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The twisted Floer homology of torus bundles

YINGHUA AI

THOMAS D PETERS

We prove an exact sequence for !–twisted Heegaard Floer homology. As a corollary,
given a torus bundle Y over the circle and a cohomology class Œ!�2H 2.Y IZ/ which
evaluates nontrivially on the fiber, we compute the Heegaard Floer homology of Y

with twisted coefficients in the universal Novikov ring.

57M27; 53D40

1 Introduction

Heegaard Floer homology was introduced by Ozsváth and Szabó in [17; 16]. It
provides powerful invariants for closed oriented 3–manifolds. These invariants come
as a package of abelian groups denoted HFı . There is also a filtered version, called
knot Floer homology, for null-homologous knots defined by Ozsváth and Szabó [15] as
well as Rasmussen [22]. The Heegaard Floer homology groups reflect many interesting
geometric properties of the 3–manifold. For instance, Ozsváth and Szabó showed that
they detect the Thurston seminorm on a closed oriented 3–manifold [14, Theorem 1.1].
As another example, work of Ghiggini [4] and Ni [11] shows that knot Floer homology
detects fiberedness in knots.

Turning to closed fibered 3–manifolds, note that a 3–manifold which admits a fibration
� W Y ! S1 has a canonical Spinc structure, `, obtained as the tangents to the fibers
of � .

Theorem 1.1 (Ozsváth–Szabó [18]) Let Y be a closed 3–manifold which fibers over
the circle, with fiber F of genus g > 1, and let t be a Spinc structure over Y with

hc1.t/; ŒF �i D 2� 2g:

Then for t¤ `, we have that

HFC.Y; t/D 0

HFC.Y; `/Š Z:while
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This is commonly refereed to as the fact that the Floer homology of a surface bundle
(with fiber genus greater than one) is “monic” in its “top-most” Spinc –structure. In
fact, Yi Ni proved a converse to Theorem 1.1:

Theorem 1.2 (Ni [12]) Suppose Y is a closed irreducible 3–manifold, F � Y is a
closed connected surface of genus g > 1. Let HFC.Y; ŒF �; 1�g/ denote the groupM

s2Spinc.Y /
hc1.s/;ŒF �iD2�2g

HFC.Y; s/:

If HFC.Y; ŒF �; 1�g/Š Z, then Y fibers over the circle with F as a fiber.

For a fiber bundle with torus fiber F , HFC.Y; ŒF �; 0/ is always infinitely generated as
an abelian group. However, as we shall show, if one works with Floer homology and
an appropriate version of Novikov coefficients, the Floer homology of a torus bundle
is still “monic” in a certain sense. Much is already known about the Floer homology
of torus bundles. For instance, John Baldwin has already computed the untwisted
Heegaard Floer homologies of torus bundles with b1.Y /D 1 in [2].

In this paper, we use Heegaard Floer homology with twisted coefficients in the universal
Novikov ring, ƒ, of all formal power series with real coefficients of the form

f .t/D
X
r2R

ar tr such that #fr 2R j ar ¤ 0; r � cg<1 for all c 2R:

Given a cohomology class Œ!� 2H 2.Y IZ/, ƒ can be given a ZŒH 1.Y IZ/�–module
structure, and this gives rise to a twisted Heegaard Floer homology HFC.Y Iƒ!/. This
version was first defined by Ozsváth and Szabó in [17, Section 10] and can also be
derived from the definition of general twisted Heegaard Floer homology in [16]. We
will describe this group explicitly in Section 2.1. It is worth noting that Heegaard Floer
homology with twisted coefficients in a certain Novikov ring has already been studied
extensively by Jabuka and Mark [7]. The main theorem we prove in this paper is the
following:

Theorem 1.3 Suppose Y is a closed oriented 3–manifold which fibers over the circle
with torus fiber F , and Œ!� 2 H 2.Y IZ/ is a cohomology class such that !.F / ¤ 0.
Then we have an isomorphism of ƒ–modules

HFC.Y Iƒ!/Šƒ:

Remark 1.4 In the setting of Monopole Floer homology, a corresponding version
of this theorem was proved by Kronheimer and Mrowka in [8, Theorem 42.7.1].
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Theorem 1.3 was also proved using different methods by Lekili [10, Theorem 12]. In
fact, he actually proved the stronger statement that for a torus bundle Y , HFC.Y Iƒ!/
is supported in the canonical Spinc –structure `. Also, Ai and Ni proved in [1] that
the converse of the above theorem also holds, ie the twisted Heegaard Floer homology
determines whether an irreducible 3–manifold is a torus bundle over the circle.

This paper is organized as follows. We provide a review of Heegaard Floer homology
with twisted coefficients in Section 2, including the most pertinent example, S1 �S2 .
In Section 3 we prove a relevant exact triangle for !–twisted Heegaard Floer homology
and prove Theorem 1.3.
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2 Review of twisted coefficients

We recall the construction of Heegaard Floer homology with twisted coefficients; see
Ozsváth and Szabó [16; 14] for more details. To a closed oriented 3–manifold Y we
associate a pointed Heegaard diagram .†; ˛; ˇ ; z/, where † is an oriented surface
of genus g � 1 and ˛ D f˛1; : : : ; ˛gg and ˇ D fˇ1; : : : ; ˇgg are sets of attaching
circles (assumed to intersect transversely) for the two handlebodies in the Heegaard
decomposition. These give a pair of transversely intersecting g–dimensional tori
T˛ D ˛1�� � ��˛g and Tˇ Dˇ1�� � ��ˇg in the symmetric product Symg.†/. Recall
that the basepoint z gives a map sz W T˛ \Tˇ! Spinc.Y /. Given a Spinc structure
s on Y , let S � T˛ \ Tˇ be the set of intersection points x 2 T˛ \ Tˇ such that
sz.x/D s.

Given intersection points x and y in T˛\Tˇ , let �2.x; y/ denote the set of homotopy
classes of Whitney disks from x to y. There is always a natural map from �2.x; x/ to
H 1.Y IZ/ obtained as follows: each � 2 �2.x; x/ naturally gives rise to an associated
two-chain in † whose boundary is a collection of circles among the ˛ and ˇ –curves.
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We then close off this two-chain by gluing copies of the attaching disks for the han-
dlebodies in the Heegaard diagram for Y . The Poincaré dual of this two-cycle is the
associated element of H 1.Y IZ/.

Given a Spinc structure s on Y and a Heegaard diagram .†; ˛; ˇ ; z/ for Y , an
additive assignment is a collection of maps

AD fAx;yW �2.x; y/!H 1.Y IZ/gx;y2S

with the following properties:

� When xD y; Ax;x is the canonical map from �2.x; x/ onto H 1.Y IZ/ defined
above.

� A is compatible with splicing in the sense that if x; y;u 2 S then for each
�1 2 �2.x; y/ and �2 2 �2.y;u/, we have that A.�1 ��2/DA.�1/CA.�2/.

� Ax;y.S ��/DAx;y.�/ for S 2 �2.Symg.†g//.

Additive assignments may be constructed with the help of a complete system of paths
as described in Ozsváth–Szabó [16].

We write elements in the group-ring ZŒH 1.Y IZ/� as finite formal sumsX
g2H 1.Y IZ/

ng � e
g

for ng 2 Z. The universally twisted Heegaard Floer complex

CF1.Y; sIZŒH 1.Y IZ/�;A/

is the free ZŒH 1.Y IZ/�–module on generators Œ x; i � for x 2 S and i 2 Z. The
differential, @1 , is given by

@1Œx; i �D
X
y2S

X
�2�2.x;y/
�.�/D1

# cM.�/ � eA.�/
˝ Œ y; i � nz.�/�:

Here �.�/ denotes the Maslov index of � , the formal dimension of the space M.�/

of pseudo-holomorphic representatives in the homotopy class of � , nz.�/ denotes the
intersection number of � with the subvariety fzg�Symg�1.†/�Symg.†/, and cM.�/

denotes the quotient of M.�/ under the natural action of R. To ensure that the sums
appearing in the definition of the differential are finite, one must restrict to s–admissible
Heegaard diagrams, as defined in Ozsváth–Szabó [17, Section 4.2.2]. Just as in the
untwisted setting, this complex admits a ZŒU �–action via U W Œx; i � 7! Œx; i � 1�. This
gives rise to variants CFC;CF� , and bCF , denoted collectively as CFı . The homology
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groups of these complexes are the universally twisted Heegaard Floer homology groups
HFı .

More generally, given any ZŒH 1.Y IZ/�–module M , we may form Floer homology
groups with coefficients in M by taking HFı.Y; sIM / as the homology of the complex

CFı.Y; sIM;A/ WD CFı.Y; sIZŒH 1.Y IZ/�;A/˝ZŒH 1.Y IZ/�M:

For instance, by taking M D Z, thought of as being a trivial ZŒH 1.Y IZ/�–module,
one recovers the ordinary untwisted Heegaard Floer homology, CFı.Y; s/.

In Ozsváth–Szabó [17], it is proved that the homologies defined above are independent
of the choice of additive assignment A and are topological invariants of the pair .Y; s/.
As in the untwisted setting, these groups are related by long exact sequences:

� � � // cHF.Y; sIM / // HFC.Y; sIM /
U // HFC.Y; sIM / // � � �

� � � // HF�.Y; sIM /
� // HF1.Y; sIM /

� // HFC.Y; sIM / // � � �

Of course, the chain complex CFı.Y; sIM / is obtained from the chain complex in
the universally twisted case, CFı.Y; sIZŒH 1.Y IZ/�/, by a change of coefficients and
hence the corresponding homology groups are related by the universal coefficients
spectral sequence (see for instance Cartan and Eilenberg [3]).

2.1 !–Twisted Heegaard Floer homology

In this section we briefly recall the notion of !–twisted Heegaard Floer homology,
following Ozsváth–Szabó [17; 14].

The universal Novikov ring is defined to be the set of all formal power series with real
coefficients of the form

f .t/D
X
r2R

ar tr such that #fr 2R j ar ¤ 0; r � cg<1 for all c 2R:

It is endowed with the following multiplication, making it into a field:�X
r2R

ar tr

�
�

�X
r2R

br tr

�
D

X
r2R

�X
s2R

asbr�s

�
tr :

Furthermore, by fixing a cohomology class Œ!� 2H 2.Y IR/ we can give ƒ a
ZŒH 1.Y IZ/�–module structure via the ring homomorphism

ZŒH 1.Y IZ/�!ƒX
ah � e

h
7!

X
ah � t

hh[!;ŒY �i:
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When we are interested in its ZŒH 1.Y IZ/�–module structure, we denote ƒ by ƒ! .
This ZŒH 1.Y IZ/�–module structure gives rise to a twisted Heegaard Floer homology
HFC.Y Iƒ!/, which we refer to as !–twisted Heegaard Floer homology. More
concretely, it can be defined as follows (see Ozsváth–Szabó [14, Section 3.1]). Choose
a weakly admissible pointed Heegaard diagram .†; ˛; ˇ ; z/ for Y and fix a 2–cocycle
representative ! 2 Œ!�. Every Whitney disk � in Symg.†/ (for T˛ and Tˇ ) gives rise
to a two-chain Œ�� in Y by coning off partial ˛ and ˇ–circles with gradient trajectories
in the ˛ and ˇ handlebodies. The evaluation of ! on Œ�� depends only on the homotopy
class of � and is denoted

R
Œ�� ! (or sometimes !.Œ��//. The !–twisted chain complex

CFC.Y Iƒ!/ is the free ƒ–module generated by Œx; i � with x 2T˛\Tˇ and integers
i � 0, endowed with the following differential:

@CŒ x; i �D
X

y2T˛\Tˇ

X
f�2�2.x;y/ j�.�/D1g

# cM.�/ Œ y; i � nz.�/� � t
R
Œ�� !

Its homology is the !–twisted Heegaard Floer homology HFC.Y Iƒ!/. Notice that
this group is both a module for ZŒH 1.Y IZ/� and a module for ƒ. Notice also that
although the differential depends on the choice of 2–cocycle representative ! 2 Œ!�, the
isomorphism class of the chain complex only depends on the cohomology class. This
may be seen as follows: suppose we have cohomologous 2–forms !1 and !2 on Y .
Fixing an intersection point x0 2T˛\Tˇ , define ˆW CF1.Y Iƒ!1

/!CF1.Y Iƒ!2
/

by ˆ.Œ x; i �/ D Œ x; i � t .!2�!1/Œ�x � where �x is any element in �2.x0; x/ (the choice
is irrelevant: the associated domains of any two choices would differ by a periodic
domain, which then caps off to a closed surface on which the exact form !2 � !1

evaluates to zero). It is then an easy exercise to see that ˆ induces a chain isomorphism.
An advantage of using this viewpoint is that we avoid altogether the notion of an
“additive assignment”. It is easy to see (using an argument similar to the previous),
that the complex defined above is isomorphic to one obtained by choosing an additive
assignment and then tensoring with the ZŒH 1.Y IZ/�–module ƒ! .

Suppose W W Y1! Y2 is a 4–dimensional cobordism from Y1 to Y2 given by a single
2–handle addition and we have a cohomology class Œ!� 2H 2.W IR/. Then there is
an associated Heegaard triple .†; ˛; ˇ ; 
 ; z/ and 4–manifold X˛ˇ
 representing W

minus a one-complex (see Ozsváth–Szabó [20, Proposition 4.3]). Similar to before, a
Whitney triangle  2 �2.x; y;w/ determines a two-chain in X˛ˇ
 on which we may
evaluate a representative, ! 2 Œ!�. As before, this evaluation depends only on the
homotopy class of  and is denoted by

R
Œ � ! . This gives rise to a ƒ–equivariant map

FC
W I!
W HFC.Y1Iƒ!jY1

/! HFC.Y2Iƒ!jY2
/
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(which is defined only up to multiplication by ˙tc for some c 2 R) defined on the
chain level by

f C
W I!

Œ x; i �D
X

y2T˛\T


X
 2�2.x;‚;y/
�. /D0

#M. / Œ y; i � nz. /� � t
R
Œ � !

where ‚ 2 Tˇ \T
 represents a top dimensional generator for the Floer homology
HF�0.Yˇ
 /Š^

�H 1.Yˇ
 /˝ZŒU � of the 3–manifold determined by the Heegaard
diagram .†;ˇ;
; z/, which is a connected sum #g�1.S1�S2/ (g denotes the genus
of †), and M. / denotes the moduli space of pseudo-holomorphic triangles in the
homotopy class  . This definition may be extended to arbitrary smooth, connected
cobordisms as in Ozsváth–Szabó [20]. These maps may be decomposed as a sum of
maps

FC
W I!
D

X
s2Spinc.W /

FC
W ;sI!

which are summed according to Spinc equivalence classes of triangles, just as in the
untwisted setting. This can be extended to arbitrary (smooth, connected) cobordisms
from Y1 to Y2 as in Ozsváth–Szabó [20]. These maps also satisfy a composition law: if
W1 is a cobordism from Y1 to Y2 and W2 is a cobordism from Y2 to Y3 , and we equip
W1 and W2 with Spinc structures s1 and s2 respectively (whose restrictions agree
over Y2 ), then putting W DW1#Y2

W2 , for any Œ!� 2H 2.W IR/ there are choices of
representatives for the cobordism maps such that:

FC
W2;s2I!jW2

ıFC
W1;s1I!jW1

D

X
fs2Spinc.W / W sjWi

Dsi g

FC
W ;sI!

2.2 Example: S 1 � S 2

In this section we calculate twisted Heegaard Floer homologies of S1 �S2 . We start
with the universally twisted version bHF.S1�S2IZŒ t; t�1�/, where we have identified
ZŒH 1.S1 � S2IZ/� Š ZŒ t; t�1�, the ring of Laurent polynomials. S1 � S2 has a
standard genus-one Heegaard decomposition .†; ˛; ˇ/ where ˛ is a homotopically
nontrivial embedded curve and ˇ is an isotopic translate. For simplicity, we only
compute bHF . We make the diagram weakly admissible for the unique torsion Spinc

structure s0 by introducing cancelling pairs of intersection points between ˛ and ˇ .
This gives a pair of intersection points xC and x� . We next need an additive assignment.
Notice there is an obvious periodic domain consisting of a pair of (nonhomotopic) disks
D1 and D2 connecting xC and x� . When capped off, the periodic domain gives
a sphere representing a generator of H2.S

1 � S2IZ/ Š Z. Hence taking Poincaré
dual we recover a generator of H 1.S1�S2IZ/ŠZ. We place the basepoint z in the
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complement of the disks D1 and D2 . Identifying H 1.S1 �S2IZ/Š Z, an additive
assignment must assign 1 to this domain. One way this can be done is by assigning 1

to D1 and 0 to D2 . Applying the Riemann mapping theorem, and the argument given
on page 1169 of Ozsváth–Szabó [16], we see that the complex bCF.S1�S2IZŒ t; t�1�/

is just:

0 // ZŒ t; t�1�
1�t // ZŒ t; t�1� // 0

Here, the first copy of ZŒ t; t�1� corresponds to xC and the second corresponds to x� .
This complex has homology Z, with trivial ZŒ t; t�1�–action. This gives the universally
twisted Floer homology

bHF.S1
�S2
IZŒ t; t�1�/Š Z;

which is supported only in the torsion Spinc structure s0 .

Now let’s turn to an !–twisted example. We can view S1 �S2 as 0–surgery on the
unknot in S3 . Put � a meridian for the unknot. Then � defines a curve, also denoted �,
in S1�S2 . Put Œ!�D d �PDŒ�� for an integer d . The complex bCF.S1�S2Iƒ!/ is:

0 // ƒ
tc.1�td / // ƒ // 0

for some c 2R. Notice when d ¤ 0, .1� td / is invertible in ƒ. Hence

bHF.S1
�S2
Iƒ!/D

(
0 when d ¤ 0,

ƒ˚ƒ when d D 0.

As a final example, we prove a proposition regarding embedded 2–spheres in 3–
manifolds and !–twisted coefficients.

Lemma 2.1 Let Y1 and Y2 be a pair of closed oriented 3–manifolds and fix cohomol-
ogy classes Œ!i � 2H 2.Yi IZ/. By the Mayer–Vietoris sequence we get a corresponding
cohomology class !1#!2 2H 2.Y1#Y2IZ/ŠH 2.Y1IZ/˚H 2.Y2IZ/. Then we have
an isomorphism of ƒ–modules:

bHF.Y1#Y2Iƒ!1#!2
/ŠbHF.Y1Iƒ!1

/˝ƒbHF.Y2Iƒ!2
/

Proof This follows readily from the methods of proof of Ozsváth–Szabó [16, Propo-
sition 6.1] and the fact that ƒ is a field.

This allows us to prove:

Proposition 2.2 Let S be an embedded nonseparating 2–sphere in a 3–manifold Y .
Suppose that Œ!� 2 H 2.Y IZ/ is a cohomology class such that !.ŒS �/ ¤ 0. Then
HFC.Y Iƒ!/D 0.
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Proof Just as in the untwisted theory, HFC.Y IM / vanishes if and only if bHF.Y IM /

vanishes, so it suffices to show that bHF.Y Iƒ!/ D 0. Notice that Y contains an
S1 � S2 summand in its prime decomposition. Hence Y Š S1 � S2#Y 0 for some
3–manifold Y 0 . Now ! 2 H 2.Y IZ/ Š H 2.S1 �S2IZ/˚H 2.Y 0IZ/ corresponds
to classes !1 2H 2.S1 �S2IZ/ and !2 2H 2.Y 0IZ/ with !1.ŒS �/¤ 0. We already
know that bHF.S1 � S2Iƒ!1

/ D 0 from the above calculation, so the proposition
follows from Lemma 2.1.

3 Exact sequence for !–twisted Floer homology

In this section we first prove a long exact sequence for the !–twisted Heegaard Floer
homologies and then use it to prove Theorem 1.3. It is interesting to notice that
there is a similar exact sequence in Monopole Floer homology with local coefficients;
see Kronheimer, Mrowka, Ozsváth and Szabó [9, Section 5]. Our proof is a slight
modification of the proof of the usual surgery exact sequence in Heegaard Floer
homology. A good exposition of the original proof may be found in Ozsváth–Szabó [21].

Let K � Y be framed knot in a 3–manifold Y with framing � and meridian �.
Given an integer r , let Yr .K/ denote the 3–manifold obtained from Y by performing
Dehn surgery along the knot K with framing � C r�. Let �.K/ denote a small
tubular neighborhood of the knot K and �� Y � �.K/ be a closed curve in the knot
complement. Then for any integer r , � � Y � �.K/ � Yr .K/ is a closed curve in
the surgered manifold Yr .K/, we denote its Poincaré dual by Œ!r � 2H 2.Yr .K/IZ/.
Put I D Œ0; 1�. Note that �� I represents a relative homology class in the cobordisms
W0W Y ! Y0.K/, W1W Y0.K/! Y1.K/ and W2W Y1.K/! Y . So as in Section 2.1
it gives rise to homomorphisms between !–twisted Floer homologies

FC
W0IPD.��I /

W HFC.Y Iƒ!/! HFC.Y0.K/Iƒ!0
/;

FC
W1IPD.��I /

W HFC.Y0.K/Iƒ!0
/! HFC.Y1.K/Iƒ!1

/

FC
W2IPD.��I /

W HFC.Y1.K/Iƒ!1
/! HFC.Y Iƒ!/;and

where ! D PD.�/ 2H 2.Y IZ/. We denote the corresponding maps on the chain level
by

f C
W0IPD.��I /

; f C
W1IPD.��I /

and f C
W2IPD.��I /

respectively.
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Theorem 3.1 The maps above form an exact sequence of ƒ–modules:

(1)

HFC.Y Iƒ!/ // HFC.Y0.K/Iƒ!0
/

uu
HFC.Y1.K/Iƒ!1

/

hh

Furthermore, analogous exact sequences hold for “hat” versions as well.

Proof Find a Heegaard diagram .†g; f˛1; : : : ; ˛gg; fˇ1; : : : ; ˇgg; z/ compatible with
the knot K . More precisely, K lies in the handlebody specified by the ˇ curves and
ˇ1 is a meridian for K . For each i � 2 let 
i ; ıi be exact Hamiltonian isotopies
of ˇi . Let 
1 D �, ı1 D �C � be the 0–framed and 1–framed longitude of the
knot K , respectively. We assume the Heegaard quadruple .†; ˛; ˇ ; 
 ; ı ; z/ is weakly
admissible in the sense of Ozsváth–Szabó [17]. It is easy to see that Y˛ˇ D Y ,
Y˛
 D Y0.K/, Y˛ı D Y1.K/, and Yˇ
 Š Y
ı Š Yˇı Š #g�1S2 �S1 .

Following Ozsváth–Szabó [19], we define a map

h1W CFC.Y Iƒ!/! CFC.Y1.K/Iƒ!1
/

by counting holomorphic rectangles:

h1.Œx; i �/D
X

w2T˛\Tı

X
'2�2.x;‚ˇ
 ;‚
ı;w/

�.'/D0

#M.'/Œw; i � nz.'/� t
R
Œ'� PD.��I /

where here M.'/ denotes the moduli space of (maps of) pseudo-holomorphic rectan-
gles into Symg.†/ allowing the conformal structure on the domain to vary. The notationR
Œ'� PD.��I/ in the above formula requires some explanation. The Heegaard quadruple
.†; ˛; ˇ ; 
 ; ı ; z/ gives rise to a 4–manifold X˛ˇ
ı (as defined in Ozsváth–Szabó
[20]) which can be thought of as the complement of two 1–complexes in the composite
cobordism Y ! Y0 ! Y1 and therefore we can consider PD.� � I/ as a class in
H 2.X˛ˇ
ı/. Similar to the definition of the cobordism maps, the Whitney rectangle '
determines a two-chain in X˛ˇ
ı on which we may evaluate the 2–form PD.�� I/,
denoted

R
Œ'� PD.�� I/. Similarly we define h2W CFC.Y0.K/Iƒ!0

/! CFC.Y Iƒ!/
and h3W CFC.Y1.K/Iƒ!1

/! CFC.Y0.K/Iƒ!0
/.

We claim that h1 is a nullhomotopy of

f C
W1IPD.��I /

ıf C
W0IPD.��I /

:
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To see this, we consider the moduli space of holomorphic rectangles of Maslov index 1.
This moduli space can have six kinds of ends:

(1) Splicing holomorphic discs at one of its 4 corners.

(2) Splicing two holomorphic triangles. Triangles may be spliced in two ways: one
triangle for X˛ˇ
 and one triangle for X˛
ı , or one triangle for X˛ˇı and one
triangle for Xˇ
ı

Notice PD.�� I/ is 0 when restricted to the corners Yˇ
 and Y
ı : in fact, we can
make �� I disjoint from these manifolds since � may be pushed completely into the
˛–handlebody, U˛ , by cellular approximation (see Figure 1).

X˛ˇ
ı

Yˇ
 Y
ı

Y˛ˇ

�� I

Y˛ı

Xˇ
ı

Yˇı

X˛ˇı

�� I

X˛ˇ
 X˛
ı

Y˛


�� I

Figure 1: Schematics of the 4–manifold X˛ˇ
ı and its decompositions

This implies that

CFC.Yˇ
 IƒPD.��I /jYˇ

/Š CFC.Yˇ
 /˝Zƒ

and all differentials are trivial (informally, we are using an “untwisted” count). For
the end coming from splicing two holomorphic triangles, one for X˛ˇı and one for
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Xˇ
ı , it is also true that PD.��I/ is 0 when restricted to the 4–manifold Xˇ
ı (again,
since � may be pushed completely into U˛ ). Therefore we are counting holomorphic
triangles in Xˇ
ı “without twisting”. In Ozsváth–Szabó [16] it is shown that the
untwisted counting of holomorphic triangles in Xˇ
ı is zero. This leaves three terms
remaining.

(1) Splicing a disc at corner Y˛ˇ counted with twisting by PD.�� I/jY˛ˇ D Œ!�,
which corresponds to h1 ı @.

(2) Splicing a disc at corner Y˛ı counted with twisting by PD.�� I/jY˛ı D Œ!1�,
which corresponds to @ ı h1 .

(3) Splicing two holomorphic triangles from X˛ˇ
 and X˛
ı counted with twisting
by PD.�� I/, which corresponds to f C

W1IPD.��I /
ıf C

W0IPD.��I /
.

From the fact that the moduli space must have total end zero, it is clear that the sum of
the above 3 terms are zero, ie h1 is a homotopy connecting

f C
W1IPD.��I /

ıf C
W0IPD.��I /

to the zero map. This shows that

FC
W1IPD.��I /

ıFC
W0IPD.��I /

D 0

on the homology level. The same argument shows that

FC
W2IPD.��I /

ıFC
W1IPD.��I /

D 0 and FC
W0IPD.��I /

ıFC
W2IPD.��I /

D 0:

At last we prove that Equation (1) is exact. Using a homological algebra argument as in
Ozsváth–Szabó [19] we need to show that hıf CCf Cıh is homotopic to the identity
map. This can be done by counting holomorphic pentagons and noticing that we have
a class PD.�� I/ 2H 2.X˛ˇ
ıˇ0/ similar to before (here X˛ˇ
ıˇ0 is the complement
of three 1–complexes in the composite cobordism Y ! Y0 ! Y1 ! Y ) and that
PD.�� I/ is zero when restricted to Yˇ
 ,Y
ı ,Yıˇ0 ,Xˇ
ı , X
ıˇ0 and Xˇ
ıˇ0 , similar
to before. This shows that the counts there are “untwisted”. From this observation one
can easily see that everything in the proof of exactness in [19] can go through to our
twisted version.

In the above theorem, the cohomology classes Œ!r � are integral. In practice one may
need to use real cohomology class as well. In that situation, a given cohomology class
Œ!� 2H 2.Y IR/ can be expressed as a finite sum

Œ!�D
X

ai PD.�i/
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where the �i are closed curves in the knot complement and ai 2R. Each �i can be
viewed as a closed curve in Yr .K/, so the expression

P
ai PD.�i/ also gives a real

cohomology class in Yr .K/, denote by Œ!r � 2H 2.Yr .K/IR/. In the cobordism Wr ,X
ai PD.�i � I/

is a real cohomology class in H 2.Wr IR/, hence gives rise to homomorphism between
!–twisted Floer homologies. With this understood, it is easy to see that an analogue
Theorem 3.1 still holds.

Remark 3.2 The exact sequence in Theorem 3.1 depends on �, not just its Poincaré
dual Œ!� 2H 2.Y IZ/. In fact if we take another closed curve �0 D �C k �� (where
� is a meridian of K ), this doesn’t change Œ!�, but may change Œ!0�; Œ!1� and the
exact sequence. For example, take K � S3 to be the unknot and �D k �� in the knot
complement, then Œ!0� is k times the generator of H 2.S2�S1IZ/. When k ¤ 0, the
corresponding exact sequence for the hat version is:

� � � ! cHF.S3
0
.K/Iƒ!0

/ //

Š

��

cHF.S3
1
.K/Iƒ!1

/ //

Š

��

cHF.S3Iƒ!/! � � �

Š

��
0 // ƒ

1�tk
// ƒ

Clearly it depends on k . When k D 0, the exact sequence is obtained from the
corresponding exact sequence for untwisted Heegaard floer homology by tensoring
with ƒ.

Ozsváth and Szabó [14] used another version of twisted Floer homology HFC.Y I Œ!�/,
which is defined by using the ZŒH 1.Y IZ/�–module ZŒR�. The !–twisted Floer
homology we used in this paper can be viewed as a completion of HFC.Y I Œ!�/. It is
easy to see that there is a similar exact sequence in their context. More precisely, we
have the following exact sequence:

(2)

HFC.Y I Œ!�/ // HFC.Y0.K/I Œ!0�/

uu
HFC.Y1.K/I Œ!1�/

hh

With the above exact sequences in place, we can now prove Theorem 1.3. We merely
mimic Ozsváth and Szabó’s proof of [18, Theorem 5.2].

Proof of Theorem 1.3 For a given cohomology class Œ!� 2H 2.Y IZ/ with !.F /D
d ¤ 0, choose a closed curve � � Y such that its Poincaré dual PD.�/ equals Œ!�.
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Since the mapping class group of a torus is generated as a monoid by right-handed
Dehn twists along nonseparating curves (see Humphries [6] or Ozsváth–Szabó [18,
Theorem 2.2]), we can connect Y to the three-manifold S3

0
.T /, which is obtained

from S3 by performing 0–surgery on the right-handed trefoil, by a sequence of torus
bundles

�i W Y
i
! S1

and cobordisms

Y D Y 0
W0 // Y 1

W1 // � � �
Wn�1 // Y n D S3

0
.T /

such that the monodromy of Y iC1 differs from that of Y i by a single right-handed
Dehn twist along a nonseparating knot Ki which lies in a fiber Fi of �i . The curve
� � Y induces curves �i � Y i which can be assumed disjoint from Ki . In this
way, we get a sequence of cohomology classes !i D PD.�i/ 2H 2.Y i IZ/ such that
!i.Fi/ D d ¤ 0. The cobordism Wi is obtained by attaching a single 2–handle to
Y i�I along the knot Ki with framing �1 (with respect to the framing Ki inherits from
the fiber Fi ). Since �i is disjoint from Ki , �i � I defines a relative homology class
Œ�i � I � 2H2.Wi ; @Wi IZ/ and hence its Poincaré dual gives rise to homomorphisms
between !–twisted Floer homologies:

FC
Wi IPD.�i�I /

W HFC.Y i
Iƒ!i

/! HFC.Y iC1
Iƒ!iC1

/

We claim that these maps are all isomorphisms. Notice that Y iC1D .Y i/�1.Ki/ where
the 0–framing of Ki is defined to be the framing Ki inherits from the fiber, Fi . Now
consider .Y i/0.Ki/. This manifold contains a 2–sphere Si (which is obtained from
Fi by surgering along Ki ) and also an induced curve �i such that �i �Si D d ¤ 0,
therefore HFC..Y i/0.Ki/IƒPD.�i //D 0 by Proposition 2.2. Equation (1) now proves
the claim.

This shows that

HFC.Y Iƒ!/Š HFC.S3
0 .T /IƒPD.�//

where � is the induced curve in S3
0
.T /. We now identify the latter group. For simplicity

we write ! D PD.�/. Identifying QŒH 1.S3
0
.T /IZ/� with QŒ t; t�1�, Ozsváth and

Szabó show in [13] that there is an identification of QŒ t; t�1�–modules:

HFC
k
.S3

0 .T /IQŒ t; t
�1�/Š

8̂<̂
:

Q if k ��1=2 .mod 2/ and k � �1=2;

QŒ t; t�1� if k D�3=2;

0 otherwise.
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Where the left hand group is the universally twisted Heegaard Floer homology of
S3

0
.T /, the Q’s on the right are trivial QŒH 1.S3

0
.T /IZ/�–modules, and QŒ t; t�1� is

a module over itself in the natural way. By definition,

CFC.S3
0 .T /Iƒ!/D CFC.S3

0 .T /IQŒ t; t
�1�/˝QŒ t;t�1�ƒ! :

Notice QŒ t; t�1� is a principal ideal domain, so by the universal coefficient theorem
(see for instance of Hilton and Stammbach [5, Theorem 2.5]) there is an exact sequence:

0! HFC.S3
0 .T /IQŒ t; t

�1�/˝QŒ t;t�1�ƒ!

! HFC.S3
0 .T /Iƒ!/! TorQŒ t;t�1�

1
.HFC.S3

0 .T /;ƒ/! 0

We need only compute TorQŒ t;t�1�
q .Z; ƒ!/ for qD 0; 1. Start with the free QŒ t; t�1�–

resolution of Z:

0 // QŒ t; t�1�
1�t // QŒ t; t�1� // Z // 0

Tensoring this complex over QŒ t; t�1� with ƒ! and augmenting gives the complex:

0 // ƒ
1�td

// ƒ // 0

Since we’re working over ƒ and d ¤ 0, the middle map is an isomorphism and we
see that

TorZŒ t;t�1�
q .Z; ƒ!/D 0

for all q . From the above exact sequence, we obtain an isomorphism of ƒ–modules
HFC.S3

0
.T /Iƒ!/Šƒ. Therefore

HFC.Y Iƒ!/Šƒ:

It is worth noting that alternate proofs of this theorem and Proposition 2.2 are possible
through the use of inadmissible diagrams, which have been explored by Wu in [23] as
well as by Lekili in [10].
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[19] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers,
Adv. Math. 194 (2005) 1–33 MR2141852

Algebraic & Geometric Topology, Volume 10 (2010)

http://www.ams.org/mathscinet-getitem?mr=1731415
http://dx.doi.org/10.1353/ajm.0.0016
http://www.ams.org/mathscinet-getitem?mr=2450204
http://www.ams.org/mathscinet-getitem?mr=0346025
http://www.ams.org/mathscinet-getitem?mr=547453
http://dx.doi.org/10.2140/gt.2008.12.1557
http://www.ams.org/mathscinet-getitem?mr=2421135
http://www.ams.org/mathscinet-getitem?mr=2388043
http://dx.doi.org/10.4007/annals.2007.165.457
http://www.ams.org/mathscinet-getitem?mr=2299739
http://arxiv.org/abs/0903.1773
http://arxiv.org/abs/0903.1773
http://dx.doi.org/10.1007/s00222-007-0075-9
http://www.ams.org/mathscinet-getitem?mr=2357503
http://dx.doi.org/10.1353/ajm.0.0064
http://www.ams.org/mathscinet-getitem?mr=2543922
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://www.ams.org/mathscinet-getitem?mr=1957829
http://dx.doi.org/10.2140/gt.2004.8.311
http://www.ams.org/mathscinet-getitem?mr=2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://www.ams.org/mathscinet-getitem?mr=2113020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://www.ams.org/mathscinet-getitem?mr=2113019
http://dx.doi.org/10.1215/S0012-7094-04-12111-6
http://dx.doi.org/10.1215/S0012-7094-04-12111-6
http://www.ams.org/mathscinet-getitem?mr=2031164
http://dx.doi.org/10.1016/j.aim.2004.05.008
http://www.ams.org/mathscinet-getitem?mr=2141852


The twisted Floer homology of torus bundles 695
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