Volume 9, issue 4 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Thompson's group $F$ and uniformly finite homology

Daniel Staley

Algebraic & Geometric Topology 9 (2009) 2349–2360
Bibliography
1 J Belk, Thompson’s Group F, PhD thesis, Cornell University (2004)
2 I Benjamini, R Lyons, Y Peres, O Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999) 29 MR1675890
3 J Block, S Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992) 907 MR1145337
4 M G Brin, C C Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985) 485 MR782231
5 J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996) 215 MR1426438
6 E Følner, On groups with full Banach mean value, Math. Scand. 3 (1955) 243 MR0079220
7 I Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964) 18 MR0180832
8 A Y Ol’shanskii, M V Sapir, Non-amenable finitely presented torsion-by-cyclic groups, Publ. Math. Inst. Hautes Études Sci. (2002) MR1985031
9 D Savchuk, Some graphs related to Thompson’s group F arXiv:0707.4316