Correction to “Topological nonrealization results via the Goodwillie tower approach to iterated loop space homology”

NICHOLAS KUHN

Manfred Stelzer has pointed out that part of Corollary 4.5 of [1] was not sufficiently proved, and, indeed, is likely incorrect as stated. This necessitates a little more argument to finish the proof of the main theorem of [1]. The statement of this theorem, and all the examples, remain unchanged.

55S10; 55S12, 55T20

In [1], the author showed that certain unstable modules over the mod 2 Steenrod algebra couldn’t be realized as the reduced mod 2 cohomology of a space. The modules have the form $\Sigma^n M$, where M is an unstable module of a special sort. The method of proof was to use a 2nd quadrant spectral sequence converging to $H^*(\Omega^n X; \mathbb{Z}/2)$ to show that, were a space X to exist whose cohomology realized $\Sigma^n M$, $H^*(\Omega^n X; \mathbb{Z}/2)$ could not admit a cup product compatible with Steenrod operations.

The spectral sequence for $n > 1$ is a newish one, arising from the Goodwillie tower of the functor $X \mapsto \Sigma^\infty \Omega^n X$, and Section 4 of [1] is devoted to collecting and proving some basic facts about this spectral sequence. I thank Manfred Stelzer for pointing out that part of Corollary 4.5 is likely over optimistic, and certainly was not sufficiently proved.

We assume notation as in [1].

In Corollary 4.5, it was asserted that if $\tilde{H}^*(X; \mathbb{Z}/2) \simeq \Sigma^n M$ with M unstable and also has nontrivial cup products, then in the spectral sequence, one will have $E_3^{-1,*} = E_2^{-1,*} = E_1^{-1,*}$ and $E_2^{-2,*} = E_1^{-2,*}$. My mistake was in not adequately considering possible differentials on elements in $E^{-3,*}_1$ of the form $\sigma^3 L_{n-1} (x \otimes y \otimes z)$. Under the hypotheses on the cup product, the d_1 differential on such terms will be 0, by the same argument given explaining why d_1 is zero on terms of the form $L(x \otimes y)$: by comparison to the classical Eilenberg–Moore spectral sequence. But there is no apparent reason why d_2 need also be zero on such terms. We can only conclude that $E_2^{-1,*} = E_1^{-1,*}$, and $E_2^{-2,*} = E_1^{-2,*}$.

Corollary 4.5 is used at one critical point in the proof of the main theorem given in Section 5. Lemma 5.3 asserts that a certain element in $E_{1,2d+2k+2+1}^{-1,2d+2k+2+1}$ is not a

Published: 7 March 2010 DOI: 10.2140/agt.2010.10.531
boundary. The argument given is that for dimension reasons, no d_r for $r > 2$ could have nonzero image in this bigrading. Implicit is that Corollary 4.5 takes care of d_1 and d_2. In light of the comments above, one needs a new argument for d_2.

It turns out that, except for one special case, a dimension argument still works: $E_3^{-3,2d+2k^2+2}$ contains no elements of the form $\sigma^3 L_{n-1}(x \otimes y \otimes z)$. There are two extreme cases to consider: if x, y, and z are all chosen from the top of N_0, and if x and y are chosen from the bottom of N_0 and z is chosen from the bottom of M_1.

In the first case, $|x| = |y| = |z| = m + 2k$, and so $\sigma^3 L_{n-1}(x \otimes y \otimes z)$ has bidegree $(-3, 3m + 3 \cdot 2^k + 2n + 1)$. In the second case, $|x| = |y| = d + 2^k$ and $|z| = l + 2^{k+1}$, and so $\sigma^3 L_{n-1}(x \otimes y \otimes z)$ has bidegree $(-3, 2d + l + 2^{k+2} + 2n + 1)$.

We are assuming inequality (5–3), which says that $2^k > 4m - 2l + 2n - 2$. One also has that $0 \leq l \leq d \leq m$ and $n \geq 1$. One can then check that, indeed,

$$3m + 3 \cdot 2^k + 2n + 1 < 2d + 2^{k+2} + 2 < 2d + l + 2^{k+2} + 2n + 1,$$

unless we are in the special case $k = 0, n = 1, l = d = m = 0$.

In this final special case, $n = 1$, so we are trying to use the classical Eilenberg–Moore spectral sequence to show that, if M is a $\mathbb{Z}/2$ vector space concentrated in degree 0, there cannot exist a space X with $\tilde{H}^*(X; \mathbb{Z}/2) \simeq \Sigma M \otimes \Phi(0, 2)$, if all cup products are zero. Such a space will necessarily fit into a cofibration sequence of the form

$$\sqrt{S^4} \to \sqrt{\Sigma \mathbb{R} P^2} \to X.$$

We leave it to the reader to check that, by appropriately including S^4 into the first wedge, and projecting out onto a $\Sigma \mathbb{R} P^2$ in the second wedge, one sees that X will have a “subquotient” Y with $\tilde{H}^*(Y; \mathbb{Z}/2) \simeq \Sigma \Phi(0, 2)$, and still with all cup products 0.

Similar to, but simpler than, arguments in Section 6 of [1] (which dealt with $\Sigma^2 \Phi(1, 3)$), our arguments show that such a Y can’t exist. Repressing some suspensions from the notation, Figure 1 shows all of $E_1^{*,*}$ in total degree less than or equal to 4, in the Eilenberg–Moore spectral sequence converging to $H^*(\Omega Y; \mathbb{Z}/2)$.

As cup products are assumed zero, $E_2^{*,*} = E_1^{*,*}$. Furthermore, $d_2(a \otimes a \otimes a) = 0$ (and thus not c), because $a \otimes a \otimes a = (a \otimes a) \ast a$ and d_2 is a derivation with respect to the shuffle product \ast. Thus through degree 4, $F^{-2} H^*(\Omega Y; \mathbb{Z}/2)$ would have a basis given by elements $1, a, b, \delta, \epsilon_1, \epsilon_2, \gamma$, and ω, in respective degrees 0, 1, 2, 2, 3, 3, 4, and 4, and represented by $1, a, b, a \otimes a, a \otimes b, b \otimes a, c$, and $b \otimes b$. The structure of $\Phi(0, 2)$ ($\text{Sq}^1 a = b$, $\text{Sq}^2 b = c$) shows that $\gamma = \beta^2 = a^4$. Furthermore,
Correction to nonrealization results via Goodwillie towers

\[
\begin{array}{c|cccc}
\otimes & a & a & a & a \\
\otimes & a & a & a & b \\
\otimes & b & a & b & c \\
\otimes & a & a & b & \\
\otimes & b & & & \\
= & a & & & \\
\end{array}
\]

Figure 1: $E_1^{s,t}$ when $\tilde{H}^*(Y;\mathbb{Z}/2) \simeq \Sigma \Phi(0,2)$

$Sq^1 \delta = \epsilon_1 + \epsilon_2 = \alpha \cup \beta$, as all three are represented by $a \otimes b + b \otimes a$. One then gets a contradiction, as

$$0 = Sq^1 Sq^1 \delta = Sq^1 (\alpha \cup \beta) = \beta^2 = \gamma \neq 0.$$

We end by observing that $\tilde{H}^*(SU(3)/SO(3);\mathbb{Z}/2) \simeq \Sigma \Phi(0,2)$. Here, of course, cup products are not zero, due to Poincaré duality.

This research was partially supported by the National Science Foundation.

References

Department of Mathematics, University of Virginia
Kerchof Hall, PO Box 400137, Charlottesville VA 22904-4137, USA

njk4x@virginia.edu

http://artsandsciences.virginia.edu/mathematics/people/faculty/njk4x.html

Received: 5 November 2009

Algebraic & Geometric Topology, Volume 10 (2010)