Volume 9, issue 4 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Converting between quadrilateral and standard solution sets in normal surface theory

Benjamin A Burton

Algebraic & Geometric Topology 9 (2009) 2121–2174
Abstract

The enumeration of normal surfaces is a crucial but very slow operation in algorithmic 3–manifold topology. At the heart of this operation is a polytope vertex enumeration in a high-dimensional space (standard coordinates). Tollefson’s Q–theory speeds up this operation by using a much smaller space (quadrilateral coordinates), at the cost of a reduced solution set that might not always be sufficient for our needs. In this paper we present algorithms for converting between solution sets in quadrilateral and standard coordinates. As a consequence we obtain a new algorithm for enumerating all standard vertex normal surfaces, yielding both the speed of quadrilateral coordinates and the wider applicability of standard coordinates. Experimentation with the software package Regina shows this new algorithm to be extremely fast in practice, improving speed for large cases by factors from thousands up to millions.

Keywords
normal surfaces, Q-theory, vertex enumeration, conversion algorithm, double description method
Mathematical Subject Classification 2000
Primary: 52B55
Secondary: 57N10, 57N35
References
Publication
Received: 23 February 2009
Accepted: 1 September 2009
Published: 21 October 2009
Authors
Benjamin A Burton
School of Mathematics and Physics
The University of Queensland Brisbane QLD 4072
Australia