of G : e1; e2; e3; b12; b23; b31 . The planarity of G (ie lying on a disk in B3 )
then corresponds to the planarity of yG in S3 (ie lying on a 2–sphere in S3 ). Also,
the exteriors of G and yG , in B3 and S3 (resp.), are homeomorphic.

Definition 3.15 A surface F in a 3–manifold M is compressible if there is a disk D

embedded in M such that D \F D @D and @D does not bound a disk in F . F is
incompressible otherwise (where F is not a 2–sphere).
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Recall that a graph is abstractly planar if there exists an embedding of it in a 2–sphere.
We are now in a position to use the following characterization of planar graphs in the
3–sphere.

Theorem 3.16 (Thompson [49, Theorem 2.0], see also Scharlemann–Thompson [45])
Let yG be an abstractly planar graph embedded in S3 . yG is planar if and only if

(1) every proper subgraph of yG is planar; and

(2) X. yG/D S3� nbhd. yG/ has compressible boundary.

Lemma 3.17 Let en , n D 1; 2; 3, be three edges of the tetrahedral graph yG which
share a common vertex and suppose yG � en is planar for nD 1; 2; 3. Suppose there is
a fourth edge, bjk , such that X. yG�bjk/ has compressible boundary. Then yG�bjk is
a planar graph in S3 .

Proof We can think of yG � bjk as a theta-curve graph, y‚, with two vertices and
three edges ei , ej [ bij , and ek [ bki . Since yG � en is planar for n D 1; 2; 3, the
subgraphs . yG � bjk/� ei , . yG � bjk/� .ej [ bij /, and . yG � bjk/� .ek [ bki/ are all
planar subgraphs. Since X. yG � bjk/ has compressible boundary, yG � bjk is a planar
graph in S3 by Theorem 3.16.

A tetrahedral graph, its corresponding wagon wheel graph, and the tangles carried by
the wagon wheel graph are all related by their exterior.

Definition 3.18 For T a 3–string tangle with strings s12; s23; s31 ,

X.T /D B3
� nbhd.s12[ s23[ s31[ @B

3/:

Lemma 3.19 If T is carried by the wagon wheel graph G and if yG is the correspond-
ing tetrahedral graph, then X.G/ D X. yG/ is isotopic to X.T / and X.G � bij / D

X. yG � bij / is isotopic to X.T � sij /.

Proof See Figure 31.

3.3 Rational tangles

T is rational if there is an isotopy of B3 taking T to a tangle containing no crossings
(ie T is freely isotopic to the standard “jail bar” picture). Rational tangle solutions are
generally believed to be the most likely biological models [47; 48] for a number of
reasons. As mentioned in the introduction, the short length of captured DNA strands
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implies a simple configuration of entanglement. Furthermore, like 4–plats (2–bridge
links), rational tangles look like DNA configurations being built out of plectonemic
supercoiling (ie built from sequences of twists). Finally, it is thought in many cases
that the DNA winds around the protein surface without crossing itself (eg see Alén et
al [1]). Thus, if we push the DNA inside the ball, we have a rational tangle. Below,
Corollary 3.21 shows that the only solution tangle among rational tangles is the PJH
tangle.

Lemma 3.20 Suppose a rational tangle T is carried by G , then X.G/ has compress-
ible boundary and X.G � bjk/ has compressible boundary for all bjk .

Proof If T is rational, then there is a disk, D , separating sij from sik . Thus X.G/

has compressible boundary. This disk D also separates the two strands of T � sjk and
thus X.T � sjk/ has compressible boundary. Since X.T � sjk/ and X.G � bjk/ are
homeomorphic, X.G � bjk/ has compressible boundary.

Corollary 3.21 Suppose T is rational and T is a solution tangle, then T is the PJH
tangle.

Proof By Theorem 3.13, T is carried by a solution graph G . Thus, G � en is planar
for nD 1; 2; 3. By Lemma 3.20, X.G/ has compressible boundary and X.G � bjk/

has compressible boundary for all bjk . Lemma 3.19 and Lemma 3.17 imply yG � bjk

(where yG is the tetrahedral graph corresponding to G ) is planar for all bjk , and hence
yG is planar (Theorem 3.16). Thus G is planar. By Lemma 3.12, T is standard and
hence the PJH tangle (Lemma 3.2).

A solution tangle is one that satisfies the three in cis deletion experiments. Thus
Corollary 3.21 says that these experiments alone determine the 3–string tangle among
rational tangles. It is interesting that this is not true of the inversion experiments.
Figure 35 carries a rational tangle that is not the PJH tangle and yet gives the inversion
in cis results and the inversion in trans result listed in Table 1 (where the 5 noded knot
is the .2; 5/ torus knot). We would like to thank Jennifer Mann for help in realizing
such examples.

Proposition 2.6 allows us to extend the results of this section to experiments in which
the in cis deletion products are .2;p/ torus links (rather than specifically (2,4)). For
example, the analog of Corollary 3.21 would state that if the synaptic tangle is rational,
then three .2;p/ torus link in cis products would force it to be standard (plectonemic
form) as in Figure 25.
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In contrast to Corollary 3.21, the examples in Figures 34 and 35, as discussed in the
proof of Theorem 3.22, show that no other set of three deletion experiments would be
enough to determine that a solution T is standard just from the knowledge that it is
rational.

e1

e2

e3

b12

b23

b31

Figure 34

e1

e2

e3

b12

b23

b31

Figure 35

Theorem 3.22 A system of four deletion experiments with .2;p/ torus link products
must include all three in cis experiments to conclude that a rational tangle satisfying
this system is standard.

Proof For the tetrahedral graph in Figure 34, yG�e1 , yG�b12 , yG�b31 , yG�b23 are
all planar subgraphs. Deleting a neighborhood of the vertex adjacent to the ei ’s results
in a wagonwheel graph, G . The subgraph G � e2 carries a 2–string tangle which is
not rational. Hence G � e2 is not planar and thus G is not planar, yet it does carry
a rational tangle. Thus three in trans experiments and one in cis experiments is not
sufficient to determine T is standard under the assumption that T is rational.

Instead of removing a neighborhood of the vertex adjacent to the ei ’s, we can delete a
neighborhood of the vertex adjacent to the edges e2 , b12 , and b23 from the tetrahedral
graph in Figure 34. In this case, we also obtain a wagon wheel graph carrying a rational
tangle which is not standard. Hence the nonplanar tetrahedral graph in Figure 34 can
also be used to show that two in trans and two in cis experiments, where three of the
four corresponding edges in the tetrahedral graph share a vertex, is also not sufficient
to determine T is standard.

The tetrahedral graph in Figure 35 is not planar as yG � e2� b31 is knotted. However,
yG � e1 , yG � e3 , yG � b23 , and yG � b12 are all planar. Hence this graph shows that
the remaining case, two in trans and two in cis experiments where no three of the
four corresponding edges in the tetrahedral graph share a common vertex, is also not
sufficient to determine T is standard.
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3.4 The exterior X.G /

Our goal is to prove Corollary 3.32, which extends Corollary 3.21. In Section 4, we
will use Corollary 3.32 to show there is a unique small crossing solution tangle. We first
establish some properties of the exterior of both solution graphs and in trans solution
graphs.

Definition 3.23 Let M be a 3–manifold, F a subsurface of @M , and J a simple
closed curve in F . Then �.M;J / is the 3–manifold obtained by attaching a 2–
handle to M along J . That is, �.M;J / D M [J H , where H is a 2–handle.
�.F;J / is the subsurface of @�.M;J / obtained by surgering F along @H . That is,
�.F;J /D .F [ @H /� int.F \ @H /.

Handle Addition Lemma [29; 11; 44; 56] Let M be an orientable, irreducible
3–manifold and F a surface in @M . Let J be a simple, closed curve in F . Assume
�.F;J / is not a 2–sphere. If F is compressible in M but F � J is incompressible,
then �.F;J / is incompressible in �.M;J /.

Lemma 3.24 Let G be a wagon wheel graph and X.G/ its exterior. Let Ji and

ij be the meridian curves on @X.G/ as in Figure 29 (and defined right above the
figure). Suppose @X.G/ compresses in X.G/. If G is a solution graph, then @X.G/�
.J1 [ J2 [ J3/ is compressible in X.G/. If G is an in trans solution graph, then
@X.G/� .
23[J1[J2[J3/ is compressible in X.G/.

Proof Assume @X.G/ compresses in X.G/. Note that X.G/ is irreducible. We will
use the following four claims to prove this lemma:

Claim 3.25 If G�b23 is planar (eg G is an in trans solution graph), then @X.G/�
23

is compressible in X.G/.

Proof Since G�b23 is planar, �.X.G/; 
23/DX.G�b23/ has compressible bound-
ary. The claim now follows from the Handle Addition Lemma.

If G is an in trans solution graph, let F1 D @X.G/ � 
23 . By Claim 3.25, F1 is
compressible in X.G/. Else if G is a solution graph, let F1 D @X.G/. In this case,
F1 is compressible in X.G/ by hypothesis.

Claim 3.26 F2 D F1�J1 is compressible in X.G/.

Algebraic & Geometric Topology, Volume 9 (2009)



2280 Isabel K Darcy, John Luecke and Mariel Vazquez

@D

J2


23

J3

D D compressing disk

Figure 36

Proof F1 is compressible in X.G/. On the other hand, since �.X.G/;J1/ D

X.G � e1/ and G�e1 is planar, �.F1;J1/ compresses in �.X.G/;J1/. See Figure 36.
The claim now follows from the Handle Addition Lemma.

Claim 3.27 F3 D F2�J2 is compressible in X.G/.

Proof Since G � e2 is planar, �.F2;J2/ is compressible in �.X.G/;J2/ (as in the
analog of Figure 36). Thus Claim 3.26 with the Handle Addition Lemma implies the
claim.

Claim 3.28 F D F3�J3 is compressible in X.G/.

Proof G�e3 is planar, hence �.F3;J3/ is compressible in �.X.G/;J3/DX.G�e3/

(as in the analog of Figure 36). Claim 3.27 with the Handle Addition Lemma says that
F3�J3 is compressible in X.G/.

Thus if G is a solution graph, then F D @X.G/� .J1[J2[J3/ is compressible in
X.G/. If G is an in trans solution graph, then F D @X.G/� .
23[J1[J2[J3/ is
compressible in X.G/. This completes the proof of Lemma 3.24.

3.5 Solution graphs

Lemma 3.29 Let G be a solution graph and X.G/ its exterior. Let Ji and 
ij be
the meridian curves on @X.G/ as in Figure 29 (and defined right above the figure).
If @X.G/ compresses in X.G/, then there is a properly embedded disk in X.G/ that
intersects each 
ij algebraically once in @X.G/ and is disjoint from the Ji .
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Proof Let D0 be a compressing disk, guaranteed by Lemma 3.24, properly embedded
in X.G/ such that @D0�F D @X.G/� .J1[J2[J3/ and @D0 does not bound a disk
in F . Write B3 DX.G/[@X .G/ M where M D nbhd.G [ @B3/. In the notation of
Figure 29, let M �nbhd.J1[J2[J3/DM1[M2 where M1 is S2�I and M2 is a
solid torus. If @D0 lies in @M1 , we can form a 2–sphere, S , by capping off D0 with a
disk in M1 (take the disk bounded by @D0 on @M1 and push in slightly). That is, S is a
2–sphere which intersects @X.G/ in @D0 . But then S would have to be nonseparating
(there would be an arc from J1 to J2 , say, on @M1 which intersected @D0 once and
an arc connecting J1 to J2 on @M2 which missed @D0 , hence S , altogether). But
2–spheres in a 3–ball are separating.

Thus @D0 must lie in @M2 . If @D0 is essential in @M2 , then @D0 must intersect any
meridian of the solid torus M2 algebraically once (else B3 would contain a lens space
summand). Then D0 is the desired disk, and we are done. So assume @D0 bounds
a disk, D00 , in @M2 . Then the disks nbhd.J1 [J2 [J3/\ @M2 must lie in D00 , as
S DD0 [D00 is separating. Since G � e1 is planar, M2 is an unknotted solid torus
in B3 . Thus there is a properly embedded disk D � B3� intM2 such that @D is
a longitude of @M2 and hence is essential. Furthermore, we can arrange that D is
disjoint from D00 . Then D \S is a collection of trivial circles in D0 and D can be
surgered off S without changing @D . In particular, D is properly embedded in X.G/

since the ei lie on the opposite side of S from D . D is the desired disk.

Definition 3.30 Let T be a 3–string tangle. T is split if there is a properly embedded
disk separating two of its strands from the third (Figure 37 (a)). Strands s1; s2 of
T are parallel if there is a disk D in B3 such that int.D/ is disjoint from T and
@D D s1 [ ˛ [ s2 [ ˇ where ˛; ˇ are arcs in @B3 (Figure 37 (b)). Note: Rational

(a) split (b) parallel

s1
s2

D

Figure 37

tangles are split and have parallel strands.
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Lemma 3.31 Let T be a 3–string tangle carried by a solution graph G . If T is
rational, split, or if T has parallel strands, then X.G/ and X.G � bij /, for each i; j ,
have compressible boundary.

Proof If T is rational, split, or has parallel strands, then @X.T / is compressible in
X.T /. By Lemma 3.19, @X.G/ is compressible in X.G/.

We now argue that @X.G � bij / is compressible in X.G � bij /. Below fi; j ; kg D
f1; 2; 3g.

If T is split, then there is a disk, D , separating one strand from two. If sij is on the side
of D containing two, then D still separates the two strands of T � sij and X.T � sij /

still has compressible boundary. By Lemma 3.19, X.G � bij / has compressible
boundary. So we assume sij is on one side of D and sjk ; ski on the other. As a disk
properly embedded in X.G/, D separates the curves 
ij ; 
jk of @X.G/. By Lemma
3.29 there is a disk D0 in X.G/ that intersects 
jk on @X.G/ algebraically a nonzero
number of times. After surgering along D (while preserving the nonzero algebraic
intersection with 
jk ), we may assume that D0 is disjoint from D , and hence from

ij . But then D0 is a compressing disk for G � bij .

If T has parallel strands, we argue in two cases according to which strands are parallel:

First, assume sjk ; ski are parallel. Then they are parallel in T � sij and X.T � sij /

has compressible boundary. By Lemma 3.19, X.G � bij / has compressible boundary.

So, assume that sij and sjk are parallel. Then there is a disk, D , properly embedded in
X.G/ that intersects 
ij exactly once, 
jk exactly once, and is disjoint from 
ki . By
Lemma 3.29, there is also a disk, D0 , in X.G/ that intersects 
ki algebraically once.
After possibly surgering D0 along D we may assume the D and D0 are disjoint. But
X.G/� nbhd.D/ is homeomorphic to X.G � bij /, and D0 becomes a compressing
disk in X.G � bij /.

Corollary 3.32 Let T be a solution tangle. If T is rational or split or if T has parallel
strands, then T is the PJH tangle.

Proof Let G be a solution graph carrying T . Then Lemmas 3.31, 3.19, and 3.17
imply that yG � bjk planar for all bjk where yG is the associated tetrahedral graph.
Thus Theorem 3.16 implies yG is planar. Thus G is planar. By Lemma 3.12, T is
standard. Now Lemma 3.2 says T is the PJH tangle.

Remark Since in trans solution tangles are also solution tangles, Corollary 3.32 also
applies to in trans solution tangles. Although the three in cis deletion equations suffice
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to determine T if T is rational, split or has parallel strands, the in trans deletion
experiment does rule out some exotic solutions. For example, the tangle in Figure 38
satisfies all the in cis experimental results (ie it is a solution tangle), but does not satisfy
the in trans results (ie it is not an in trans solution tangle).

Figure 38

3.6 In trans solution graphs

In Lemma 3.33 we will show that the exterior of an in trans solution graph is a
handlebody. This need not be true for solution graphs. The solution graph of Figure 38
contains an incompressible genus 2 surface in its exterior (it is based on Thurston’s
tripos graph). Thus its exterior is not a handlebody. We will also use Lemma 3.33 to
further explore planarity of tetrahedral graphs in the next section.

Lemma 3.33 Let G be an in trans solution graph and X.G/ its exterior. Let Ji and

ij be the meridian curves on @X.G/ as in Figure 29 (and defined right above the
figure). If @X.G/ compresses in X.G/, then there is a properly embedded disk in
X.G/ that intersects 
23 exactly once, intersects each of 
12; 
31 algebraically once,
and is disjoint from the Ji . Furthermore, X.G/ is a handlebody.

Proof By Lemma 3.24, there is a disk D0 properly embedded in X.G/ such that
@D0 �F D @X.G/� .
23[J1[J2[J3/ and @D0 does not bound a disk in F . Write
B3 D X.G/[@X .G/ M where M D nbhd.G [ @B3/. In the notation of Figure 29,
let M � nbhd.J1 [J2 [J3 [�23/DM1 [M2 where M1 is S2 � I and M2 is a
3–ball. @D0 lies in @Mi for some i , hence we can form a 2–sphere, S , by capping
off D0 with a disk in Mi (take the disk bounded by @D0 on @Mi and push in slightly).
That is, S is a 2–sphere which intersects @X.G/ in @D0 . If @D0 lay on @M1 , then
S would have to be nonseparating. But 2–spheres in a 3–ball are separating. Thus
@D0 must lie in @M2 . But then in @M2 , the disks nbhd.J1 [J2 [J3/\ @M2 must
lie on opposite sides of @D0 from the disks � 0

23
[ � 00

23
D nbhd.�23/ \ @M2 , as S
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is separating. Thus S can be isotoped to intersect nbhd.G/ in the curve gotten by
connecting the two disks � 0

23
, � 00

23
by a band d lying in @ nbhd.G/. See Figure 39.

We may view S as a 2–sphere which intersects G in only two points and separates

@D0

d J1

J2

J3


23

Figure 39

off a subarc b0
23

of b23 . Now b0
23

must be unknotted in the 3–ball bounded by S ,
otherwise deleting e1 would not give a planar graph. Hence, there exists a disk D in
the 3–ball bounded by S such that the boundary of D consists of the arc b0

23
and

an arc in � 0
23
[ � 00

23
[ d: Then D can be taken to be a disk, properly embedded in

X.G/ whose boundary is disjoint from J1[J2[J3 and whose boundary intersects

23 exactly once. Finally, as 
12; 
31 are isotopic to 
23 on the boundary of the solid
torus component of M �nbhd.J1[J2[J3/, @D intersects these curves algebraically
once. Furthermore, X.G/� nbhd.D/ is homeomorphic to X.G � 
23/, which is a
handlebody. Thus X.G/ is a handlebody.

3.7 Tetrahedral graph planarity

In the above model, each mathematical assumption about the planarity of the in trans
solution graph after deleting an edge corresponds to an experimental result. For the
economy of experiment, then, it is natural to ask how much information is necessary
to conclude the planarity of the graph. Recall that by collapsing the outside 2–sphere
to a vertex, a wagon wheel graph in B3 becomes a tetrahedral graph yG in S3 . We
discuss this issue of economy in the context of tetrahedral graphs and in the spirit of
Theorem 3.16 (see also Scharlemann [45], Gordon [22], Wu [57] and Robertson [40]).
In particular, Theorem 3.34 and Corollary 3.37 say that, in contrast to Theorem 3.16,
to check the planarity of a tetrahedral graph, one does not need to check the planarity
of all subgraphs. We end with examples showing that Corollary 3.37 is sharp.
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Theorem 3.34 Let yG be a tetrahedral graph embedded in S3 . Then yG is planar if
and only if

(1) the exterior of yG has compressible boundary; and

(2) there is an edge, �0 , of yG such that for any edge e ¤ �0 of yG , yG � e is planar.

Proof If yG is planar then clearly the two conditions hold. We prove the converse:
the two listed conditions on yG guarantee that yG is planar. Let � be the edge of yG
which does not share an endpoint with �0 . Let e1; e2; e3; e4 be the four edges of yG
other than �; �0 . Let di be the meridian disk corresponding to the edge ei in nbhd. yG/
and let mi D @di be the corresponding meridian curve on the boundary of X. yG/, the
exterior of yG .

Claim 3.35 X. yG/ is a handlebody.

Proof Pick a vertex, v , of yG not incident to �0 . Then removing a neighborhood of v
from S3 , yG becomes an in trans solution graph G in a 3–ball. Furthermore, X.G/ is
homeomorphic to X. yG/. The Claim now follows from Lemma 3.33.

Recall the following from [22].

Theorem 3.36 Let C be a set of nC 1 disjoint simple loops in the boundary of a
handlebody X of genus n, such that �.X I C0/ is a handlebody for all proper subsets C0
of C . Then [ C bounds a planar surface P in @X such that .X;P /Š .P � I;P � 0/,
where I D Œ0; 1�.

Set X D X. yG/ and C D fm1;m2;m3;m4g. Since yG � ei is planar for i D 1; : : : ; 4,
Theorem 3.36 implies that there is a planar surface P in X. yG/ whose boundary is
fm1;m2;m3;m4g and such that .X. yG/;P /Š .P�I;P�0/. Capping P�f1=2g with
the meridian disks fd1; d2; d3; d4g gives a 2–sphere yP in S3 disjoint from yG except
for a single point intersection with each of the edges e1; e2; e3; e4 . Let yG� yPDG1[G2 .
Labeling the edges as in yG , we take G1 with edges f�; e1; e2; e3; e4g and G2 with
edges f�0; e1; e2; e3; e4g. Furthermore, we may label so that e1; e2 share a vertex in
G1 and e2; e4 share a vertex in G2 . See Figure 40.

Let N1 D nbhd.G1/ and N2 D nbhd.G2/. Then nbhd. yG/ is the union of N1 and N2

along the meridian disks fd1; d2; d3; d4g. Now the pair .Ni ;[dj /D .Fi�I;
S
˛

j
i � I/

where i 2 f1; 2g, j 2 f1; 2; 3; 4g and where each Fi is a disk, each ˛j
i is an arc in

@Fi . Each Gi can be taken to lie in Fi � f1=2g. Write S3 D B1[ yP B2 where the Bi

are 3–balls. Because .X. yG/;P /Š .P � I;P � 0/, we may extend Fi � f1=2g to a
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properly embedded disk F 0i in Bi containing Gi . By a proper choice of the initial Fi

we may assume that F 0i � .[˛
j
i / is a union of four arcs ˇj

i , labelled as in Figure 41.

In particular,

� ˇ1
1

is isotopic to e1 [ e2 and ˇ3
1

is isotopic to e3 [ e4 in B1 (keeping the
endpoints in [dj on @B1 D

yP ), and

� ˇ1
2

is isotopic to e1 [ e3 and ˇ3
2

is isotopic to e2 [ e4 in B2 (keeping the
endpoints in [dj on @B1 D

yP ).

The boundary of F 0
1

frames the 4–punctured sphere P � yP . This allows us to assign
a rational number slope on properly embedded arcs in P (up to proper isotopy in P ).
We take ˇ1

1
; ˇ3

1
to have slope 0=1 and ˇ2

1
; ˇ4

1
to have slope 1=0. It follows that ˇ1

2
; ˇ3

2

must have slope 1=n: otherwise the edges e1; e2; e3; e4 of yG will form a nontrivial
2–bridge knot, but we are assuming that yG � � is planar.
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By rechoosing F1 we may assume that ˇ2
1

is ˇ3
2

and that ˇ4
1

is ˇ1
2

. Then rechoosing
F2 (by twisting along the disk disjoint from ˇ1

2
[ ˇ3

2
in B2 ), we may further take

ˇ2
2

to be ˇ1
1

and ˇ4
2

to be ˇ3
1

. Then F 0
1
[ F 0

2
is a 2–sphere in S3 containing yG

(Alternatively, instead of rechoosing F2 , after rechoosing F1 so that ˇ2
1
D ˇ3

2
and

ˇ4
1
D ˇ1

2
, we can extend F1 to a disk containing yG� �0 . Thus yG� �0 is planar and yG

is planar by Theorem 3.16). Thus we have proved Theorem 3.34.

We will now use Theorem 3.34 to prove Corollary 3.37.

Corollary 3.37 Suppose yG is a tetrahedral graph embedded in S3 with the following
properties:

(1) There exists three edges �1 , �2 , �3 such that yG � �i is planar.

(2) The three edges �1 , �2 , �3 share a common vertex.

(3) There exists two additional edges, �4 and �5 such that X. yG��4/ and X. yG��5/

have compressible boundary.

(4) X. yG/ has compressible boundary.

Then yG is planar.

Proof By Lemma 3.17, yG � �4 and yG � �5 are planar. Thus by Theorem 3.34, yG is
planar.

We finish this section with examples that show that if any single hypothesis of Corollary
3.37 is dropped then its conclusion, that yG is planar, may not hold. The tetrahedral
graph in Figure 35 is not planar as yG� e2� b31 is knotted. However, yG� e1 , yG� e3 ,
yG�b23 , and yG�b12 are all planar. Furthermore, X. yG/ is a handlebody as the edge b23

can be isotoped onto a neighborhood of yG�b23 . (Alternatively, we can determine that
X. yG/ is a handlebody by removing the vertex adjacent to the en ’s, creating a wagon
wheel graph, G , which carries a rational tangle T . Since X. yG/ D X.G/ D X.T /
and T is rational, X. yG/ is a handlebody.) Thus X. yG/ has compressible boundary.
X. yG � b31/, and X. yG � e2/ also have compressible boundary. Thus properties (1),
(3), (4) in Corollary 3.37 hold, but property 2 does not hold.

In Figure 34, yG�e1 , yG�b12 , yG�b31 , yG�b23 are all planar graphs. The edges e1 , b12 ,
and b31 share a common vertex. Since yG�b23 is planar, X. yG�b23/ has compressible
boundary. Removing the vertex adjacent to the en ’s in yG results in a wagon wheel
graph, G , which carries a rational tangle. By Lemma 3.19 X.G/ is a handlebody,
and thus X. yG/ has compressible boundary. On the other hand, G � e2 , G � e3
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carry tangles which are nontrivial disk sums that do not have compressible boundary
(by Lemma 3.3 of [58]). By Lemma 3.19, neither X.G � e2/ nor X.G � e3/ have
compressible boundary. Hence neither X. yG � e2/ nor X. yG � e3/ have compressible
boundary. In particular, yG is not planar. Thus the tetrahedral graph in Figure 34 satisfies
properties (1), (2), (4) in Corollary 3.37, but only satisfies half of property 3 (X. yG�b23/

has compressible boundary, but there does not exist a fifth such edge).

Note that the tangle, T , in Figure 42 is carried by a nonplanar wagon wheel graph, G .
If G were planar, then T would be the PJH tangle by Lemmas 3.12 and 3.2. To see

Figure 42

that T is not the PJH tangle, cap off these tangles by arcs along the tangle circle that
are complementary to the ci (ie the xij of Figure 13) to form 3 component links. These
two 3–component links are not isotopic. For example, they have different hyperbolic
volumes as computed by SnapPea. Let yG be the tetrahedral graph corresponding to G .
Every subgraph of yG is planar. Hence conditions (1), (2), (3) of Corollary 3.37 hold,
but X. yG/ does not have compressible boundary (by Theorem 3.16).

4 If T is not the PJH tangle, then Cr.T / � 8 up to free
isotopy

Definition 4.1 Two 3–tangles T1; T2 are freely isotopic if there is an isotopy of the
3–ball, which is not necessarily fixed on its boundary, taking T1 to T2 .

In the last section we showed that if a solution tangle is split or has two parallel strands,
then it must be the PJH tangle. Here we show that if a tangle can be freely isotoped
to have fewer than eight crossings, then it is either split or has two parallel strands.
Hence a solution tangle which can be freely isotoped to have fewer than eight crossings
must be the PJH tangle (Corollary 4.8). As a rational tangle is one which can be
freely isotoped to have no crossings, one can think of Corollary 4.8 as a generalization
of the result (Corollary 3.32) that the only rational solution tangle is the PJH tangle.
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Corollary 4.8 also gives a lower bound on the crossing number of an exotic solution
tangle. Using the in trans deletion result, we will improve this lower bound in the next
section after imposing a normal framing on the tangle (working with tangle equivalence
rather than free isotopy).

Lemma 4.2 If one string of a 3–tangle T crosses the union of the other two strings at
most once, then T is split.

Proof If the string passes over the union, isotop the strand to the front hemisphere of
the tangle sphere, otherwise isotop to the back.

Definition 4.3 To a projection of a 3–string tangle T we associate the 4–valent graph
�.T /, that is obtained by placing a vertex at each crossing. If T is not split, we label
in sequence e1; : : : ; e6 the distinct edges which are incident to the tangle circle. Let
v1; : : : ; v6 be the vertices of �.T / which are endpoints of e1; : : : ; e6 as in Figure 43.

e1

e3

v1

v3

Figure 43

Lemma 4.4 Assume T is not split. If vi D vj for some i ¤ j , then the crossing
number of its projection can be reduced by free isotopy.

Proof Assume vi D vj with i ¤ j . If ei ; ej are opposing at vi , then ei [ ej is a
string of T intersecting the other strings exactly once. By Lemma 4.2, T is split. So
we assume ei ; ej are not opposing at vi , as in Figure 44.

ei ej

vi D vj

Figure 44

But then we can untwist ei ; ej to reduce the crossing number.
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Definition 4.5 If T is not split, let fi be the face of �.T / containing ei ; eiC1 .

Lemma 4.6 Assume T is not split. No two edges of fi correspond to the same edge
of �.T /. If two vertices of fi correspond to the same vertex of �.T /, then the crossing
number of the projection can be reduced by an isotopy fixed on the boundary. Finally, if
vj is incident to fi , then j 2 fi; i C 1g or a crossing can be reduced by a free isotopy.

Proof Assume that two edges of fi correspond to the same edge of �.T / (Figure 45).
Then there would be a circle in the interior of the tangle circle intersecting the edge
once. Then a string of T intersects this circle exactly once contradicting the Jordan
Curve Theorem.

fi

Figure 45

fi

Figure 46

Similarly, if two vertices of fi correspond to the same vertex, v , of �.T /, there would
be a circle intersecting �.T / only in v (Figure 46). This would give rise to a crossing
that could be reduced by an isotopy rel @B3 .

Now assume vj is incident to fi with j ¤ i , i C 1 (Figure 47). Then ej … fi for
otherwise T would be split. Thus ej lies in the exterior of fi . But now we can untwist

ei fi
eiC1

ej

vj

Figure 47




ej

fi

H)

Figure 48

the crossing at vj by bringing ej into fi (Figure 48).

Theorem 4.7 If T is a 3–string tangle which can be freely isotoped to a projection
with at most seven crossings, then either T is split or has two parallel strands.
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Proof Note that T being split or having parallel strands is invariant under free isotopy.
Freely isotop T to a minimal projection with � 7 crossings and let �.T / be the
corresponding graph. Assume T is not split. By Lemma 4.4, �.T / has at least 6
vertices (thus T has at least 6 crossings). If the six vi are the only vertices incident toS

i fi , then (Lemma 4.6) we must have Figure 49.

Figure 49

v
f1

Figure 50

But then T has a closed curve, a contradiction.

Thus �.T / must have another vertex v lying on f1 , say, which is not a vi . Since T has
at most 7 crossings, there is exactly one such v and we have Figure 50. Enumerating
the possibilities, we see there are nine cases, six of which are shown in Figure 51, while
the remaining three can be obtained from the top three via reflection:

Figure 51

Note in each case we see two parallel strands (since we assumed T is not split). For
example, see Figure 52.
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D

free
isotopy

D

free
isotopy

H) parallel strands

Figure 52

Theorem 4.7 and Corollary 3.32 imply the following:

Corollary 4.8 Assume T is a solution tangle. If T can be freely isotoped to a
projection with at most seven crossings, then T is the PJH tangle.

5 If T is not the PJH tangle, then T has at least 10 crossings

Because the three DNA segments captured by the Mu transpososome in [38] are
relatively short (50, 175 and 190 base pairs), one can argue that any projection of the
transpososome must have few crossings. Let T be an in trans solution tangle – a tangle
satisfying both the in cis and the in trans deletion experiments. In this section we show
that if T is not the PJH tangle (Figure 13), then T must be complicated, as measured
by its minimal crossing number:

Proposition 5.1 Let T be an in trans solution tangle. If T has a projection with fewer
than 10 crossings, then T is the PJH tangle.

In this section, we are interested in crossing number up to tangle equivalence, that is,
up to isotopy of the tangle fixed on the boundary. So we must fix a framing for our in
trans solution tangle. We take that of Proposition 2.5, the normal form.

Remark As pointed out in Section 2, one goes from an in trans solution tangle in
normal framing to one in the framing of [38] by adding one left-handed twist at c2 .
Thus, it formally follows from Proposition 5.1 that if an in trans solution tangle under
the PJH framing has fewer than 9 crossings, it must be the solution found in [38]
(Figure 1).
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The proof of Proposition 5.1 breaks down into checking cases of possible tangle
diagrams. We focus on the fact that s12[ s13 D T � s23 is the �1=2 tangle. Lemma
5.2 shows that each pair of strings must cross at least twice. Hence if an in trans solution
tangle has less than 10 crossings, s12 [ s13 contains at most 5 crossings. Theorems
5.5, 5.8, 5.13 and 5.15 handle the cases when s12[ s13 = 2, 3, 4, 5, respectively. In
each case it is shown that an in trans solution tangle with less than 10 crossings can be
isotoped to a tangle with 7 crossings. By Corollary 4.8, such a tangle is the PJH tangle.
This section holds more generally under normal framing when the in trans deletion
product is the (2,2) torus link while the remaining deletion products are .2;Li/ torus
links where Li � 4.

Lemma 5.2 Let T be a solution tangle. In any projection of T , jsij \ sik j � 2.

Proof Assume not. Then jsij \ sik j D 0. But then `k.sij [ xij ; sik [ xik/ D 0,
contradicting Lemma 2.3.

Let T be an in trans solution tangle with crossing number less than 10. We assume that
s23 is the enhancer strand. To simplify notation we set e D s23 , ˛2 D s12 , ˛3 D s13 .
Recall that T � e D ˛2[˛3 is the �1=2–tangle.

Assumption 5.3 T has a projection, in normal form (see the beginning of Section 2),
with at most nine crossings. Furthermore, among all such projections, take ˛2[˛3 to
have the fewest crossings.

Remark We will often blur the distinction between e , ˛2 , ˛3 and their projections.

We will first prove in Theorem 5.5 that Proposition 5.1 holds when ˛2[˛3 has exactly
two crossings. In this case let R1;R2;R3 be the closures of the complementary regions
of ˛2 [ ˛3 in Figure 53. Note all figures in this section have been rotated by 90

e R1 R2

R3

˛2

˛3

Figure 53

degrees, and thus the tangle T � e D�1=2 is displayed as an integral 2 tangle.
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Lemma 5.4 If e crosses R1\ .˛2[˛3/ fewer than four times then T can be freely
isotoped to eliminate two crossings. Furthermore if e\R1 contains only four crossings
of T then we can reduce T by two crossings unless e \R1 is as pictured in Figure
54 (up to symmetry).

(a) (b) (c)

Figure 54

Proof Assume e intersects R1\ .˛2[˛3/ in fewer than four crossings. By Lemma
5.2, e must cross R1\ .˛2[˛3/ exactly twice. Then R1 writes T [ c1 as a disk sum.
As T [ c1 is a rational 2–string tangle, e\R1 must be an integral summand [35; 20].
But then we can reduce the crossing number by at least two under a free isotopy by
removing the crossings in the integral tangle e\R1 as well as the two crossings where
e intersects R1 \ .˛2 [ ˛3/. See Figure 55. Thus we assume e \R1 must have at

Figure 55

least 4 crossings in R1 with ˛2 [ ˛3 . Assume these are the only crossings of T in
R1 . Then there are no crossings in int R1 . This allows for two crossing reductions
except in the cases pictured in Figure 54. See Figure 56.

Theorem 5.5 Let T be an in trans solution tangle satisfying Assumption 5.3. Under
this projection, assume ˛2 [ ˛3 has exactly two crossings. Then T can be freely
isotoped to have at most seven crossings.
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Figure 56

Proof Let R1;R2;R3 be the closures of the complementary regions of ˛2[˛3 in
Figure 53.

We divide the proof of Theorem 5.5 into two cases.

Case I e has 4 intersections in R1 .

Case II e has at least 5 intersections in R1 .

Proof of Case I R1 contains exactly 4 crossings (involving e ). In this case, there are
3 possible configurations up to symmetry (shown in Figure 54) that do not immediately
allow a crossing reduction by two in R1 .

Since there are at most 9 crossings, if e intersects R2 then e\R2 must contribute
exactly 2 crossings and e \R3 must be empty. But this allows a reduction of two
crossings: In case (a) and (b) in Figure 54, the two crossing involving ˛2 and ˛3 can
be removed as shown in Figure 57. In case (c) one reduction comes from ˛1\˛2 , the

Figure 57

other from e\ .˛2[˛3/ (Figure 58).

Thus we take e disjoint from R2 , and we must have (a) or (b) in Figure 59. But (a)
gives two crossing reductions and (b) contradicts Lemma 5.2.

Proof of Case II Because e must pick up at least two crossings in R2[R3 , (else we
can reduce by two crossings), e must have exactly 4 crossings with .˛2 [ ˛3/\R1

and exactly 1 self-crossing inside R1 . This accounts for nine crossings. For Subcases 1
and 2, we assume the two crossings are with R3 – if not, a similar argument works

Algebraic & Geometric Topology, Volume 9 (2009)



2296 Isabel K Darcy, John Luecke and Mariel Vazquez

Figure 58

(a) (b)

Figure 59

if the two crossings are with R2 by using the fact that the crossing at R3 would be
reducible.

Let ı2; ı3 (in ˛2; ˛3 , resp.) be the arc components of .˛2[˛3� .˛2\˛3//\R1 .

Subcase 1 jı2\ ej D 2D jı3\ ej (intersection here refers to the projection).

Then we may assume we have the situation in Figure 60. Since int R1 has exactly one

ı2

ı3

Figure 60

crossing, the possible cases are shown in Figure 61. In each case we can reduce two
crossings.

Subcase 2 jı2\ej D 3, jı3\ej D 1 (case when jı2\ej D 1, jı3\ej D 3 is similar).

We have two possibilities, shown in Figure 62.

Recall that R1 can have only one more crossing in its interior. If this crossing can be
reduced, we can reduce two more crossings by Case 1. Hence, we assume that this
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Figure 61

(a) (b)

Figure 62

crossing cannot be reduced. Thus we see that both of the cases in Figure 62 allow a
reduction of two crossings, as in Figure 63.

(a) or

(b) or

Figure 63

Subcase 3 jı2\ej D 4, jı3\ej D 0 (case when jı2\ej D 0, jı3\ej D 4 is similar).

Recall je\ .R2[R3/j D 2. If je\R3j D 2, then je\˛3j< 2, contradicting Lemma
5.2. If je\R2j D 2, then we can remove the two crossings of ˛2\˛3 .

Subcases (1)–(3) exhaust all possibilities, showing a reduction in crossing number by
two in Case II.

This finishes the proof of Theorem 5.5.

Algebraic & Geometric Topology, Volume 9 (2009)



2298 Isabel K Darcy, John Luecke and Mariel Vazquez

Definition 5.6 ˛i has a trivial self-intersection with respect to j̨ if ˛i has a self-
intersection such that the subarc of ˛i connecting the double points is disjoint from

j̨ , fi; j g D f2; 3g.

Lemma 5.7 If T is an in trans solution tangle satisfying Assumption 5.3 and ˛i has
a trivial self-intersection with respect to j̨ for fi; j g D f2; 3g, then we can reduce T
by two crossings.

Proof Assume ˛2 has a trivial self-intersection with respect to ˛3 , and let ı � ˛2 be
the subarc connecting its double points. As j˛2\˛3j is minimal, Figure 64 shows that
we may assume jı\ ej � 4.

˛2

e
H)

˛2

e

Figure 64

By Lemma 5.2, j˛2 \ ˛3j � 2 and je \ ˛3j � 2. Thus jı \ ej D 4, j˛2 \ ˛3j D 2,
je \ ˛3j D 2 and ˛2 has a self crossing, accounting for all nine crossings. Let
˛0

2
D ˛2 � int.ı/. Let R1;R2;R3 be the closures of the complementary regions of

˛0
2
[ ˛3 as in Figure 53. Then je \ @R1j � 2 and je \ .@R2 [ @R3/j � 2, otherwise

we can reduce by two the number of crossings. Thus je \ .˛2 [ ˛3/j � 8. Because
j˛2\˛3j � 2, we have too many crossings.

Theorem 5.8 Let T be an in trans solution tangle satisfying Assumption 5.3. If
˛2 [ ˛3 contributes three crossings to T (including self-crossings), then T can be
freely isotoped to have at most seven crossings.

Proof Let T be such an in trans solution tangle. Then ˛3 , say, must have a self-
intersection which we may assume is not trivial with respect to ˛2 . Thus ˛2[˛3 must
be as in Figure 65, with R1;R2 complementary components of ˛2[˛3 , R1 containing
the endpoints of e , and ı1; ı2; : : : ; ı8 the arc components of ˛2[˛3� .˛2\˛3/.

Claim 5.9 If je\ .R1\ .˛2[˛3//j< 4, then T can be reduced by two crossings.

Proof We may assume that je\ .R1\ .˛2[˛3//j D 2. Then a copy of @R1 writes
T [ c1 as a disk sum. Since T [ c1 is a rational tangle, one of the summands must be
integral with respect to to the disk. This must be the left-hand side, R1\ e . After a
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ı1 ı2

ı3

ı4

ı5

ı6ı7

ı8

R1

R2

Figure 65

free isotopy we may take this to be 0=1. Hence we can take e to have no self-crossings
in R1 .

Let ı1; ı2 be as pictured in Figure 65. If je\ ı1j D 2, then we can freely isotop away
two crossings. If je \ ı1j D 1, then je \ ı2j � 3 (else we can reduce two crossings
in R2/. Since je\ ˛2j � 2 by Lemma 5.2, je\ ˛2j must be two, accounting for all
intersections. That is, if je\ ı1j D 1 we are as in Figure 66, where we can reduce by
two crossings. Thus we assume e is disjoint from ı1 .

ı1

Figure 66

Similarly we show that e is disjoint from ı3 (see Figure 65). If je\ ı3j D 2, then we
can reduce by two crossings in R1 . So assume je \ ı3j D 1. If e \ ı2 is empty we
can reduce two crossings (the self-intersection and e\ ı3 ), so je\ ı2j � 2. The only
possibility is shown now in Figure 67, which we can reduce by two crossings.

So we assume e is disjoint from arcs ı1 and ı3 in @R1 . See Figure 68.

Now je\˛2j � 2 by Lemma 5.2, and je\ ı2j � 2 (else we can reduce two crossings).
This accounts for all nine crossings. But we must also have a crossing between e and
ı4[ ı5 .

Claim 5.10 e must intersect ı1 .
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Figure 67

˛2

ı2

ı4

ı5

Figure 68

Proof By Claim 5.9, we may assume je \ .R1 \ .˛1 [ ˛3//j � 4. Label the arc
components of ˛2[˛3� .˛2\˛3/ as in Figure 65. Assume e is disjoint from ı1 . It
cannot also be disjoint from ı2 , otherwise we can eliminate the crossing at ı1\ ı2 and
argue as in Case I of Theorem 5.5. Thus e must intersect ı2 exactly twice, thereby
accounting for all crossings. But the crossings of e at ı2 lead to additional crossings.

Claim 5.11 T can be reduced by two crossings if je\ .R1\ .˛2[˛3//j< 6.

Proof By Claim 5.9, we may assume je\ .R1\ .˛1[˛3//j D 4.

Subclaim 5.12 e\ .ı6[ ı7/ is nonempty.

Proof Suppose e \ .ı6 [ ı7/ is empty. Then je \ ı3j D 2 by Lemma 5.2. If e

crosses ı5 then it must cross twice, accounting for all crossings of T . Then there are
no crossings in int R1 . Since je \ ı1j > 0 and je \ ı3j D 2, we have two crossing
reductions in R1 . Thus e is disjoint from ı5 .

Similarly e must not cross ı2 . If je\ı2j ¤ 0, then there can be no crossings in int R1 .
Since je \ ı1j > 0 and je \ ı3j D 2, we see the crossing reductions for T . Since e

does not cross ı2 , but does cross ı1 , e must cross ı1 twice. Hence e also does not
cross ı8 .

Thus we assume e does not cross ı2 , ı5 , ı6 , ı7 , or ı8 . As the 2–string tangle ˛2; ˛3

forms a two crossing tangle, we see that the crossings between ˛2 and ˛3 may be
reduced in T .

Assume first that e crosses ı7 . Then e must cross ı5 [ ı7 twice, accounting for all
crossings. Then e does not cross ı2 and crosses ı1 exactly two times. These crossings
can be reduced.

Thus e crosses ı6 . If e does not cross ı2 then we again see two crossings at ı1 that
can be reduced. If e crosses ı2 then it crosses it once, accounting for all crossings.
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Thus e crosses each of ı1 and ı3 an odd number of times and has no self-crossings in
int R1 . Enumerating the possibilities one sees that we can reduce the crossings of e at
ı3; ı6 or at ı1; ı2 .

This finishes the proof of Claim 5.11.

By Claim 5.11 we may assume je\R1\.˛2[˛3/jD 6. This accounts for all crossings
of T . By Lemma 5.2, je \ ı3j � 2. As all crossings are accounted for, two of the
crossings of e with ı1[ı3 can be eliminated by a free isotopy.

Thus we have proved Theorem 5.8.

Theorem 5.13 Let T be an in trans solution tangle satisfying Assumption 5.3. If
˛2[˛3 has four crossings (including self-crossings), then there is a free isotopy of T
reducing it to at most seven crossings.

Proof Assume T is as hypothesized. By Lemma 5.7, ˛2 [ ˛3 has no trivial loops
and we enumerate the possibilities for ˛2[˛3 in Figure 69 where R1 is the closure
of the (planar) complementary region of ˛1[˛2 containing the ends of e and where
ı1; ı2 are the extremal arc components of ˛2[˛3� .˛2\˛3/ in R1 .

(a) (b)

(c) (d) (e)

ı1

R1
ı2

R2

ı1

R1

ı2

ı1

R1

ı2

R2

ı1

R1

ı2
R2

ı1

R1

ı2
R2

Figure 69

Lemma 5.14 With T as in the hypothesis of Theorem 5.13, if e contains a self-
crossing then that self-crossing appears in R1 .
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Proof Assume a self-crossing appears in a complementary region R¤R1 of ˛2[˛3 .
Since j˛2\˛3j D 4, je\˛2j D 2 je\˛3j D 2, e can have at most one self-crossing.
Hence R has exactly 5 crossings involving e : four from e crossing ˛2[˛3 and one
self-crossing. By Lemma 5.2, e must cross ˛2 twice and ˛3 twice in R. Exactly one
pair of these crossings must be in a component of ˛2 [ ˛3 � .˛2 \ ˛3/ shared with
R1 (all crossings are accounted for). If this component is ı1 or ı2 we may reduce
by two crossings. So we assume this pair is in a different component. Looking at the
possibilities of Figure 69, we immediately rule out (a) and (b). In cases (c), (d) and
(e), we can reduce two crossings of ˛2[˛3 since we have accounted for all crossings
(for case (d), note e must cross each of ˛2 and ˛3 twice in R).

We continue the proof of Theorem 5.13.

Case I e crosses R1\ .˛2[˛3/ exactly twice.

If both crossings are in ı1 [ ı2 , then we can reduce by two crossings. This rules
out configurations (a),(b) of Figure 69. If T has nine crossings, then one must be a
self-crossing. By Lemma 5.14 it must occur in R1 and hence can be untwisted to
reduce the crossing number by one. Thus we assume T has only 8 crossings. Hence e

must be disjoint from ı1[ ı2 . In cases (c), (d), and (e), e must then be disjoint from
the region labelled R2 . But then we can reduce the crossing at R2 , thus completing
Case I.

Case II e crosses R1\ .˛2[˛3/ four times.

If T has nine crossings then one must be a self-crossing of e . By Lemma 5.14, the
self-crossing occurs in R1 . Thus, whether T has eight or nine crossings, all crossings
of T involving e lie in R1 . By Lemma 5.2, two of the crossings of e are with ˛2 and
two with ˛3 . Looking at Figure 69, we see that e must have exactly two crossings with
ıi for i D 1 or 2 (in cases (c) and (e) we could otherwise reduce by two crossings).
Either we can reduce by two crossings or near ıi we have Figure 70. This writes T [c1

ıi

Figure 70

as a disk sum. As T [ c1 is integral with respect to the disk slope, each summand is
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integral with respect to to the disk slope. But this means we can eliminate the crossings
at ıi by a free isotopy of T . This completes the proof of Case II and hence of Theorem
5.13.

Theorem 5.15 Let T be an in trans solution tangle satisfying Assumption 5.3. If
˛2[˛3 has five crossings (including self-crossings), then there is a free isotopy of T
reducing it to at most seven crossings.

Proof Let T be such a tangle. Without loss of generality assume ˛2 has at most one
self-intersection. By Lemma 5.2 e must cross each of ˛2; ˛3 exactly twice. Since e

can contribute at most 4 crossings this accounts for all crossings coming from e . In
particular, e has no self-crossings.

Case I ˛2 crosses ˛3 twice.

We have three possibilities as shown in Figure 71 (Lemma 5.7), where R1 is the
complementary region of ˛2 [ ˛3 containing the ends of e (` is discussed below).
In case (c) we may reduce the crossings of T by two (T has no local knots, hence

ı1

ı2

R1

`

ı1

R1
` ı1

R1

ı2

(a) (b) (c)

Figure 71

je\ .ı1[ ı2/j D 2). So we restrict our attention to (a) and (b) and consider the arc `
in Figure 71. Since je \ ˛2j D 2, ` intersects e twice. Hence e [ ` is as in Figure
72, where e0; e00 are components of e � `. Let `0 be the arc pictured in Figure 72,
consisting of e00 and part of `.

Claim 5.16 j`0\˛3j D 2.

Proof j`0 \ ˛3j is even and at least 2, since the endpoints of ˛3 are below `0 . If
j`0\˛3j � 4, then je00\˛3j D 2D j.`0� e00/\˛3j. Going back to Figure 71 we see
we can eliminate the crossings of e and ˛2 .
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`

`0

e0

e00

Figure 72

By Claim 5.16, `0 writes T [ c2 as a disk sum. By Lemma 2.1, if T is a normal form
solution tangle, T [ c2 is the -1=4 tangle. As the crossing number of the summand
below `0 is at most 3, the tangle below `0 is integral with respect to the disk slope –
allowing us to eliminate the crossings there. Thus there is at most one crossing below
`0 . Now we can eliminate two crossings from T , where ˛3 crosses e00 or ˛2 near
where ˛3 crosses `0 . So we have finished Case I.

Case II ˛2 crosses ˛3 four times.

Without loss of generality assume ˛2 has no self-intersections and ˛3 only one. Then
˛2[˛3 must be one of the cases in Figure 73.

Claim 5.17 je\ .ı1[ ı2/j � 1.

Proof Assume je \ .ı1 [ ı2/j � 2. If je \R1 \ .˛2 [ ˛3/j � 2, then the crossings
at ı1 [ ı2 can be eliminated. So assume je \R1 \ .˛2 [ ˛3/j D 4, accounting for
all crossings of e . Then je \ ıi j D 2 for some i D 1; 2, and we can reduce these
crossings.

Claim 5.17 eliminates cases (1a), (2a), (3a), (4a). If je\ ıi j D 1 then it must give rise
to a reducible crossing in R1 . In cases (2b), (3b), (4b) we could then reduce also the
crossing at R2 . In these cases then we assume e disjoint from ı1[ ı2 . By inspection
we now see we can reduce by two crossings .je\ .˛2[˛3/j D 4/.

We are left with (1b), (5a) and (5b). If je\ı2j D 1, then we can eliminate two crossings
at e\R2 . If je\ ı1j D 1, then we can eliminate this crossing and the self-crossing
of ˛3 . With je \ ˛2j D 2 D je \ ˛3j and e \ .ı1 [ ı2/ empty, we see that in all
possibilities we can eliminate two crossings from T .

Thus we have finished the proof of Theorem 5.15.
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ı1

R1

ı2

ı1

R1

ı2

ı1

R1

ı2

ı1

R1

ı2

R2

ı1

R1

ı2

ı1

R1

ı2

R2

ı1

R1

ı2

ı1

R1

ı2

R2

ı1

R1

ı2 R2

ı1

R1

ı2
R2

(1a)

(2a)

(3a)

(4a)

(5a)

(1b)

(2b)

(3b)

(4b)

(5b)

Figure 73
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