Volume 9, issue 4 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Thompson's group $F$ and uniformly finite homology

Daniel Staley

Algebraic & Geometric Topology 9 (2009) 2349–2360
Bibliography
1 J Belk, Thompson’s Group F, PhD thesis, Cornell University (2004)
2 I Benjamini, R Lyons, Y Peres, O Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999) 29 MR1675890
3 J Block, S Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992) 907 MR1145337
4 M G Brin, C C Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985) 485 MR782231
5 J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996) 215 MR1426438
6 E Følner, On groups with full Banach mean value, Math. Scand. 3 (1955) 243 MR0079220
7 I Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964) 18 MR0180832
8 A Y Ol’shanskii, M V Sapir, Non-amenable finitely presented torsion-by-cyclic groups, Publ. Math. Inst. Hautes Études Sci. (2002) MR1985031
9 D Savchuk, Some graphs related to Thompson’s group F arXiv:0707.4316