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Quasi-convexity and shrinkwrapping

HOSSEIN NAMAZI

We extend a result of Minsky to show that, for a map of a surface to a hyperbolic
3–manifold, which is 2–incompressible rel a geodesic link with a definite tube radius,
the set of noncontractible simple loops with bounded length representatives is quasi-
convex in the complex of curves of the surface. We also show how wide product
regions can be used to find a geodesic link with a definite tube radius with respect to
which a map is 2–incompressible.

57M50; 57N10, 30F40

1 Introduction

Suppose S is a closed orientable surface of genus � 2. The complex of curves of S ,
denoted by C.S/, is a complex whose vertices are homotopy classes of noncontractible
simple loops on S . Two vertices are connected by an edge if they have disjoint
representatives on the surface. Using this we endow C.S/ with a geodesic metric
where the length of each edge is one. One of our motivations in this article is the
following question:

Question Given a surface S , do there exist constants B;K > 0 such that, for every
irreducible representation �W �1.S/! PSL2.C/, the set C.B; �/ is a K–quasi-convex
subset of C.S/? Here C.B; �/� C.S/ denotes the homotopy classes of simple loops
˛ on S , where the translation length of �.˛/ is at most B .

Recall that for a geodesic metric space X , a subset Y �X is K–quasi-convex if for
every two points p; q 2 Y , every geodesic connecting p and q is contained in the
K–neighborhood of Y . Also note that, even though a closed curve ˛ only identifies a
conjugacy class in �1.S/, it makes sense to speak of the translation length of �.˛/
because the translation length stays invariant under conjugacy.

We do not know any case where the answer to the above question is negative. Our result
lies somewhere between two cases where partial affirmative answers are known. These
results have been significant in relating the topology and geometry of 3–manifolds
to the combinatorics of curves on a surface. The first result is a theorem of Minsky
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[16] which has been a central theme in the construction of models for hyperbolic
3–manifolds and the proof of Thurston’s Ending Lamination Conjecture by Brock,
Canary and Minsky [15; 2]. Suppose j W S !N is a �1 –injective map from a closed
orientable surface S of genus > 1 into the hyperbolic 3–manifold N and assume
C.B; j / denotes the homotopy classes of noncontractible simple loops ˛ where j .˛/

has a representative of length � B in N . For B large enough depending on �.S/,
the set C.B; j / is quasi-convex in the complex of curves of S , with a quasi-convexity
constant that depends only on �.S/ and B .

The second result is more topological and considers the case when M is a compact
3–manifold and S is a compressible component of @M . Then Masur and Minsky [13]
show that the homotopy classes of noncontractible simple loops on S which are
compressible in M form a quasi-convex subset of the complex of curves of S . Here
the quasi-convexity constant depends only on �.S/. In particular for every faithful
representation of �1.M /, if we let � be the representation of �1.S/ given by compo-
sition with the homomorphism induced by the inclusion S ,!M , the set C.B; �/ is
quasi-convex for B D 0. Note that, in contrast to the previous mentioned result, in this
case the representation is not faithful.

The above question has been motivated mostly by the first result and the major role that it
plays in the study and description of the geometry of hyperbolic 3–manifolds. Complete
or partial answers to the question then become important steps in understanding how
many of these results it is possiblle to carry out in a wider setting. Also compare with
work of Bowditch in [1], where he considers “type preserving” representations of the
fundamental group of a punctured torus. Note that, for the punctured torus, even though
the surface is not closed, we can define the complex of curves by letting the vertices be
the homotopy classes of nonperipheral noncontractible simple loops and by connecting
a pair of vertices if they have representatives that intersect once. In this case, it is easy
to see that this complex is nothing other than the Farey graph. In [1], it is shown that
for a type preserving representation, the set C.B; j / gives a connected subset of the
Farey graph. In this case, Bowditch’s argument can be used to show that C.B; j / is
also 1–quasi-convex.

We extend Minsky’s result in [16] by replacing the condition that j is �1 –injective with
a weaker condition. Given a hyperbolic 3–manifold N , we say a geodesic link � �N

is �–separated for � > 0 if � has an embedded tubular neighborhood of radius �.
Suppose N has no parabolics, S is orientable and j W S ! N is 2–incompressible
with respect to an �–separated geodesic link � � N . By 2–incompressibility of
j (in the case S is a closed surface and N has no parabolics) we mean it is �1 –
injective as a map to N n� and the image of a noncontractible loop cannot be freely
homotopic to a (multiplied) meridian of a component of � . Finally for a loop 
 on S ,
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a representative in N n� is a closed curve that is freely homotopic to j .
 / in N n� .
The set C.B; j /� C.S/ consists of noncontractible simple loops with a representative
of length � B in N n� .

Theorem 1.1 Suppose N is an oriented hyperbolic 3–manifold, � � N is an �–
separated geodesic link and j W S ! N is 2–incompressible rel � . Then for B

sufficiently large, the set C.B; j / is K–quasi-convex for a constant K that depends
only on �.S/; � and B .

This is obviously stronger than Minsky’s result. The assumption on the map j is
significantly weakened; in particular the map j does not have to be �1 -injective as
a map into N . Another advantage of our proof is that the constant K is made more
effective and is computable as a function of �.S/; � and B . In Theorem 4.7 we give
the precise statement of the above theorem, which also includes the more general cases
when S does not have to be closed and N may have parabolics.

In applications, one needs to guarantee existence of �–separated geodesic links which
make an embedded surface 2–incompressible. We show how one can obtain such
geodesic links by using “wide product regions.” We prove a stronger result that
provides the 2–incompressibility for the embedding of a compact 3–manifold in a
hyperbolic 3–manifold. Given a compact oriented 3–manifold M and an embedding
j W M ,!N into an oriented hyperbolic 3–manifold N without parabolics, we say j

is 2–incompressible rel a geodesic link � �N n j .M /, if j is �1 –injective as a map
from M to N n� and the image of a noncontractible loop in M is not homotopic
to a (multiplied) meridian of a component of � . Note that an embedding of a surface
is 2–incompressible if and only if the embedding of a collared neighborhood of the
surface is 2–incompressible.

Given a closed oriented surface E of genus � 2 and a hyperbolic 3–manifold N , a
product region is a submanifold of N homeomorphic to E � Œ0; 1�. A level surface of
the product region is a surface that is isotopic to E � f0g within the product region.
A “standard” product region is a product region in a doubly degenerate hyperbolic
structure on E � R which is enclosed by two surfaces in small neighborhoods of
“simplicial hyperbolic surfaces.” In a hyperbolic 3–manifold, when we speak about a
product region we mean a product region that is L–bilipschitz to a standard product
region; sometimes we refer to these as L–product regions. Given a constant �0 ,
typically smaller than the Margulis constant in dimension 3, we define the width of
a product region in N to be the distance in the product region between its boundary
components relative to the �0 –thin components of N . In Section 5, we define these
notions precisely and state a more general and rigorous version of the following theorem
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which generalizes the result to the case when we have a proper embedding of a pared
manifold and N is allowed to have parabolics.

Theorem 1.2 Let M be an irreducible compact 3–manifold with no torus boundaries
and j W M ! N an embedding into an oriented hyperbolic 3–manifold N without
parabolics such that the j –image of every component of @M is a level surface of a prod-
uct region with sufficiently large width. Then there exists a 0:025–separated geodesic
link � in the product regions of components of @M such that j is 2–incompressible
rel � .

Obviously the definition of the product region and width involve the constants L

and �0 ; the required width in the conclusion will be explicit and depends on L; � and
�.@M /. An important case of the above theorem is when M D S � I is a trivial
bundle over a surface. As we mentioned earlier, in this case 2–incompressibility of
an embedding of M is equivalent to the 2–incompressibility of the restriction of the
embedding to S � f0g. In this case we prove Theorem 5.3 which in particular implies:

Theorem 1.3 Suppose S is a closed oriented surface with negative Euler characteristic
and j W S !N is an embedding into an oriented hyperbolic 3–manifold N without
parabolics such that to each side j .S/ is either incompressible or is a level surface
of a product region with sufficiently large width. Then there exists a 0:025–separated
geodesic link in the product regions such that j .S/ is 2–incompressible rel � .

Note that since S and N are both oriented, j .S/ is two-sided. We say j .S/ is
incompressible to one side if for every map D2!N whose image intersects j .S/ in
the image of @D2 and the image of a regular neighborhood of @D2 is positioned on
that side, one can conclude that the image of @D2 is contractible on j .S/.

The main application of the above theorems is in construction of models and interpola-
tions. This is obviously an extension of similar application for Minsky’s quasi-convexity
results in [16; 15]. The advantage of our approach is to find local models by using
weaker assumptions.

In [17] our results here are used to obtain models for a class of hyperbolic structures on
handlebodies and then these models are used to construct nearly hyperbolic negatively
curved metrics on a class of closed 3–manifolds. In this application and also in the
joint work with Brock, Minsky and Souto [3], one is dealing with a map of a surface to
a hyperbolic 3–manifold which is not �1 –injective, for example when S is a Heegaard
surface; but using other features of the geometry, one can find �–separated geodesic
links which make the surface 2–incompressible. This is usually done by constructing
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wide product regions and applying Theorem 1.3. Then Theorem 1.1 can be used
successfully. A main ingredient of the proofs is a use of shrinkwrapped surfaces. The
original construction of such maps was developed in work of Calegari and Gabai in the
proof of the Tameness Conjecture. We, however, rely more on softer constructions of
such surfaces more similar to the work of Soma [19]. In fact, we go one step further
than Soma’s construction and use those arguments to construct simplicial hyperbolic
surfaces in the sense of Thurston and Canary. We explain the construction of these
surfaces and the main properties of them in the presence of �–separated geodesic
links in Section 3. Then in Section 4, we use these surfaces to prove a generalization
of Theorem 1.1. We basically reconstruct Minsky’s argument in [16] by using our
simplicial hyperbolic surfaces. We define a projection …j ;B from C.S/ to C.B; j /
and in Proposition 4.5, we prove that this projection behaves almost like the closest
point projection onto a convex set in a hyperbolic space. Then a standard argument
of Minsky proves the image C.B; j / is quasi-convex. We should point out that in the
proof of these properties in Lemma 4.4, we prove a weak version of Thurston’s Uniform
Injectivity Theorem for the simplicial hyperbolic surfaces. Our proof is an elementary
case of the proof of the Uniform Injectivity Theorem given in Namazi and Souto [18].
This is one of the main differences with Minsky’s proof, and the constructive nature of
this proof allows a computation of an upper bound for the quasi-convexity constant.

Finally in Section 5, we prove a generalized version of Theorem 1.3. We use the
wide product region to find a collection of geodesic closed curves with large pairwise
distance. Then we use an argument of Gabai [8] to deform these into a collection � in
a way that the length decreases and eventually, they have a definite tube radius. Then
by means of contradiction, we assume j W S !N is not 2–incompressible rel � and
perform compressions and surgeries that each intersect � at most once. When we are
done, the obtained surfaces S1; : : : ;Sr are 2–incompressible with respect to a subset
�1 of � that has not been involved in the process. When the number of components of
� is large enough then the number of components of �1 is also large, and we use this to
show for one of the surfaces Si , we must have �.Si/� �.S/ which is a contradiction.
This argument owes a huge debt to the argument of Calegari and Gabai in [5] and
follows their ideas. Finally we use this argument and a topological observation to prove
a generalized version of Theorem 1.2.

The author is grateful to Yair Minsky, David Gabai and Juan Souto for their encourage-
ment and very useful conversations regarding this work. He is also grateful to the referee
for many useful comments and in particular for pointing out some simplifications in the
construction of the simplicial hyperbolic surfaces and also for suggesting the current
generalized statement of Theorem 1.2.
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2 Preliminaries

2.1 Hyperbolic geometry

A hyperbolic manifold is a complete Riemannian manifold with constant sectional
curvature -1. In this article, we only consider hyperbolic manifolds with finitely
generated fundamental group. Recall that in a Riemannian manifold N , the in-
jectivity radius of N at a point x 2 N , denoted by injN .x/, is half the length of
the shortest (homotopically nontrivial) loop through x . We use the notation N��

(resp. N<�;N��;N>� ) to denote the set of points x 2N where injN .x/ � � (resp.
injN .x/<�; injN .x/� �; injN .x/>� ). By the Margulis lemma, there exists a universal
constant �M > 0, such that in a hyperbolic 3–manifold N and for every �� �M , every
component of N�� , the �–thin part of N , is either

(1) a rank two cusp: a horoball in H3 modulo a parabolic action of Z˚Z,

(2) a rank one cusp: a horoball in H3 modulo a parabolic action of Z or

(3) a solid torus neighborhood of a closed geodesic.

The components of type (1) and (2) above are called cusps of N and a component T

of type (3) is called a Margulis tube. A Margulis tube T is a solid torus neighborhood
of a closed geodesic 
T of length � � , which we call the core of the Margulis tube.
We also define N� to denote the manifold obtained by removing the interiors of all the
�–thin cusps of N .

Given � � �M and x;y 2N� , we define

d��
N
.x;y/

to be the minimum of lN .� \N��/ among rectifiable paths � �N� which connect
x and y . Here lN .� \N��/ is the total length of components of � \N�� and we
are insisting on considering only those paths that avoid the �–thin cusps of N , ie are
subsets of N� . This is different from the definition of d�� in most of the literature.
Sometime, we refer to d��

N
.x;y/ as the distance in N� between x and y rel N�� .

Similarly for A � N we define diamN �� .A/ to be the supremum of d��
N
.x;y/ for

points x;y 2 A \N� and for two subsets A1;A2 � N , d��
N
.A1;A2/ denotes the

infimum of d��
N
.x;y/ for points x 2A1\N�;y 2A2\N� .

We will need the following lemma in our arguments. It is an elementary application of
the fact that projection to a convex set in the hyperbolic space contracts distances by a
factor of cosh r where r is the distance to the convex set.
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Lemma 2.1 Let N be a hyperbolic 3–manifold and ˛ a homotopically nontrivial
closed curve in N and ˛� its geodesic representative. Then

cosh dN .˛; ˛
�/� lN .˛/= lN .˛

�/;

where lN .˛/ is the length of ˛ as a curve in N . Also given � > 0

cosh d��
N
.˛; ˛�/� lN .˛/=�;

where d��
N

denotes the distance rel N�� .

In addition, we need the next lemma to give us a bound for the distance between
boundaries of nested components of N��1 and N��2 for �1 ¤ �2 smaller than the
Margulis constant. We refer the reader to Brooks and Matelski [4] and Meyerhoff [14]
for a discussion and computation of the constants.

Lemma 2.2 There exists a homeomorphism �W Œ1;1/! Œ0;1/ such that for every
hyperbolic 3–manifold N and �2 < �1 both smaller than the Margulis constant

dN .N
��2 ;N��1/� �.�1=�2/:

In particular, using the above lemma, we assume the Margulis constant �M is chosen
such that the distance between every two distinct components of N��M is at least 1.

A complete hyperbolic metric on the interior of a compact 3–manifold M canonically
corresponds to the conjugacy class of a discrete and faithful representation �W �1.M /!

Isom.H3/. The image �.�1.M // of this representation is a Kleinian group and we can
consider the limit set of its action which is a closed subset ƒ of the sphere at infinity.
The convex hull of ƒ is invariant under the action of �.�1.M // and its projection to
the hyperbolic 3–manifold is called the convex core. When M D S � Œ0; 1� and the
limit set of �.�1.M // is the entire sphere at infinity, we say the hyperbolic structure
is doubly degenerate.

2.2 Complex of curves

Suppose xS D Sg;b is a compact oriented surface of finite type with genus g and b

boundary components and we always assume �. xS/<0. A closed curve is nonperipheral
if it is noncontractible and is not freely homotopic to a multiple of a peripheral closed
curve on xS . Also if ˛ is a properly embedded arc in xS , we say ˛ is nonperipheral if
˛ is not homotopic rel endpoints to an arc contained in @ xS . Two nonperipheral curves
(resp. arcs) are parallel if they are homotopic (resp. homotopic rel @ xS ).
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The complex of curves C.S/ of xS is a complex where every vertex is either a homotopy
class of a nonperipheral simple loop or is the homotopy class (rel @ xS ) of a nonperipheral
properly embedded arc. A subset fv0; : : : ; vng of distinct vertices form an n–simplex
if these homotopy classes have representatives on xS which do not intersect. We refer
to such a set fv0; : : : ; vng or to a representation of that on S as a multiarc. We equip
C1.S/, the one-skeleton of C.S/, with a path metric such that the length of every edge
is equal to one. It is not hard to extend this metric to C.S/ but the obtained metric space
will be quasi-isometric to its one-skeleton and therefore for our purposes, it makes
sense to treat C.S/ without distinguishing it from its 1–skeleton. We need also to point
out that our definition of the complex of curves is slightly different from the definition
in most of the literature and what we have defined is referred to as the complex of
curves and arcs. However it is elementary to see the two complexes are quasi-isometric
and being interested only in the large scale geometry of these complexes, we ignore
the difference.

Masur and Minsky [11] proved that if xS has negative Euler characteristic and is not
the 3–holed sphere S0;3 then C.S/ has infinite diameter and is hyperbolic in sense of
Gromov.

3 Shrinkwrapping

A geodesic link � in a hyperbolic 3–manifold N is a disjoint union of finitely many
simple closed geodesics in N . A � –homotopy is a homotopy F W X � Œ0; 1�!N such
that if F.x; 0/…� then f .x; t/…� for t <1 and if f .x; 0/2� then f .x; t/Df .x; 0/
for all t 2 Œ0; 1�. We say X1 D F.X � f1g/ is � –homotopic to X0 D F.X � f0g/.

Let S be the interior of a compact surface xS of finite type. A proper continuous map
j W S !N is said to be 2–incompressible rel a geodesic link � if

(a) j .S/\� D∅, and j�W �1.S/! �1.N n�/ is injective,

(b) the j –image of a noncontractible loop is not freely homotopic in N n� to a
(multiplied) meridian of any component of � and

(c) given a neighborhood U of a cusp of N such that U \� D∅, the j –image of
a nonperipheral simple loop is not freely homotopic in N n� into U .

Before we continue with our constructions, let us point out where our arguments differ
from Soma’s construction in [19] and how one could use Soma’s arguments instead.
Suppose � is a geodesic link and j W S!N is 2–incompressible rel � . The universal
cover of N n � is a simply connected incomplete hyperbolic 3–manifold AN n� .
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Then X , the metric completion of the cover, is the same except for an addition of
a geodesic line for every lift of a tubular neighborhood of a component of � . The
projection from the universal cover to N n � extends to a projection X ! N and
restricted to a small neighborhood of every added line, the projection is an infinite
cyclic branch covering branched over a component of � . In this situation Soma shows
that X is CAT.�1/. The action of �1.N n�/ as the group of deck transformations
on AN n� extends to an action by isometries on X . Let Y be the quotient of X by the
action of the subgroup which is the image of �1.S/ by the map induced by j on the
level of fundamental groups. Then j lifts to a map zj W S ! Y . Even more it follows
from condition (b) and (c) in the definition of 2–incompressibility that the projection
Y ! N is an infinite cyclic branch cover branched over a component of � , when
restricted to the preimage of a small neighborhood of a component of � , and also that
zj is �1 –injective. Given this, one can find alternatives to our results in this section
where instead of working with � –geodesics and � –homotopies, everything is lifted to
Y and one simply takes geodesics in Y . Here we have decided not to refer to these
infinite branched covers and prove everything in N .

Another difference with Soma’s work [19] is that, he constructs and uses CAT.�1/–
piecewise ruled surfaces in the metric completion of the infinite branched covers. In
our construction in Theorem 3.7, we have ruled surfaces in an intermediate stage but
soon we turn them into more familiar simplicial hyperbolic surfaces. This is motivated
by Gabai’s notes [9].

It follows from an argument of Kerckhoff (cf Kojima [10]) that given a geodesic link �
in a hyperbolic 3–manifold N and t > 0 sufficiently small, there is a continuous
family of complete negatively curve metrics gt on N n � that gt agrees with the
hyperbolic metric on N in the complement of N .�; t/, the t –neighborhood of � . As
a result we have the following lemma, which will be used later, and shows that the only
�1 –injective immersed tori in N n� are the peripheral ones.

Lemma 3.1 Suppose � is a geodesic link in the hyperbolic 3–manifold N and
f W S1 �S1!N n� then one of the following happens:

� The image of the induced map on the fundamental group is cyclic.
� Within N n � , f is homotopic into a tubular neighborhood of a component

of � .
� Within N n� , f is homotopic into a neighborhood of a rank 2 cusp of N that

does not intersect � .

In what follows by a path ˛�N , we mean a continuous map ˛W .0; 1/!N with a lift
z̨W .0; 1/!H3 to the universal cover of N , such that limt!0 z̨.t/ and limt!1 z̨.t/
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exist in the natural compactification of H3 . An endpoint of the path is a projection
of any of the above limits which is finite and an ideal endpoint of the path is any of
the above limits that belongs to @H3 . To avoid further complications, we only allow
paths with ideal endpoints that are fixed points of parabolic fixed points of �1.N /. In
particular, the projection to N of a path with ideal endpoints is always proper.

We say ˛0; ˛1 � N are homotopic (resp. � –homotopic) rel. endpoints if there is a
homotopy (resp. � –homotopy) F W .0; 1/� Œ0; 1�!N between ˛0 and ˛1 such that
˛s. � /D F. � ; s/ has the same endpoints and ideal endpoints as ˛0 , for 0� s � 1. We
say a loop in N n� is nonperipheral if it is essential in N n� and cannot be homotoped
by a � –homotopy into a neighborhood of a cusp of N that does not intersect � . A
path in N n � is nonperipheral if either its endpoints are not the same ideal points
or it cannot be homotoped (within N n� into some small neighborhood of the cusp
associated to its endpoints.

Lemma 3.2 [9; 19] If ˛0 � N n � is a nonperipheral path or a loop, which is not
freely homotopic (in N n� ) to a multiplied meridian of a component of � , there exists
a unique piecewise geodesic ˛1 , � –homotopic (rel endpoints if ˛0 is a path) to ˛0 ,
such that ˛1 is length minimizing among all paths � –homotopic (rel endpoints) to ˛0 .
The function that takes ˛0 to ˛1 is continuous.

The proof is a simple generalization of the argument in [9] and we only provide a
sketch of the proof.

Proof In the beginning assume ˛0 is either a loop or is a path with finite endpoints
in N n� . As mentioned earlier, there is a continuous family of complete negatively
curved metrics gt on N n� , such that gt agrees with the hyperbolic metric g0 on
N outside of the complement of N .�; t/. By the Cartan–Hadamard theorem, the
conclusion holds for the gt –metric. A limiting argument shows that the same holds
for g0 . Even when ˛0 is a path whose endpoints are possibly ideal or are on � , one
can use another limiting argument and show that the conclusion holds.

A piecewise geodesic ˛1 obtained in the conclusion of the above lemma is called a
� –geodesic. The uniqueness of � –geodesics in their homotopy class (rel endpoints if
they are paths) and also Lemma 3.1 imply the following lemma.

Lemma 3.3 Suppose ˛ is a � –geodesic loop (resp. path) in N and there is a free
homotopy (resp. homotopy rel endpoints) which takes ˛ to itself. Then we can deform
the homotopy into another free homotopy (resp. homotopy rel endpoints) which fixes ˛
pointwise.
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Suppose ��N is a geodesic link and j W S!N is a 2–incompressible map rel � . For
a nonperipheral loop or arc ˛ � S , we say ˛� �N is the � –geodesic representative
of ˛ if ˛� is the unique � –geodesic that is � –homotopic to j .˛/. It follows from the
definition of 2–incompressible maps that every nonperipheral simple loop ˛ � S has
a unique � –geodesic representative. Even when ˛ is a nonperipheral simple arc in S ,
it is not hard to see that condition (c) of 2–incompressibility implies that image of ˛
is nonperipheral in N and therefore has a unique � –geodesic representative.

When S is the interior of a finite type surface, by a triangulation of S we mean a finite
triangulation where there is a vertex at infinity for every cusp of S . More precisely
assume S is equipped with a finite area hyperbolic metric, identify the universal cover
of S by H2 and consider the triangulation on the compactification of H2 by adding the
circle at infinity. Then we consider �1.S/–equivariant triangulations where the fixed
points of the parabolic elements of �1.S/ are the only ideal points of the triangulation
and the projection of the triangulation to S has a finite number of cells.

Definition 3.4 A presimplicial hyperbolic surface in a hyperbolic 3–manifold N

is a proper map f W S ! N of the surface S with a triangulation T such that the
restriction of f to each simplex of T is a totally geodesic immersion. With an abuse of
notation, we call the image surface a presimplicial hyperbolic surface, and we assume
it is equipped with a triangulation which is the image of T . A simplicial hyperbolic
surface is a presimplicial hyperbolic surface where the cone angle at each vertex is
� 2� .

It is important to point out here that in the presence of a geodesic link � , we only
consider presimplicial hyperbolic surfaces that are �–homotopic to a map j W S !

N n� . As a result, every such map comes with a small deformation that push it off
of � . In particular, when we say such a surface is 2–incompressible or we talk about
the � –geodesic representative of a path on such a surface, we automatically assume
that we are speaking about this small perturbation.

The following is an immediate consequence of our construction in Lemma 3.2:

Lemma 3.5 (Local view of � –geodesics) If ˛ is a � –geodesic and x 2 ˛\� , then
either

(i) ˛ is a geodesic segment of � or

(ii) ˛\� consists of isolated points and near x , ˛ lies in the union U of two totally
geodesic half discs glued along � . With respect to the induced hyperbolic metric
on U , ˛x \U is a geodesic where ˛x is a small neighborhood of x in ˛ .
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Using this, the following lemma provides a criterion that guarantees that a presimplicial
hyperbolic surface is simplicial hyperbolic. This generalizes an argument of Canary
in [6].

Lemma 3.6 (Guaranteeing cone angle � 2� ) Let N be a complete hyperbolic
3–manifold and � � N is a geodesic link. Suppose f W S ! N is a presimplicial
hyperbolic surface �–homotopic to a map j W S ! N n� and with triangulation T .
If every vertex of T is on a path ˛ � S whose image by f is the � –geodesic
representative of f .˛/ rel endpoints and the f –image of the vertex is in the interior of
this � –geodesic, then f is a simplicial hyperbolic surface.

Proof Assume S is equipped with the path metric induced by f and D � S is a
small disc centered at a vertex v of T . By assumption, there is a path ˛ � S whose
f –image is a � –geodesic. We assume D is small enough such that the path ˛ divides
D into two components; it will be enough to show that the contribution any of these
components to the cone angle at v is � � . Let U be the closure of a component of
D n˛ and also assume x and y are the endpoints of the path ˛\D . When D is small,
the induced metric on U is hyperbolic and therefore if the cone angle of v in U is
�� , there is a path ˇ�U between x and y whose length is smaller than the length of
˛\D and the f –image of its interior is disjoint from � . But f .ˇ/ is � –homotopic
to f .˛/ and has smaller length and this contradicts our assumption that f .˛/ is the
� –geodesic representative of j .˛/.

Recall that a multiarc is a collection of disjoint, nonperipheral and nonparallel arcs
and loops on S . Given a multiarc 
 � S , we say a simplicial hyperbolic surface
f W S !N realizes 
 rel � if there is a � –homotopy from j to f and the image of
(the interior of) 
 by f is a collection of � –geodesics. Note that if f realizes 
 , the
image of a component of 
 which is an arc, will be a bi-infinite � –geodesic from a
cusp of N to a cusp of N . The following theorem is essentially due to Soma.

Theorem 3.7 Suppose � � N is a geodesic link in the orientable hyperbolic 3–
manifold N and j W S ! N is a 2–incompressible map rel � of a surface S with
�.S/ < 0. Then j is �–homotopic to a simplicial hyperbolic surface f W S ! N .
Furthermore given a multiarc �, f above can be constructed to realize � rel � .

Proof We assume S is equipped with a finite area hyperbolic metric and therefore
every component of @ xS corresponds to a cusp. Without loss of generality assume
� D f˛1; : : : ; ˛kg is nonempty and every component ˛i of � is given as a closed
geodesic or bi-infinite geodesic arc on the chosen hyperbolic metric of S .
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By Lemma 3.2 and our comment after the lemma, every ˛i , i D 1; : : : ; k , has a unique
� –geodesic representative in N . After deforming j by a proper � –homotopy, we can
obtain a map f0W S !N such that f0.˛i/ is the � –geodesic representative of j .˛i/

and the f0 –image of S n� is disjoint from � . (For the arcs in �, it might be easier
to see this by performing the homotopy in an equivariant way for the lift of f0 to the
universal covers.) Also since j and therefore f0 are proper, one can see that f0 (or
more precisely its lift to the universal covers) automatically maps every ideal point
associated to a cusp of S to an ideal point associated to a cusp of N .

Let V0 � �\ f
�1

0
.�/ consists of those points whose f0 –images give intersections

of f0.˛i/ and � of type (ii) in Lemma 3.5. In particular V0 will have finitely many
points. Extend V0 to a triangulation T0 of S such that for every cusp of S there is an
ideal vertex of T0 , all other vertices are on �, V0 is a subset of the 0–skeleton of T0

and � is a subset of the 1–skeleton of T0 .

After a � –homotopy, deform f0 to a map f which we will construct by starting
from f0jV0

and then extending to the edges and finally extending to the faces of T0 .
Define f on V0 in a way that it agrees with f0 on the vertices of T0 and then extend
it to the edges in a way that it takes every edge e of T0 to the unique � –geodesic
path which is � –homotopic to f0.e/ rel endpoints. Note that f will automatically
agree with f0 on �. Finally for every triangle F of T0 , choose a vertex v and the
opposite edge e . Extend f to F by making the image a ruled triangle consisting
of �–geodesics connecting f .v/ to f .x/ for every x 2 e0 that are � –homotopic
rel endpoints to the arc connecting f .v/ to f .x/ in the image of the map constructed
so far. The continuity of � –geodesic representatives in Lemma 3.2 ensures that this
gives a continuous map of S that is � –homotopic to f0 . We want to show that f is a
simplicial hyperbolic surface after refining T0 to a triangulation T .

Let’s consider the preimage of � in a triangle F of T , ie f �1.�/ \ F . By our
construction, there is a vertex v of F and the opposite edge e such that f .F / is
obtained by coning off f .e/ from the point f .v/. Using the preimages of these � –
geodesics, we can view F as a union of paths Œv;x� where f .Œv;x�/ is a � –geodesic
connecting f .v/ and f .x/. The local view of � –geodesics, Lemma 3.5, shows that
for every x 2 e either f .Œx; v�/ is a subarc of a component of � or it intersects �
finitely many times. For every component 
 of � , because of the continuity of f , the
preimage f �1.
 /\F is closed and will be a finite disjoint union of finite paths that
intersects Œv;x� finitely many times for every x 2 e and also arcs Œv;x1�; : : : ; Œv;xl �

for a finite number of points x1; : : : ;xl on e . The preimages for different components
of � are disjoint. Hence f �1.�/ \ F consists of finitely many finite paths. Now
triangulate F in a way that the preimage f �1.�/\F is a subset of the one-skeleton. If
necessary subdivide further in a way that the union of all these triangulations provides
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a triangulation of S which is a subdivision of T0 . It is obvious from our construction
that the image of the interior of every triangle in the new triangulation T is a ruled
triangle disjoint from � . Hence the image of every face of T is totally geodesic
and we have shown that f is a presimplicial hyperbolic surface with respect to the
triangulation T . Even more, in our construction every vertex of T is in the interior of
a path ˛ � S whose image by f is the interior of the � –geodesic representative of
f .˛/ rel endpoints. The path ˛ is either one of the components of � or is a path Œv;x�
in one of the triangles of T0 . Therefore and by Lemma 3.6, f is actually a simplicial
hyperbolic surface.

The homotopy that is constructed above is not necessarily a � –homotopy and the
intermediate surface f0 may intersect � but it should be clear that after a small
perturbation, it becomes a � –homotopy and we have proved the theorem.

Definition 3.8 We say a geodesic link � in N is �–separated if any path ˛W I !N

with endpoints on � satisfying
l.˛.I//� �

is homotopic (rel endpoints) into � .

One important property of an �–separated geodesic link � , which will be used later, is
that � cannot enter a component of the thin parts of N except when it has a component
which is the geodesic core of a Margulis tube. We always assume � is smaller than
the Margulis constant. In this case, more precisely if T is a component of N��=2

then T \� is either empty or T is a Margulis tube with the geodesic core 
 � and
� \T D 
 � is a component of � . In particular �1.T n�/ is always abelian.

Lemma 3.9 Suppose ˛W S1!N is a piecewise linear or smooth map to a hyperbolic
manifold N which is homotopically trivial in N . Then there exists a map gW D2!N

of the 2–disk D2 whose restriction to S1D @D2 is ˛ and the diameter of g.D2/ in N

is bounded from above by the length of ˛ in N .

The proof of the above lemma is a simple construction of a ruled disk by taking a
point of the curve and use it to cone off all other points. This disk immediately has the
required property. Using this we can prove the following.

Lemma 3.10 Suppose f W S ! N is a simplicial hyperbolic surface which is 2–
incompressible rel � , an �–separated geodesic link in the hyperbolic 3–manifold N .
For every noncontractible simple loop ˛ on S with length.f .˛//� �, the loop f .˛/ is
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homotopically nontrivial in N and if ˛ is nonperipheral, f .˛/ is not freely homotopic
into a cusp of N . In particular

f .†��
f
/�N��

where †f denotes the surface S equipped with the path metric induced from f and
� � �=2.

Proof Suppose a noncontractible simple loop ˛ in S has length � � in †f or
equivalently the length of f .˛/ is at most �. By Lemma 3.9, if f .˛/ is homotopically
trivial in N there exists a map gW D2!N where gj@D2Df j˛ and its diameter is ��.
Let � � D2 be an arc with endpoints on g�1.�/ whose g–image has length � �.
Since � is �–separated, g.�/ is homotopic rel endpoints to an arc �0 of � whose
length also has to be � �. We can perform this homotopy by moving along arcs
perpendicular to � that connect a point of g.�/ to a point of � . The length of each
such arc is � � and from here, we can see that the homotopy cannot intersect any other
point of � . As a result we can isotope � by pushing �0 off of g.D/ and reducing
the number intersections of � and g.D/. We can continue such a procedure and we
will end up with a link � 0 isotopic to � which intersects g.D/ at most once. This is
however a contradiction to condition (b) in the definition of 2–incompressibility and
therefore f .˛/ could not be homotopically trivial in N . Also if f .˛/ represents a
parabolic element of �1.N / then f .˛/ is contained in an �=2–thin cusp of N which
contradicts condition (c) of 2–incompressibility if ˛ is nonperipheral. The second
statement of the lemma follows immediately.

An important property of a simplicial hyperbolic surfaces f W S !N and the surface
†f (S equipped with the induced path metric from f ) is that since the curvature is
� �1 at every point, by the Gauss–Bonnet Theorem, the area of †f is bounded by
�2�.S/. Then a standard argument shows that for � > 0, every two points x;y 2N��

can be connected by a path that does not intersect �–thin cusps of †f and whose
intersection with †��

f
has length � D.�.S/; �/ D �2��.S/=� . We can use this

observation with the previous lemma to show the following:

Lemma 3.11 (Bounded Diameter Lemma) Suppose � is an �–separated geodesic
link in the hyperbolic 3–manifold N and f W S!N is a simplicial hyperbolic surface
which is 2–incompressible rel � . Then for every 0< � < �=2,

diamN �� .f .S//�D.�.S/; �/:

Proof By Lemma 3.10 we know

f .†��
f
/�N��
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where †f is the surface S equipped with the path metric induced from f . In addition,
we know that the image of a compact component of †��

f
does not map into an �–thin

cusp of N . As mentioned, every two points x;y 2†��
f

can be connected by a path
that avoids �–thin cusps of †f and the length of its intersection with †��

f
is at most

D.�.S/; �/. The image of this path also avoids �–thin cusps of N and the total length
of its intersection with N�� is bounded by D.�.S/; �/.

For a simplicial hyperbolic surfaces f W S !N , we need something stronger than the
Bounded Diameter Lemma to tell us that f respects the thick-thin decomposition of
†f and N . This is proved in Proposition 3.13. The first issue to resolve is to find
uniform thin-thick decompositions for the simplicial hyperbolic surfaces that we use.

Lemma 3.12 Suppose � is an �–separated geodesic link in a hyperbolic 3–manifold
N and f W S !N is a simplicial hyperbolic surface that is 2–incompressible rel � .
Also let †f denotes the surface S equipped with the path metric induced by f . Then
for any ���=8, every component of †��

f
is either an annular neighborhood of a simple

closed geodesic of length � � or is an annular neighborhood of a cusp. Furthermore
†��
f

has no annular or disk components.

Proof Recall that the map f comes with a small deformation that pushes it away to a
2–incompressible map in N n� . When speaking of the topological properties or the
induced map on the fundamental group, we assume we have already performed such a
deformation.

Assume � � �=8 and V is a component of †��
f

. By Lemma 3.10, the f –image of V

is contained in a component T of N�� . Because � is �–separated and by our remark
after Definition 3.8, T n� has an abelian fundamental group.

Suppose z†f is the universal cover of †f equipped with the lift of the metric on †f
and zV denotes a lift of V to z†f . Given zx 2 zV , there exists a primitive element
hzx 2 �1.†f / such that dz†f .zx; hzx.zx//� � , where hzx acts on z†f as a deck transfor-
mation. On the level of fundamental groups, f takes hzx to an element of �1.T n�/;
because �1.T n�/ is abelian and f is � –injective to N n� , we must have hzx D hzy
or hzx D h�1

zy
for every zx; zy 2 zV . (Recall that hzx and hzy are chosen to be primitive.)

This shows that we can choose hD hzx independent of zx 2 zV and zV is a subset of

fzx 2 z†f W dz†f
.zx; h.zx//� �g:

Obviously every point in the above set also belongs to †��
f

and because the function
d. � ; h. � // is convex, the above set is connected and convex. As a result it must be
equal to zV .
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Next we claim that V , the projection of zV to †f , is the same as zV =hhi, the quotient
of zV by the action of h, and therefore is a noncontractible annulus. This follows
if we show that for every g 2 �1.†f /, g zV \ zV D ∅ unless g is a power of h. If
g zV \ zV ¤∅ then because of the convexity of zV , we can see that the induced map, on
the fundamental groups, takes g to an element of �1.T n�/. Again by using the fact
that �1.T n�/ is abelian and f is �1 –injective to N n� , it follows that g must be
a power of h. This proves the claim and as a corollary, we see that V is an essential
annulus in †f .

So obviously †��
f

has no disk components. Two parallel annuli cannot be components
of †��

f
because then it means that we can lift them to disjoint sets zV1; zV2 in z†f and

find a primitive element h 2 �1.†f / such that

V1 D
zV1=hhi and V2 D

zV2=hhi:

But then our characterization above shows that we must have

zV1 D
zV2 D fzx 2 z†f W dz†f

.zx; h.zx//� �g;

and V1 D V2 could not be disjoint.

An annular neighborhood of every cusp of †f is contained in †��
f

so the above
argument repeated when h is a parabolic element of �1.†f / shows that †��

f
does not

contain a component which is a boundary parallel compact annulus. These two facts
together show that †��

f
has no annular component either.

Now using our observations above, we can show that in some sense f respects the
thick-thin decomposition.

Proposition 3.13 (Thick goes to thick) Given � > 0 smaller than the Margulis con-
stant and surface S there exists a continuous map �0W Œ0;1/! Œ0;1/ with �0.�/� �

for every � � 0 where the following holds. Suppose � is an �–separated geodesic link
in the hyperbolic 3–manifold N and f W S ! N is a simplicial hyperbolic surface,
which is in addition 2–incompressible rel � . Then for every � � �=2

f .†��
f
/�N�� and f .†��

f
/�N��0.�/;

where †f denotes the surface S equipped with the path metric induced from the
map f .

Proof The first inclusion is what we have already proved in Lemma 3.10. Also note
that our explanation before the Bounded Diameter Lemma 3.11 shows that diameter
of every component of †��

f
is at most D.�.S/; �/D�2��.S/=� . Assume � < �=8;
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then Lemma 3.12 shows the fundamental group of each component of †��
f

contains a
free group of rank 2.

Choose ı � � to be small enough so that �.�=ı/ � D.�.S/; �/, where �. � / is the
function obtained in Lemma 2.2, and suppose the image of a point x 2†��

f
is contained

in N<ı . By Lemma 2.2, the image of the component R of †��
f

which contains x ,
is contained in a component T of N�� . Similar to the proof of the above lemma,
�1.T n�/ is abelian and after a small deformation we can assume the image of R is
contained in T n� but this contradicts � –injectivity of the map to N n� and the fact
that �1.R/ contains a free group of rank 2. Hence f .x/ 2N��0.�/ where

�0.�/Dmin
�
�; �=��1

�
�2��.S/

�

��
:

When � > �=8 then obviously †��
f
�†

��=8

f
and we can simply define

�0.�/D �0.�=8/:

An immediate corollary of the above proposition is the existence of uniformly wide
collar neighborhoods of short geodesics on †f for a map f that satisfies the hypothesis.
We should point out that in case the induced metric on †f is hyperbolic, then the
existence of such collar neighborhoods is a consequence of the Collar Lemma for
hyperbolic surfaces. However for simplicial hyperbolic surfaces and the induced
singular hyperbolic metrics, in general, it is impossible to expect uniformly wide collar
neighborhoods. We find such collar neighborhoods below but the width will depend
on � as well as on �.S/.

Corollary 3.14 With the same hypothesis as of Proposition 3.13, assume �1; �2 > 0

are given and both are smaller than �=2. Then the distance between †��1

f
and †��2

f
is

at least �.�0.�1/=�2/ where �0 and � are the functions described in Proposition 3.13
and Lemma 2.2 and �2 < �0.�1/. In particular, if 
 is an essential loop of length at
most � < �0.�=2/ on †f , the distance between 
 and the boundary of the associated
component of †��=2

f
containing 
 is at least �.�0.�=2/=�/.

4 Quasi-convexity

Suppose N is a hyperbolic 3–manifold and � is an �–separated geodesic link for
some � > 0. Also assume S is the interior of a surface of finite type with �.S/ < 0

and j W S !N is a map that is 2–incompressible rel � .
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Definition 4.1 Given B > 0, we define C.B; j /� C0.S/ to be the set of homotopy
classes of simple loops ˛ 2 C0.S/ whose � –geodesic representative in N has length
at most B .

Recall an elementary observation of Bers which shows that for every surface of finite
type S , there exists a constant B0.S/, which we call the Bers’ constant, such that for
every finite area hyperbolic metric on S , there is a nonperipheral essential simple loop
whose length is at most B0.S/. It is easy to see that the same argument and the same
constant B0.S/ works for singular finite area hyperbolic metrics with cone angles at
least 2� .

Our main goal in this section is to show that for B larger than the Bers’ constant,
C.B; j / is quasi-convex with a quasi-convexity constant which depends only on �.S/; �
and B .

Remark 4.2 Note that in the above definition, we have ignored elements of C0.S/

which are represented by simple arcs in xS . But they will be used in the proof of Lemma
4.4 and, especially in the case of once holed torus or four holed sphere, we use these
arcs since distinct loops of C0.S/ intersect.

Given a simplicial hyperbolic surface f W S!N and B> 0, by short.f;B/ we denote
the set of loops in C0.S/ whose geodesic representatives in the metric induced by f
has length at most B . Using this, we define a projection …j ;B.˛/ for every ˛ 2 C0.S/

as follows:
…j ;B.˛/D

[
f

short.f;B/;

where the union is over all simplicial hyperbolic surfaces which are � –homotopic to j

and realize ˛ . Note that by Theorem 3.7, the set of such maps is nonempty. Also note
that in our definition, we allow ˛ to be the homotopy class of an arc.

In order to prove the quasi-convexity of C.B; j /, we will prove in Proposition 4.5
that the above projection is a coarse projection and then this immediately implies the
quasi-convexity. This will essentially boil down to the following two lemmas which
show that the projection is well defined as a coarse map. Our first result is to show that
short.f;B/ has bounded diameter in C.S/ for a single element f used in the above
union.

Lemma 4.3 Suppose f W S ! N is a simplicial hyperbolic surface which is 2–
incompressible rel � , an �–separated geodesic link in N . For every ˛; ˇ 2 short.f;B/,
i.˛; ˇ/ is bounded by a constant that depends only on �.S/; � and B . As a result,
diamC.short.f;B// is bounded by a constant that depends only on �.S/; � and B .
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Proof The first part is a consequence of Corollary 3.14. Assume †f is the surface S

equipped with the singular hyperbolic metric induced from the map f . We consider
all the lengths and distances in this metric and assume ˛ and ˇ are geodesic closed
curves. Consider � > 0 very small in a way that will be determined in what follows.
Also suppose

i.˛; ˇ/ > dB=�e2

where dxe denotes the smallest integer that is greater than or equal to x . We can
divide ˛ into dB=�e segments of length at most � and by the Pigeonhole Principle,
there will be at least dB=�eC1 points of ˛\ˇ in one of these segments. Similarly we
can divide ˇ into dB=�e segments of length at most � and among the points of ˛\ˇ
which we have already chosen there will be two points p; q in one of these segments.
This way we find p and q in ˛\ˇ with an arc �˛ � ˛ and an arc �ˇ � ˇ both with
lengths at most � and endpoints p and q . The concatenation of these arcs gives a closed
curve 
 D �1 � �2 of length at most 2� . This is an essential closed curve on S and
by Corollary 3.14, it is contained in an annular component of †��=2

f
and the distance

from 
 to the boundary components of this annulus is at least �.�0.�=2/=.2�//. So if
we choose � small enough such that

�

�
�0.�=2/

2�

�
> B

then ˛ and ˇ both have to be contained in this annulus. But ˛ and ˇ are simple and
must be freely homotopic to the core of the annulus which then implies i.˛; ˇ/D 0

which is a contradiction and we must have i.˛; ˇ/� dB=�e2 .

The second statement follows from an elementary argument (see Masur and Minsky [11])
that shows dC.˛; ˇ/� 2i.˛; ˇ/C 1.

The next lemma shows that if f and g are two simplicial hyperbolic surfaces used in
the definition of …j ;B.˛/ then short.f;B/ and short.g;B/ intersect for B sufficiently
large. Together with the previous lemma, it proves that …j ;B.˛/ has bounded diameter
(depending on B; �.S/ and �) in C.S/ for every B . As before, we denote the surface S

equipped with the metrics induced by f and g by †f and †g respectively.

Lemma 4.4 Suppose j W S!N is 2–incompressible rel � , an �–separated geodesic
link in the hyperbolic 3–manifold N , and � > 0 is smaller than the Margulis constant.
If f;gW S!N are simplicial hyperbolic, both are � –homotopic to j and both realize
a nonperipheral simple loop or arc ˛ , there exists a nonperipheral simple loop 
 whose
lengths in †f and †g are bounded by a constant that depends only on �.S/ and �.
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Proof By Proposition 3.13,

f .†��
f
/�N��0.�/

for every � 2 .0; �=2�. Assume ˛ represents the geodesic representative of ˛ in †f
and †g . Since f and g take these geodesic representatives to the unique � –geodesic
representative of ˛ in N , we use f and g to identify copies of ˛ on †f and †g . In
addition, whenever necessary, we assume f and g have been perturbed slightly in a
way that f .S/;g.S/�N n� . (Compare with our remark after Definition 3.4.)

Recall that there exists a constant �0 such that in every hyperbolic surface †, whenever
a simple geodesic enters a component of †��0 , it has to crosses that component, ie it
has to cross every closed curve homotopic to the core of that component. Assume ˛
enters a compact component of the ı–thin part of †f where ıDminf�0.�=8/; �0g and
assume p is a point of ˛ in such a component. Then by Proposition 3.13, f .p/2N�ı

and since f .p/D g.p/, using Proposition 3.13 once more, we have p 2†
��=8
g . As a

result, there exist noncontractible simple loops 
f ; 
g based at p where the length of

f in †f and the length of 
g in †g do not exceed �=8. Let T be the component
of N��=8 which contains f .p/D g.p/. We obviously have f .
f /;g.
g/� T and
since f and g are homotopic in N n� , the loop f .
g/ (as a loop based at f .p/) is
also homotopic in N n� to a loop contained in T n� and therefore f .
f / and f .
g/

represent two elements of �1.T n�/. Recall from our remark after Definition 3.8 that
�1.T n�/ is abelian; hence f .
f / and f .
g/ commute as elements of �1.T n�/. But
f is �1 –injective as a map to N n� and since 
f and 
g are primitive, we must have
that they are homotopic (as unoriented loops) and in particular 
g is nonperipheral.
This provides a simple nonperipheral loop whose length in †f and †g is at most �=2
and we have proved the conclusion in this case.

Hence we can assume ˛ does not enter any compact component of †�ı
f

and using a
similar argument we also assume it does not enter any compact component of †�ıg .
Note that by our choice ı � �0 , it implies that if ˛ is a loop then it stays completely in
†�ı
f

and †�ıg . Even when ˛ is an arc, it has an initial and terminal subsegments that
exit and enter a cusp but remains in the ı–thick parts otherwise.

Suppose �W Œ0; `�! ˛ parametrizes ˛\†�ı
f

with respect to the arc length, where `
is the length of ˛\†�ı

f
and as mentioned before we are viewing ˛ as a geodesic in

†f ; †g and N simultaneously. Again using Proposition 3.13, we can see that image
of � has to be in N��0.ı/ and in †��0.ı/

g .

Let � D �0.ı/=4 and K D 1C 4Œ�.S/�2=�4 . If ` < K , either ˛ itself is a simple
non-peripheral loop whose length in both †f and †g is bounded by K , or using
the image of � and surgery with the boundary components of †�ı

f
we can produce
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a simple nonperipheral loop whose length in †f and †g is at most K C 2��1
0
.ı/.

(Using a similar argument to the above, it is not hard to see that �.0/ and �.`/ have to
be in the ��1

0
.ı/–thin part of †g .)

Suppose `�K ; in this case, we claim there exist 0� a< b �K such that �.a/ and
�.b/ are closer than 2� both in †f and †g but the subarc of ˛ connecting them has
length � 1. To prove the claim, let M D †f �†g be the product 4–manifold with
the product metric. The curvature of †f and †g at all points is � 1 and therefore by
Gauss–Bonnet, the area of each of them is at most �2��.S/. By Fubini’s Theorem,
the volume of M is the product of these areas and is at most 4�2Œ�.S/�2 . Because
˛ � †�ı

f
and ˛ � †��0.ı/

g and � < �0.ı/ � ı , for every point .�.t/; �.t// 2M the
product

D�
M .�.t/; �.t//D B†f .�.t/; �/�B†g

.�.t/; �/

is an embedded product of disks in M , where B†.x; r/ denotes the open disk of
radius r centered at x in †. Again using the upper bound for the curvature, the
areas of B†f .�.t/; �/ and B†g

.�.t/; �/ are at least ��2 and therefore the volume of
D�

M
.�.t/; �.t// is at least �2�4 .

If `�K then, because of the upper bound for the volume of M , the sets

D�
M .�.n/; �.n//; n 2 Z\ Œ0;K� 1�

cannot be all disjoint and therefore we find 0� a< b �K with

D�
M .�.a/; �.a//\D�

M .�.b/; �.b//¤∅

and such that the subarc of ˛ connecting �.a/ and �.b/ has length � 1. This immedi-
ately implies that the distance between �.a/ and �.b/ in both †f and †g is strictly
less than 2� D �0.ı/=2. Choose an arc �f �†f and an arc �g �†g of length < 2�

with endpoints �.a/ and �.b/. By concatenating these arcs with �Œa; b�, we obtain
loops


f D �Œa; b���f �†f and 
g D �Œa; b���g �†g

whose lengths are bounded by KC 2� . We claim these two loops represent freely
homotopic loops in S . Because f and g are �1 –injective into N n � , it will be
enough to show f .�f / and g.�g/ are homotopic (rel endpoints) in N n� .

The closed curve ! D f .�f / � g.�g/ has length strictly less than 4� D �0.ı/. We
know �.a/ 2†�ı

f
and by Proposition 3.13, f .�.a// 2N��0.ı/ . Hence every loop of

length < �0.ı/ based at f .�.a// has to be homotopically trivial in N . By Lemma
3.9 and since � is �–separated, either ! is homotopically trivial in N n� or ! is a
multiplied meridian of a component of � in N . We claim there is an arc �0g � †f
whose image by f is homotopic rel endpoints to g.�g/ in N n� . This simply follows
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from Lemma 3.3 and the observation that in the homotopy relating f and g , we can
assume ˛ remains fixed pointwise. Hence f .�0g ��f / is homotopic in N n� to !
and therefore is either homotopically trivial in N n� or is a multiplied meridian of
a component of � . Yet f is 2–incompressible and therefore f .�0g ��f / and as a
result ! must be homotopically trivial in N n� . This proves that f .�f / and g.�g/

are homotopic (rel endpoints) in N n� and we have proved the lemma.

Finally using the above two lemmas, we can prove the main properties of the projection
…j ;B .

Proposition 4.5 Suppose j W S ! N is 2–incompressible rel � , an �–separated
geodesic link in the hyperbolic 3–manifold N and B �B0.S/ is given. There exists a
constant cB depending only on �.S/; � and B such that the following holds:

� (Coarse idempotence) If ˛ 2 C.B; j / then ˛ 2…j ;B.˛/.

� (Coarse Lipschitz) For ˛ and ˇ 2 C0.S/ with dC.˛; ˇ/� 1,

diamC.…j ;B.˛/[…j ;B.ˇ//� cB:

Proof The proof of (a) follows immediately from Theorem 3.7.

For part (b), note that ˛ and ˇ are disjoint and therefore ˛ [ ˇ is a multiarc on
S . Again by applying Theorem 3.7, one knows there exists a simplicial hyperbolic
surface f that is � –homotopic to j and realizes ˛[ˇ . Let xB be the larger of B and
the constant obtained in Lemma 4.4. Then we know that if g is a simplicial hyperbolic
surface, used in the definition …j ;B.˛/ or …j ;B.ˇ/, then short.f; xB/\ short.g; xB/ is
nonempty. Obviously short.g;B/� short.g; xB/ for every such g and by Lemma 4.3,
the diameter of short.g; xB/ is bounded depending on �.S/; � and B . This implies
part (b) of the proposition.

Recall that C.B; j / denotes the set of simple closed curves on S whose � –geodesic
representatives have length � B . Once we have the above properties of the projection,
we can use the following observation of Minsky [16, Lemma 3.3].

Lemma 4.6 Let X be a ı–hyperbolic geodesic metric space and Y � X a subset
admitting a map …W X ! Y which is coarse-Lipschitz and coarse idempotent. That is,
there exists C > 0 such that

� if d.x;y/� 1 then d.….x/;….y//� C , and

� if y 2 Y then d.y;….y//� C .
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Then Y is K–quasi-convex for some KDK.ı;C /, and furthermore if g is a geodesic
in X whose endpoints are within distance a of Y then

d.x;….x//� b

for some b D b.a; ı;C /:

We use this to prove the quasi-convexity of C.B; j / which obviously implies Theorem
1.1.

Theorem 4.7 (Quasi-convexity theorem) Suppose j W S !N is 2–incompressible
rel � , an �–separated geodesic link in N . Given B�B0.S/, there exists L depending
only on �.S/; � and B such that the set C.B; j / is L–quasi-convex in C.S/. Moreover
if ˇ is a geodesic in C.S/ with endpoints in C.B; j / then dC.x;…j ;B.x// � L for
each x 2 ˇ .

5 Finding geodesic links

In order to prove Theorem 1.2 in the most general case, we need to consider pared 3–
manifolds. Suppose M is a compact, oriented, irreducible, 3–manifold with nonempty
boundary and M is neither a 3–ball nor a solid torus. In addition assume P � @M is
a compact subsurface such that, every component of P is an incompressible annulus
or a torus and every map cW .S1 � I;S1 � @I/! .M;P / which induces an injection
on the fundamental groups, is homotopic, as a map of pairs, to a map whose image is
contained in P . Here we will deal only with pared 3–manifolds without torus boundary
components and in this case we require �1.M / not to have any noncyclic abelian
subgroups. In general, one requires the noncyclic abelian subgroups to be conjugate to
a subgroup of the fundamental group of a component of P . We say .M;P / is a pared
3–manifold. Also with an abuse of notation, we say a loop in M is nonperipheral if it
is noncontractible and cannot be homotoped into a component of P .

When .M;P / is a pared 3–manifold, every component of @M nP is called a free
side. By a proper embedding of .M;P / into a hyperbolic 3–manifold N , we mean a
proper embedding j W M nP !N such that the j –image of N .P / nP is contained
in the union of the rank one cusps of N where N .P / is a regular neighborhood of P .
If E is a free side of .M;P /, we say it is incompressible to the outside if given an
embedding of a disk �W D2 ,!N with �.D/\ j .M /D �.@D2/� j .E/, it is possible
to homotope the map through maps that take @D to j .E/ into a map whose image is
contained in j .E/.

We also say a proper embedding j W M nP !N is 2–incompressible rel a geodesic
link � �N if
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(a) j .M nP /\� D∅, and j�W �1.M /! �1.N n�/ is injective,

(b) the j –image of a noncontractible loop in M is not freely homotopic in N n�

to a (multiplied) meridian of any component of � and

(c) given a neighborhood of U of a cusp of N with U \� D∅, the j –image of a
simple loop on a free side of .M;P /, which is nonperipheral in .M;P /, cannot
be homotoped into U .

As mentioned in the introduction for the case when S is closed and N has no parabolics,
a proper embedding S !N of the interior of an oriented surface of finite type xS is
2–incompressible rel � if and only if a collared neighborhood of its image, as a proper
image of the pared manifold . xS � I; @ xS � I/, is 2–incompressible rel � .

Let E be the interior of an oriented surface of finite type and with negative Euler
characteristic. Also let W be a complete hyperbolic 3–manifold homeomorphic to
E �R. Recall that W is doubly degenerate if it is identical to its convex core. It
follows from work of Canary [6] that in this situation, one can sweep out through W

by simplicial hyperbolic surfaces, ie there exists a continuous map E�R!W which
is onto, induces a homotopy equivalence and the image of E � ftg is a simplicial
hyperbolic surface for every t 2 R. The large scale geometry of such hyperbolic
3–manifolds is understood by works of Minsky [15] and Brock, Canary and Minsky [2]
and in particular there are bilipschitz models of these 3–manifolds which are constructed
by using the combinatorial information provided by the complex of curves of E and
work of Masur and Minsky [11; 12].

Suppose N is a hyperbolic 3–manifold and the surface E is fixed; by an L–product
region in N , we mean a submanifold U �N homeomorphic to E � Œ�1; 1� such that
there is a doubly degenerate hyperbolic 3–manifold W homeomorphic to E �R and
a homotopy equivalence �W U !W with the following properties:

� � is an L–bilipschitz embedding.
� There are simplicial hyperbolic surfaces X�;XC�W such that �.E�f˙1g/�

N .X˙/:

As before we let U� D U \N� denote the subset of U obtained by removing the
interiors of all �–cusps. We define the �–width of U to be the distance in U� between
boundary components of U rel N�� , ie the minimum length of the intersection with
N�� of an arc in U� that connects the two boundaries of U . A level surface †� U

is the image of a proper embedding E ,! U which is a homotopy equivalence.

The goal of this section is to show that given a proper embedding of a pared 3–manifold
into a hyperbolic 3–manifold, large product regions can be used to find �–separated
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geodesic links which make the embedding 2–incompressible. Even more the total
length of the obtained geodesic link will be bounded depending on �.E/ and � will be
bounded below by a universal constant. First we need to show that in a wide product
region we can find lots of closed geodesic curves with definite tube radii and large
pairwise distances.

Using our comment before the Bounded Diameter Lemma 3.11, we know there is a
bound D.�.E/; �/ for the diameter of every simplicial hyperbolic surface relative to
the �–thin parts. Now we claim the following proposition. Recall from before that
B0.E/, the Bers’ constant, is a constant depending only on �.E/ such that on every
finite area hyperbolic metric on E , there exists a nonperipheral noncontractible simple
loop of length � B0.E/.

Proposition 5.1 Given n;L and �0 if ! is sufficiently large, in an L–product region
U �N of �0 –width ! there exists a collection 
1; 
2; : : : ; 
n of closed geodesics and
an embedding  W E � Œ0; n�! U such that

�  induces a homotopy equivalence,

� each 
i has tube radius � 0:025 and length �LB0.E/, i D 1; : : : ; n,

� 
i �  .E � .i � 1; i//, i D 1; : : : ; n,

� diam��0

N
. .E � fig// is bounded by a constant depending only on L; �0 and

�.E/,

� d
��0

N
. .E � fi � 1g/;  .E � fig//�D.�.S/; �0/, i D 1; : : : ; n,

� d
��0

N
.
i ;  .E�fi �1g// and d

��0

N
.
i ;  .E�fig// are at least 1, i D 1; : : : ; n.

Recall that in our definition of d
��0

N
and diam��0

N
in Section 2, we only considered

paths that avoid �0 –thin cusps of N .

Proof By definition there is a doubly degenerate hyperbolic 3–manifold W and
a homotopy equivalence �W U ! W which is an L–bilipschitz embedding. Let
V D �.U /; then obviously V is a 1–product region and it makes sense to speak of the
�–width of V for any � > 0. When �0 –width of U is at least ! then the �1 –width
of V is at least !=L for �1 D �0=L. We know that every point of W belongs to
a simplicial hyperbolic surface homeomorphic to E whose diameter rel W �� is at
most D.�.E/; �/ for any � > 0. Also on every such surface there exists an essential
simple closed curve of length � B0.E/. Even more using a theorem of Freedman,
Hass and Scott [7], we know that in every neighborhood of one of these simplicial
hyperbolic surfaces, we can find an embedded level surface. Also by a theorem of

Algebraic & Geometric Topology, Volume 9 (2009)



Quasi-convexity and shrinkwrapping 2469

Waldhausen [20], if two such embedded surfaces are disjoint then they enclose a
submanifold of V homeomorphic to E � Œ0; 1�.

Using the above information and for a given !1 > 0 and if

!=L� .2nC 5/!1D.�.E/; �1/;

we can find n essential closed curves x̨1; : : : ; x̨n in V and an embedding x W E �
Œ0; n�! V such that

� x induces a homotopy equivalence,

� each x̨i has length � B0.E/ and is homotopic to a simple closed curve on E ,

� x̨i �
x .E � .i � 1; i//; i D 1; : : : ; n,

� diam��1

W
. x .E � fig//�D.�.E/; �1/; i D 0; : : : ; n,

� d
��1

W
. x .E � fi � 1g/; x .E � fig// is at least !1 , i D 1; : : : ; n and

� d
��1

W
.x̨i ; x .E�fi�1g// and d

��1

W
.x̨i ; x .E�fig// are at least !1 , iD1; : : : ; n.

Now we consider the map  D ��1 ı x W E � Œ0; n�! U and we have closed curves
˛1 D �.x̨1/; ˛2 D �.x̨2/; : : : ; ˛n D �.x̨n/ such that for �2 D �1=L we have

�  induces a homotopy equivalence,

� length of each ˛i is at most B0.E/L,

� ˛i �  .S � .i � 1; i//; i D 1; : : : ; n,

� the diameter in U�2
, rel U��2 , of each surface  .E � fig/ is bounded by

LD.�.E/; �1/; i D 0; : : : ; n,

� the distance in U�2
, rel U��2 , between  .E � fi�1g/ and  .E � fig/ is at

least !1=L and

� the distance in U�2
, rel U��2 , between ˛i and each of the surfaces  .E�fi�1g/

and  .E � fig/ is at least !1=L, i D 1; : : : ; n.

One bothering feature of the above collection is that the lower bounds are obtained for
distances rel N��2 and in N�2

rather than for distances rel N��0 and in N�0
. This is

however fixable using the next lemma:

Lemma 5.2 Given 0< �1; �2 both smaller than the Margulis constant, there exists a
constant C DC.�1; �2/� 0 depending only on �1 and �2 such that for every hyperbolic
3–manifold N and x;y 2N

d
��1

N
.x;y/� .C C 1/d

��2

N
.x;y//CC:
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Proof If �1 � �2 then obviously N�1
�N�2

and

d
��1

N
.x;y/� d

��2

N
.x;y/

and we can let C.�1; �2/D 0. So assume �1 < �2 .

By Lemma 2.1 one can see that if T2 is a component of N��2 which contains a
component T1 of N��1 then the distance from every point of T2 to T1 is bounded by
a function of �1 and �2 . In particular if the length of the core geodesic of a Margulis
tube T in N��2 is bigger than or equal to �1 then the diameter of T is bounded by a
function of �1 and �2 .

Let g be a path connecting x and y which provides their distance rel N��2 , ie

(5-1) d��2.x;y/D l.g/� l.g\N��2/;

g � N�2
and l.g \N��2/ denotes the sum of the lengths of the subsegments of g

inside components of N��2 . Assume T2 is a component of N��2 with g\T2 ¤∅
and x0;y0 2 @T2\g are the entry and exit points of g . Obviously we are allowed to
replace gŒx0;y0�, the segment of g connecting x0 and y0 , with any other path inside T2

that connects them. When the core curve of T2 has length � �1 , ie T \N<�1 D∅, we
assume gŒx0;y0� is the shortest geodesic connecting x0 and y0 . Then it stays in T2 (by
convexity of T2 ) and its length is bounded by the diameter of T2 which is bounded by a
function of �1 and �2 by our previous remark. If the core curve of T2 has length < �1 ,
ie T \N<�1 ¤ ∅, let T1 � T2 be the associated component of N��1 . In this case,
we assume gŒx0;y0� is the concatenation of three segments ˛ �ˇ � 
 where ˛ is the
shortest path connecting x0 to @T1 , 
 is the shortest path connecting y0 to @T1 and ˇ
is a path in T1 that connects the endpoints of ˛ and ˇ on @T1 . Again by our earlier
remark, lengths of ˛ and 
 are bounded by a function of �1 and �2 and as a result of
all these

(5-2) l.g\N��2/� l.g\N��1/� C.�1; �2/jg\N��2 j

where C.�1; �2/ is a constant depending only on �1 and �2 and the last quantity is the
number of components of N��1 which intersect g .

However by our assumption about the Margulis constant, the distance between every
two components of N��2 is at least 1 and therefore

(5-3) d��2.x;y/D l.g\N��2/� jg\N��2 j � 1:
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Now using (5-1), (5-2), (5-3) and the fact that g �N�2
�N�1

we have

d
��1

N
.x;y/� l.g/� l.g\N��1/

� l.g/� l.g\N��2/CC.�1; �2/jg\N��1 j

� d��2.x;y/CC.�1; �2/.d
��2.x;y/C 1/

D .C.�1; �2/C 1/d��2.x;y/CC.�1; �2/

which finishes the proof of the lemma.

Using this lemma we can replace the lower bound !1=L for the distances rel N �2

with the lower bound !2 D .C C 1/.!1=L/C C for the distances rel N��0 and
C D C.�1; �2/. Since �2 D �0=L

2 this depends only on our choice of !1; �0 and L.
Besides it tends to infinity as !1!1.

By assuming that ! is large, we can make sure that the above collection of closed
curves is constructed in a way that its distance to @U is at least B0.E/L. Then it
follows from Lemma 3.9 that each ˛i , i D 1; : : : ; n, is homotopically nontrivial in N .
Even more the geodesic representatives of ˛1; : : : ; ˛n in N , which we respectively
denote by ˛�

1
; : : : ; ˛�n , are within U and by Lemma 2.1

d
��0

N
.˛i ; ˛

�
i /� c1 D cosh�1.B0.E/L=�0/; i D 1; : : : ; n:

The length of each of the curves ˛�i is still bounded from above by B0.E/L. Next
we want to change each curve ˛�i to guarantee that rad.˛�i / � 0:025 for every i ,
where rad.
 / denotes the tube radius of 
 . Meyerhoff [14] defines a monotonically
decreasing function r W .0; 0:1�! Œ0:3;1/ such that if 
 is a closed geodesic in N

and lN .
 / � t , rad.
 / � r.t/. So if lN .˛
�
i / � 0:1 then rad.˛�i / � 0:3 and we are

satisfied with its tube radius.

Following Gabai [8] assume lN .˛
�
i / � 0:1 and rad.˛�i / � 0:025 � 1

4
lN .˛

�
i / then

there exists a geodesic ˇ�i homotopic to a curve which is a union of a segment of
˛�i and an orthogonal arc from ˛�i to itself, and each of these segments has length
� lN .˛

�
i /=2. By straightening these segments and using the law of cosines, we see

that since l.˛�i /� 0:1, l.ˇ�i / < l.˛�i /� 0:02. Note that

d
��0

N
.˛�i ; ˇ

�
i /� c1C 0:025

by another application of Lemma 2.1. If rad.ˇi/ � :025 then we can repeat the
same procedure and obtain a shorter closed geodesic and repeat the same procedure if
necessary. However such a process reduces the length by at least 0:02 and since the
length of the original curve was bounded from above by B0.E/L the process must
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stop after at most B0.E/L=0:02 times. At the end of the process we will be left with
a closed geodesic 
i with rad.
i/� 0:025.

As we have seen before, the distance rel N��0 between two closed geodesics that
appear consecutively is at most c1C 0:025 and the length of each of them is bounded
from above by B0.E/L and therefore

d
��0

N
.˛i ; 
i/� c2 D

�
B0.E/L

0:02
C 1

�
.c1C 0:025CB0.E/L/

for every 1� i � n. So provided that

!2 > c2CB0.E/LCD.�.E/; �0/C 1

for every i D 1; : : : ; n, the geodesic 
i will stay in  .E�.i�1; i//. Also the distance,
rel N��0 , between  .E � fi � 1g/ and  .E � fig/ is at least D.�.E/; �0/ and the
distance between 
i and each of the surfaces  .E�fi�1g/ and  .E�fig/ is at least 1.
We already know  induces a homotopy equivalence between E � Œ0; n� and U and
the diameter, rel N��0 , of each surface  .E�fig/ is at most G�0;�2

.LD.�.E/; �1//.
Hence Proposition 5.1 follows.

Once we know Proposition 5.1, we turn our attention to proving the main result of
this section and as a corollary prove Theorem 1.2 and Theorem 1.3. First we consider
the especial case when .M;P /D . xS � I; @ xS � I/ for a compact surface of finite type.
Note that given a proper embedding j W M nP !N of a pared manifold .M;P /, a
free side E and a product region U of N , we say j .E/ is a level surface of U if U

is disjoint from the image of j and the j image of E and a level surface of U bound
an interval bundle whose interior is disjoint from the image of j .

Theorem 5.3 Given a compact surface of finite type xS with interior S and constants
�0;L, there is a constant ! such that the following holds. Suppose j W S � I !N is a
proper embedding of the pared manifold . xS � I; @ xS � I/ into the oriented hyperbolic
manifold N and the j images of each free side is either a level surface of an L–product
region of �0 –width ! or is incompressible to the outside. Then there exists a 0:025–
separated geodesic link � in the product regions such that j is 2–incompressible
rel � .

Even more length of each component of � is bounded depending on �.S/ and L and
the number of components of � only depends on �.S/.

Proof First of all note that we can assume the map induced by j on the fundamental
groups is surjective. Otherwise, we can consider the cover associated to the image of
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�1.S � I/; then j lifts to an embedding zj and every product region associated to a
free side, lifts isometrically to a product region for the same free side. Suppose z� is
a geodesic link in the product regions of the cover and zj is 2–incompressible rel z� ;
then z� maps isometrically to a geodesic link � with the same separation constant in
N and it should be clear that j is also 2–incompressible rel � . Using this observation,
we can, in particular, assume the image of j separates N . We also identify S with
the middle surface of S � I . Note that as we pointed out earlier, given a geodesic
link in the complement of the image of j , 2–incompressibility of the map j as a
proper embedding of a pared manifold is equivalent to 2–incompressibility of j .S/ as
a properly embedded surface of finite type.

Let EC and E� respectively denote the top and bottom free sides of . xS � I; @ xS � I/

with the induced orientations. In particular EC and E� are homeomorphic to S

but E� has the opposite orientation. If the j –images of EC and E� are both
incompressible to the outside, then they are incompressible and j is obviously 2–
incompressible rel � D∅. We mainly deal with the case when the j –image of neither
EC nor E� in incompressible to the outside and are level surfaces of L–product
regions UC;U� (respectively) of �0 –width ! . At the end, we explain what happens
if one of them is incompressible to the outside.

Let n D 3j�.S/j C 1. By Proposition 5.1, if ! is sufficiently large, we have geo-
desic links �C D f
C

1
; : : : ; 
Cn g � UC; �� D f
�

1
; : : : ; 
�n g � U� and embeddings

 CW EC � Œ0; n�! UC;  �W E� � Œ0; n�! U� which satisfy the conclusion of the
proposition. (At this point the map  C is orientation preserving but  � is orientation
reversing as maps from S � Œ0; n� to N , since EC and E� are quipped with different
orientations on S .)

We claim j is 2–incompressible rel � D �C[�� . This proves the theorem in this
case, since the tube radii of elements of � are bounded below by 0:025, the distance
between every two of them is bounded from below. In addition the length of each
component of � is bounded from above by LB0.S/ and the number of components is
a function of �.S/.

We say a proper map f W R! N from a surface R (or its image f .R/) separates
subsets A;B � N if for every arc �W Œ0; 1�! N that connects A and B , ie �.0/ 2
A; �.1/ 2 B , we have hf .R/; �i ¤ 0 where h � ; � i denotes the algebraic intersection
number. Obviously j jEC and also j jE� separate every 
Ci from every 
�m , i;mD

1; : : : ; n.

If j .S/ is not 2–incompressible rel � , then either the j image of a noncontractible
loop of S is homotopic in N n� to a multiplied meridian of a component of � or the
j –image of a simple nonperipheral loop of S is freely homotopic (in N n� ) into a
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cusp of N . (Note that from now on even when the j –image of a loop is contractible
in N n � , we say it is freely homotopic, in N n � , to a multiplied meridian of a
component of � .) Suppose the j –image of a noncontractible loop of S is freely
homotopic, in N n� , to a multiplied meridian of a component of � . Since j .S/ is
embedded, an easy application of the Loop Theorem shows there exists an embedding
D2 ,!N whose image intersects j .S/ in the image of @D2 which is the j –image of
a noncontractible simple loop on S and this disk either misses � or intersects � at
most once. In other terms, this provides a compression of j .S/ that either misses �
or crosses � at most once at ˛1 2 � . If possible compress again via a compression
meeting � nf˛1g at most once, say at ˛2 2� . After at most j�.S/j such compressions
and deleting 2–spheres, we are left with a collection of properly embedded connected
surfaces. Let R be one of these properly embedded surfaces; then we know R is not a
2–sphere and a noncontractible loop on R is not freely homotopic, in N n�1 , to a
multiplied meridian of a component of �1 , where �1 D � n f˛1; : : : ; ˛sg.s � j�.S/j/.
In particular R is incompressible in N n �1 . An easy application of the Annulus
Theorem shows that if there is a nonperipheral loop on R which is freely homotopic
(within N n�1 ) into a cusp of N , then there is a proper embedding S1� Œ0;1/ ,!N

that does not intersect � , S1 � f0g is a nonperipheral loop on R and S1 � ftg is in
a neighborhood of a cusp of N for t sufficiently large. Using this annulus we can
perform a surgery (in N n�1 ) on R and obtain new properly embedded surface(s). We
call such an operation an annular surgery. If possible we perform more such annular
surgeries, in N n�1 , for the new properly embedded surfaces and other surfaces in
the collection and remove all the 2–spheres. The total number of compressions and
surgeries like the ones described above will be at most j�.S/j and we will be left with
properly embedded connected surfaces S1; : : : ;Sr .r � j�.S/j/, none of which is a
2–sphere and each is 2–incompressible rel �1 .

Since nD 3j�.S/j C 1 � 2�.S/C 1C s , �C \�1 and �� \�1 are nonempty and
each has at least 2j�.S/jC 1 elements. Even more each 
Ci 2 �

C\�1 is separated
from each 
m 2 �

�\�1 by exactly one of the surfaces S1; : : : ;Sr . Using this, it is
easy to see there is one of the surfaces, say S1 , which separates 3 distinct components
of �C \ �1 from 3 distinct components of �� \ �1 . In particular, we can choose
i;m; k; l such that S1 separates 
Ci ; 


C

k
2 �1 from 
�m ; 


�
l
2 �1 with i C 2< k and

mC 2< l .

Now we use Theorem 3.7 to construct a simplicial hyperbolic surface †1 which is �1 –
homotopic to S1 . Note that †1 also separates 
Ci ; 


C

k
from 
�m ; 


�
l

. Let Z1 be the
region homeomorphic to S�I enclosed by  C.EC�fiC2g/ and  �.E��fmC2g/.
Also let Z2�Z1 be the region homeomorphic to S�I enclosed by  C.EC�fiC1g/

and  �.E� � fmC 1g/. Obviously j .S � I/�Z2 �Z1 .
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The region Z2 is connected and contains 
Ci and 
�m and since †1 separates these two,
†1 must intersect Z2 . On the other hand, the diameter of †1 , rel N��0 , is at most
D.�.S/; �0/ and properties of  C and  � imply that the distances, rel N��0 , between
Z2 and boundary components of Z1 are at least D.�.S/; �0/. Hence †1 �Z1 .

But 
C
k

and 
�
l

do not intersect Z1 , and so we can connect them to  C.EC � fng/ and
 �.E��fng/ without intersecting †1 . This shows that †1 separates  C.EC � fng/
and  �.E� � fng/. Thus h�;†1i ¤ 0 for every arc � that connects  C.EC � fng/
and  �.E� � fng/. The region X enclosed by  C.EC�fng/ and  �.E� � fng/ is
homeomorphic to S �I and it follows that the restriction to †1 of the projection from
X to S induces a nonzero degree map from †1 to S and we must have �.†1/��.S/.
This is possible only when we have done no compression and no annular surgery on
j .S/. In other terms j .S/ is 2–incompressible rel � .

We are now left with the case when the j –image of one of the surfaces EC;E� , say
E� , is incompressible to the outside and j .EC/ is a level surface of an L–product
region of �0 –width ! , where ! is chosen as above. In this case, we let �� D∅ and
we choose � D �C as before. Let N 0 denote the 3–manifold obtained by removing
the interiors of cusps of N that are associated to boundary components of xS . Then our
observation and assumption in the beginning of the proof, that j induces a surjective
map on the level of fundamental groups, tells us that N 0 has two ends associated to
EC and E� ; we call them the EC–end and the E�–end respectively. In addition
j .S/\N 0 “separates” these two ends. In a similar fashion to what we defined earlier,
we say a proper map f W R!N from a surface R to N separates a subset A from
the E�–end of N 0 , if given an arc �W Œ0;1/!N 0 that “connects” them, ie �.0/ 2A

and �.t/ exits the E�–end as t!1, hR\N 0; �.Œ0;1//i¤ 0: Then obviously j .S/

separates every 
Ci from the E�–end of N 0 . If j .S/ is not 2–incompressible rel � ,
after at most j�.S/j compressions and annular surgeries like above, we are left with a
collection of properly embedded nonspherical surfaces S1; : : : ;Sr .r � j�.S/j/ and a
subcollection �1 � � of at least 2j�.S/jC 1 closed geodesics that were not touched
by the compressions. Every element of �1 is separated from the E�–end of N 0 by
one of the surfaces S1; : : : ;Sr and in particular one of them, say S1 , separates three
distinct elements of �1 from the E�–end of N 0 . The surface S1 is 2–incompressible
rel �1 and after shrinkwrapping, we find a simplicial hyperbolic surface †1 which
is �1 –homotopic to S1 . An argument similar to the above shows that †1 separates
 C.EC�fng/ from the E�–end of N . Then it follows that there is a nonzero degree
map from †1 to S and therefore �.†1/� �.S/. This will be possible only when we
have had no compression or annular surgery and j .S/ is 2–incompressible rel � .

Note that the above theorem obviously implies Theorem 1.3. We use the above
theorem to prove our main theorem for general pared manifolds and as a consequence
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Theorem 1.2. Given a proper embedding j W M nP !N of a pared manifold .M;P /

into a hyperbolic 3–manifold N , we say the j –image of a free side E has no accidental
parabolics if the j –image of a nonperipheral simple loop on E is not freely homotopic
into a cusp of N .

Theorem 5.4 Given a pared manifold .M;P / with no torus boundary, constants �0

and L, there is a constant ! such that the following holds. Suppose j W M nP !N

is a proper embedding of .M;P / into an oriented hyperbolic 3–manifold N and the
j –image of each free side E of .M;P / is either a level surface of an L–product region
of �0 –width ! or E is incompressible, j .E/ is incompressible to the outside and has
no accidental parabolics. Then there exists a 0:025–separated geodesic link � in the
product regions associated to free sides of .M;P / such that j is 2–incompressible
rel � .

Even more length of each component of � is bounded depending on the topology of
free sides of .M;P / and L and the number of components of � depends only on the
topology of free sides of .M;P /.

Proof Using Theorem 5.3 we know that if ! is sufficiently large, and we choose
a level surface E0 in the middle of a product region associated to a free side E of
.M;P / then there is a 0:025–separated geodesic link �E in this product region such
that E0 is 2–incompressible rel �E . For every free side E of .M;P / let E0 D E

and �E D∅, if E is incompressible, j .E/ is incompressible to the outside and has
no accidental parabolics; otherwise let E0 be the level surface that we just described.
Also let � be the geodesic link that is the union of �E over all free sides of .M;P /.
We claim j is 2–incompressible rel � .

We define X to be the region in N that is enclosed by the surfaces E0 for all free
sides E of .M;P /. Obviously X is a collared neighborhood of j .M nP / and is
homeomorphic to M nP . Assume there is a noncontractible loop in M whose j –
image is freely homotopic (in N n � ) to a multiplied meridian of a component of
� . Then there is a map gW D2! N where the image of @D2 is the j –image of a
noncontractible loop of M and the preimage of � is at most a single point on D2 .
We assume the map g is chosen in a way that g.D2/ intersects @X transversally
and the number of components of g�1.@X / is the minimum among such maps. In
particular every component of g.D2/\ @X will be essential on @X . We claim g.D2/

cannot intersect a component of @X that is 2–incompressible rel � . Otherwise the
intersection would provide an essential loop on that component of @X which would be
homotopic (in N n� ) to a multiplied meridian of a component of � and this would be a
contradiction. We knew that other components of @X are j –images of incompressible
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free sides of .M;P /, whose j –images are incompressible to the outside. The image
of an innermost loop of g�1.@X / is on one such component of @X . However this
loop will bound a disk outside or inside X which is impossible unless the loop is
contractible on @X and we have a contradiction. So g.D2/ cannot intersect @X but
then this implies that g.@D2/ is contractible in X and therefore is contractible in
j .M nP /.

On the other hand assume there is a nonperipheral simple loop on a free side of .M;P /

whose j –image is freely homotopic (within N n� ) into a cusp of N . We already know
that the j –image of every free side is incompressible in N n� and therefore using
the Annulus Theorem, we can assume there is an embedding S1� Œ0;1/ ,!N where
S1 � f0g is the j –image of a nonperipheral simple loop on a free side of .M;P /,
S1 � ftg is in a neighborhood of a cusp of N for t sufficiently large and S1 � .0;1/

does not intersect the j –images of free sides of .M;P /. Then it should be easy to
see that we can deform the embedding S1 � Œ0;1/ ,! N in a way that it does not
intersect @X . This is again by using the fact that components of @X are either j –
images of free sides of .M;P / or are 2–incompressible rel � . We know the j –image
of a free side of .M;P /, which is not 2–incompressible, has no accidental parabolics
and therefore the cylinder S1 � Œ0;1/ must be inside the image of j and S1 � f0g is
the j –image of a peripheral loop in .M;P /. This contradicts our assumption.
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