Volume 10, issue 1 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Equivariant $\mathit{sl}(n)$–link homology

Daniel Krasner

Algebraic & Geometric Topology 10 (2010) 1–32
Abstract

For every positive integer n we construct a bigraded homology theory for links, such that the corresponding invariant of the unknot is closely related to the U(n)–equivariant cohomology ring of n1; our construction specializes to the Khovanov–Rozansky sln–homology. We are motivated by the “universal” rank two Frobenius extension studied by M Khovanov for sl2–homology.

Keywords
link homology, categorification, quantum link invariants
Mathematical Subject Classification 2000
Primary: 17B99
Secondary: 57M27
References
Publication
Received: 19 May 2008
Accepted: 30 September 2009
Published: 2 January 2010
Authors
Daniel Krasner
Department of Mathematics
Columbia University
2990 Broadway
New York NY 10027
USA
http://math.columbia.edu/~dkrasner/