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Degree ˙1 self-maps and self-homeomorphisms
on prime 3–manifolds

HONGBIN SUN

We determine all closed orientable geometrizable prime 3–manifolds that admit a
degree 1 or �1 self-map not homotopic to a homeomorphism.

57M05, 57M50; 20F34

1 Introduction

1.1 Background

All manifolds in this paper are closed and orientable unless stated otherwise. Definitions
of terminology not stated here can be found in Hempel [5] and Hatcher [2].

Given a closed oriented n–manifold M , it is natural to ask whether all the degree ˙1

self-maps of M can be homotopic to homeomorphisms.

If the property stated above holds for M , we say M has property H. In particular,
if all the degree 1 (�1) self-maps of M are homotopic to homeomorphisms, we
say M has property 1H (�1H). M has property H if and only if M has both
property 1H and property �1H. Observe that if M admits an orientation-reversing
self-homeomorphism, then M has property 1H if and only if M has property �1H.
So we need only consider property 1H in most of this paper.

The first positive result on property H is the Hopf theorem: two self-maps of Sn are
homotopic if and only if they have the same mapping degree. The result that every 1–
and 2–dimensional manifold has property H is also well-known: since its fundamental
group is Hopfian (see Hempel [4]), all automorphisms of �1.M

2/ can be realized by
a homeomorphism [5, 13.1], and every M 2 except S2 is a K.�; 1/.

For dimension > 3, it seems difficult to get general results, since there are no classi-
fication results for manifolds of dimension n > 3, and the homotopy groups can be
rather complicated.

Now we restrict to dimension 3. From now on, unless stated otherwise, all manifolds
in the following are 3–manifolds. Thurston’s geometrization conjecture [20], which
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seems to be confirmed, implies that closed oriented 3–manifolds can be classified in a
reasonable sense. So we can check whether 3–manifolds have property H case-by-case.

Thurston’s geometrization conjecture claims that each Jaco–Shalen–Johannson piece
of a prime 3–manifold supports one of the eight geometries, E3 , H 3 , S3 , S2 �E1 ,
H 2 �E1 , ePSL.2;R/, Nil, Sol (for details see Thurston [20] and Scott [19]). Call
a closed orientable 3–manifold M geometrizable if each prime factor of M meets
Thurston’s geometrization conjecture. All 3–manifolds discussed in this paper are
geometrizable, and we may sometimes omit “geometrizable”.

In this paper, we would like to determine which prime 3–manifolds, the basic part of
3–manifolds, have property H.

Since all degree ˙1 maps f on M induce surjections on its fundamental group, and
the fundamental groups of geometrizable 3–manifolds are residually finite (therefore,
Hopfian) (for example, see Hempel [5, 15.13; 6, 1.3] or Kalliongis and McCullough [11,
3.22]), f�W �1.M /! �1.M / is an isomorphism.

Hyperbolic 3–manifolds, which seem to be the most mysterious, have property H by
the celebrated Mostow rigidity theorem [13]. By Waldhausen’s theorem on Haken
manifolds (see Hempel [5, 13.6]), all Haken manifolds also have property H.

These two theorems cover most cases of prime geometrizable 3–manifolds, including
manifolds with nontrivial JSJ decomposition, hyperbolic manifolds and Seifert mani-
folds with incompressible surface. It is also easy to see that S2 �S1 has property H
by elementary obstruction theory. So the remaining cases are:

� (Class 1) M 3 supporting the S3 –geometry (M D S3=� , where � <O.4/Š

IsoC.S3/ acts freely on S3 ).

� (Class 2) Seifert manifolds M 3 supporting the Nil or DPSL.2;R/ geometries
with orbifold S2.p; q; r/.

Essentially, it is known that the manifolds in Class 2 have property H. However, the
author can’t find a proper reference. We can copy the proof of [19, Theorem 3.9]
word-for-word to prove this result.

1.2 Main Results

Mainly, the aim of this paper is to determine which S3 –manifolds (manifolds in Class 1)
have property H.
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According to [16] or [19], the fundamental group of a 3–manifold supporting the
S3 –geometry belongs to one of the following eight types: Zp , D�

4n
, T �

24
, O�

48
,

I�
120

, T
0

8�3
q ,D0n0�2q and Zm ��1.N /, where N is a S3 –manifold, �1.N / belongs

to one of the previous seven types and j�1.N /j is coprime to m. The cyclic group Zp

is realized by lens space L.p; q/. Each group in the remaining types is realized by a
unique S3 –manifold.

Theorem 1.1 For M supporting the S3 –geometry, M has property 1H if and only
if M belongs to one of the following classes:

(i) S3 .

(ii) L.p; q/ satisfying one of the following:
(a) p D 2; 4;p

e1

1
; 2p

e1

1
.

(b) p D 2s .s > 2/; 4p
e1

1
;p

e1

1
p

e2

2
; 2p

e1

1
p

e2

2
, q2 � 1 mod p and q ¤˙1.

(iii) �1.M /D Zm �D�
4k

, .m; k/D .1; 2k/; .p
e1

1
; 2k/; .1;p

e2

2
/ or .pe1

1
;p

e2

2
/.

(iv) �1.M /DD02kC2p
e1
1

.

(v) �1.M /D T �
24

or Zp
e1
1
�T �

24
.

(vi) �1.M /D T 08�3kC1 .

(vii) �1.M /DO�
48

or Zp
e1
1
�O�

48
.

(viii) �1.M /D I�
120

or Zp
e1
1
� I�

120
.

Here p1;p2 are odd prime numbers, and e1; e2; k;m are positive integers.

By [3] and elementary number theory, among all the S3 –manifolds, only S3 and lens
spaces admit degree �1 self-maps. So when considering property �1H, we can restrict
the manifold to be L.p; q/.

Proposition 1.2 L.p; q/ has property �1H if and only if L.p; q/ belongs to one of
the following classes:

(i) 4jp or some odd prime factor of p is of the form 4kC 3.

(ii) q2��1 mod p and pD 2;p
e1

1
; 2p

e1

1
, where p1 is a prime number of the form

4kC 1.

Synthesizing Mostow’s theorem, Waldhausen’s theorem, Theorem 1.1 and Proposition
1.2, we get the following consequence:
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Theorem 1.3 Suppose M is a prime geometrizable 3–manifold.

(1) M has property 1H if and only if M belongs to one of the following classes:
(i) M does not support the S3 –geometry.

(ii) M is in one of the classes stated in Theorem 1.1.

(2) M has property �1H if and only if M belongs to one of the following classes:
(i) M does not support the S3 –geometry.

(ii) M ¤L.p; q/ and supports the S3 –geometry.
(iii) M is in one of the classes stated in Proposition 1.2.

(3) M has property H if and only if M belongs to one of the following classes:
(i) M does not support the S3 –geometry.

(ii) M is in one of the classes other than (ii) stated in Theorem 1.1.
(iii) L.p; q/ satisfying one of the following:

(a) p D 2; 4.
(b) p D p

e1

1
; 2p

e1

1
, where p1 is 4kC 3 type prime number.

(c) p D p
e1

1
; 2p

e1

1
, where p1 is 4k C 1 type prime number and q2 �

�1 mod p .
(d) p D 2s .s > 2/; 4p

e1

1
, q2 � 1 mod p , q ¤˙1.

(e) p D p
e1

1
p

e2

2
; 2p

e1

1
p

e2

2
, where one of p1;p2 is 4k C 3 type prime

number, q2 � 1 mod p , q ¤˙1.

In Section 2 we give some definitions which will be used later and transform our main
question to the computation of Out.�1.M // and the mapping class group of M . In
Section 3, we determine which lens spaces have property H. In Section 4, we compute
Out.�1.M // by combinatorial methods. Mapping class groups of S3 –manifolds are
computed in Section 5. Although the mapping class groups of S3 –manifolds are
determined by Boileau and Otal [1] and McCullough [12] and some partial results are
given by Hodgson and Rubinstein [8], Rubinstein [17] and Rubinstein and Birman [18],
we give a complete computation based on the fact that all self-homeomorphisms on an
S3 –manifold M ¤L.p; q/ can be isotopic to a fiber-preserving homeomorphism. In
Section 6, Table 1 shows the computation results.

2 Definitions and preliminaries

Definition 2.1 Suppose an oriented 3–manifold M 0 is a circle bundle with a given
section F , where F is a compact surface with boundary components c1; : : : ; cn;

cnC1; : : : ; cnCm with n> 0. On each boundary component of M 0 , orient ci and the
circle fiber hi so that the product of their orientation on ci � S1 matches with the
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induced orientation of M 0 . Now attach n solid tori Ni to the first n boundary tori of
M 0 so that the meridian of Ni is identified with slope li D ˛ici Cˇihi with ˛i > 0.
Denote the resulting manifold by M , which has the Seifert fiber structure (foliated
by circles) extended from the circle bundle structure of M 0 , and the core of Ni is a
“singular fiber” for ˛i > 1.

We will denote this Seifert fiber structure of M by f.˙g;m/I r1; : : : ; rng where g is
the genus of the section F of M , where the sign is C if F is orientable and � if F

is nonorientable. Here “genus” of nonorientable surfaces means the number of RP2

connected summands and ri D ˇi=˛i , while .˛i ; ˇi/ is the index of the corresponding
singular fiber.

Almost all Seifert manifolds we consider in this paper have structure f.0; 0/I r1; : : : ; rng

with n�3. For simplicity, we denote the structure f.0; 0/I r1; : : : ; rng by fbI r 0
1
; : : : ; r 0ng,

where 0 < r 0i < 1,r 0i � ri mod 1, and
Pn

iD1 ri D bC
Pn

iD1 r 0i . This does not bring
about confusion since f.0; 0/I r1; : : : ; rng is fiber-preserving, orientation-preserving
homeomorphic to f.0; 0/I r 0

1
; : : : ; r 0n; bg, and the form fbI r 0

1
; : : : ; r 0ng is unique.

When we identify every S1 fiber of M to a point, we get a “2–manifold” O.M /

with singular points corresponding to the singular fibers, which is called an orbifold.
Although there is a standard definition for orbifold (see Scott [19]), we do not state it
here, but just think of an orbifold as a Hausdorff space that is locally isomorphic to
quotient space of Rn by a finite group action. More simply, the orbifolds we consider
in this paper are just surfaces with singular points, where every neighborhood of a
singular point is isomorphic to D2=Zn (the action is 2�=n rotation). When we delete a
neighborhood of all singular points, the remaining part of O.M / can be identified with
the section F in Definition 2.1. An orientation on O.M / is induced by an orientation
on the section F .

According to Orlik [16] or Scott [19], the fundamental group of a 3–manifold with
the S3 –geometry structure belong to one of the following eight types: Zp , D�

4n
,

T �
24

, O�
48

, I�
120

, T
0

8�3
q ,D0n0�2q and Zm�G where G belongs to one of the previous

seven types and jGj is coprime to m. All the manifolds are uniquely determined by
the fundamental group except when �1.M / D Zp , in this case M D L.p; q/ for
some q . The fundamental groups and Seifert structures of these manifolds are given
by Orlik [16]:

Theorem 2.2 The manifolds supporting S3 –geometry are classified as follows:

(1) M D fbIˇ1=˛1; ˇ2=˛2g, here we allow ˛i D 1; ˇi D 0, are lens spaces with
�1.M /Š Zp , where p D jb˛1˛2C˛1ˇ2C˛2ˇ1j.
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(2) M D fbI 1=2; 1=2; ˇ3=˛3g are called prism manifolds, let mD .bC1/˛3Cˇ3 ;
if .m; 2˛3/D1, then �1.M /ŠZm�D�4˛3

ŠZm�fx;y jx
2D .xy/2Dy˛3g; if

.m; 2˛3/¤1, then mD2km0 , we have �1.M /ŠZm0�D02kC2˛3
ŠZm0�fx;y j

x2kC2

D 1;y˛3 D 1;xy D y�1xg.

(3) M D fbI 1=2; ˇ2=3; ˇ3=3g, let mD 6bC3C2.ˇ2Cˇ3/; if .m; 12/D 1, then
�1.M /ŠZm�T � ŠZm�fx;y j x

2 D .xy/3 D y3;x4 D 1g; if .m; 12/¤ 1,
m D 3km0 , then �1.M / Š Zm0 � T 0

8�3k Š Zm0 � fx;y; z j x2 D .xy/2 D

y2; z3kC1

D 1; zxz�1 D y; zyz�1 D xyg.

(4) M D fbI 1=2; ˇ2=3; ˇ3=4g, let m D 12bC 6C 4ˇ2C 3ˇ3 , then .m; 24/ D 1,
�1.M /Š Zm �O� Š Zm � fx;y j x

2 D .xy/3 D y4;x4 D 1g.

(5) M D fbI 1=2; ˇ2=3; ˇ3=5g, let mD 30bC15C10ˇ2C6ˇ3 , then .m; 60/D 1,
�1.M /Š Zm � I� Š Zm � fx;y j x

2 D .xy/3 D y5;x4 D 1g.

Remark The Seifert structures on lens spaces are not unique, while the orbifolds are
all S2 with at most two singular points. The prism manifolds also have another Seifert
structure with orbifold P2 with one singular point. The other S3 –manifolds have
unique Seifert structures.

Since a degree ˙1 self-map f of M is surjective on fundamental group and �1.M /

is finite, f induces an isomorphism on �1.M /. Therefore we need only consider
self-maps that induce isomorphism on �1.M /.

All the degrees of self-maps that induce isomorphisms on �1.M / are given in Hayat-
Legrand et al [3]:

Proposition 2.3 For a 3–manifold M supporting the S3 geometry,

Diso.M /D
˚

k2
C l j�1.M /j

ˇ̌
gcd.k; j�1.M /j/D 1

	
:

Here Diso.M /D fdeg.f / j f W M !M; f induces isomorphism on �1.M /g.

Any S3 –manifold M ¤L.p; q/ satisfies j�1.M /j D 4k , and any odd square number
has form 4lC1. So M does not admit any degree �1 self-map, and we only consider
property 1H in most of this paper.

Since the second homotopy group of a S3 –manifold is trivial, the existence of self-
mappings can be detected by obstruction theory. P Olum showed in [15] the first and
in [14] the second part of the following proposition.
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Proposition 2.4 Let M be an orientable 3–manifold with finite fundamental group
and trivial �2.M /. Every endomorphism �W �1.M / ! �1.M / is induced by a
(basepoint-preserving) continuous map f W M !M .

Furthermore, if g is also a continuous self-map of M such that f� is conjugate to g� ,
then degf � deg g mod j�1.M /j; furthermore, f and g are homotopic to each other
if and only if f� is conjugate to g� and deg.f /D deg.g/.

According to this proposition, homotopic information of self-maps can be completely
determined by degree and induced homomorphism on �1 .

We also need a little elementary number theory:

Definition 2.5 Let Up D fall units in the ring Zpg, U 2
p D fa

2 j a 2 Upg, which is a
subgroup of Up . Denote jUp=U 2

p j by ‰.p/.

The following theorem in number theory can be found in Ireland and Rosen [9, page 44]:

Lemma 2.6 Let p D 2ap
e1

1
� � �p

el

l
be the prime decomposition of p . Then Up Š

U2a �Up
e1
1
� � � � �Up

el
l

, where Up
ei
i

is the cyclic group of order p
ei�1
i .pi � 1/. The

group U2a is the cyclic group of order 1 and 2 for aD 1 and 2, respectively, and if
a> 2, then it is the product of one cyclic group of order 2 and another of order 2a�2 .

By Lemma 2.6 and elementary computation, we get:

Lemma 2.7 Let p D 2ap
a1

1
� � �p

al

l
be the prime decomposition of p . Then

‰.p/D

8̂<̂
:
.Z2/

l if aD 0; 1;

.Z2/
lC1 if aD 2;

.Z2/
lC2 if a> 2:

This Lemma is useful in the computation process that determines which S3 –manifolds
have property H.

If j�1.M /j D p , denote U 2.j�1.M /j/ by U 2
p . Then we define group homomorphism

HW Out.�1.M //!U 2.j�1.M /j/: for all � 2Out.�1.M //, take a self-map f of M ,
such that f� 2 � , and define H.�/D deg.f / 2 U 2.j�1.M /j/.

By Proposition 2.3, deg.f /2U 2.j�1.M /j/ (after mod j�1.M /j). By Proposition 2.4,
H is well defined. By Proposition 2.3 again, H is surjective.
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Let K.M /D f� 2 Out.�1.M // j 9f W M !M; f� 2 �; deg.f /D 1g. We can see
that K.M /D ker.H/, jK.M /j D jOut.�1.M //j=jU 2.j�1.M /j/j. By Proposition 2.4,
K.M / corresponds bijectively with

fdegree 1 self-maps f on M g = homotopy:

Let K0.M /Df� 2Out.�1.M // j 9f W M !M an orientation-preserving homeomor-
phism, f� 2 �g, which is a subgroup of K.M /. K0.M / corresponds bijectively with
the orientation-preserving subgroup of mapping class group of M :

MCGC.M /D forientation-preserving homeomorphism f on M g = homotopy

For an S3 –manifold M ¤ L.p; q/, M does not admit a degree �1 self-map, so
MCGC.M /DMCG.M /.

Remark For the standard definition of MCG.M /, we should use isotopy, not homo-
topy. However, [1] shows that, for self-homeomorphisms on S3 –manifolds, homotopy
implies isotopy.

To determine whether M has property 1H, we need only determine whether K.M /D

K0.M /, or whether jK.M /j D jMCGC.M /j. For this, define the realization coeffi-
cient of M :

RC.M /D
jK.M /j

jK0.M /j
D

jOut.�1.M //j

jU 2.j�1.M /j/j � jMCGC.M /j
:

So M has property 1H if and only if RC.M /D1. We need only compute jOut.�1.M //j

and jMCGC.M /j, the computations are completed in Section 4 and Section 5. Sec-
tion 4 only contains algebraic computations; we will give geometric generators of
MCGC.M / in Section 5, and determine the relations by results in Section 4.

Since L.p; q/ may also admit degree �1 self-maps, and it admits different Seifert
structures, we will use a different way to determine MCG.M / in this case. Section 3
will deal with the lens space case first.

3 Property H of lens spaces

Suppose L.p; q/ is decomposed as L.p; q/DN1 [T N2 , where each Ni is a solid
torus and T D @N1 D @N2 is the Heegaard torus. Let l be the core circle of N1 .

The following result can be found in [2, Theorem 2.5]:

Lemma 3.1 For any homeomorphism f W L.p; q/!L.p; q/, f .T / is isotopic to T .
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Lemma 3.2 Suppose f is a degree 1 self-map on L.p; q/, f is homotopic to an
orientation-preserving homeomorphism if and only if

f�.l/D

(
˙l if p − .q2� 1/;

˙l;˙ql if p j .q2� 1/:

Proof By Proposition 2.4, we need only determine all the possible n 2 Zp , such that
there is an orientation-preserving homeomorphism f of L.p; q/, such that f�.l/D nl .

Suppose f is an orientation-preserving homeomorphism of L.p; q/. By Lemma 3.1,
f .T / is isotopic to T . So we can isotope f so that f .T /D T . In this case, f sends
Ni to Ni (i D 1; 2) or f exchanges Ni .

If f exchanges Ni , suppose Ti D @Ni , and T1 is pasted to T2 by a linear homeomor-
phism A. Then there is the commutative diagram

T1

f jT1
����! T2

A

??y ??yA�1

T2

f jT2
����! T1:

Since A pastes the two solid tori to L.p; q/, A can be written as�
r p

s q

�
;

where rq� sp D 1. Also f jTi can be extended to a homeomorphism from Ni to Nj

(i ¤ j ), so f jTi sends meridian to meridian. Since f preserves the orientation, f jTi

has the form

˙

�
1 0

m �1

�
:

From A ıf jT2
ıAD f jT1

, we have�
r2Cmrp� sp rpCmp2�pq

sr Cmrp� sq spCmrp� q2

�
D

�
r p

s q

��
1 0

m �1

��
r p

s q

�
D˙

�
1 0

n �1

�
:

So rpCmp2�pq D 0, and then q� r Dmp; r � q mod p . Since rq� sp D 1, we
have q2 � 1 mod p . In this case, f�.l/D˙r l D˙ql .

On the other hand, when q2 D npC 1, taking r D q; s D n,

f jT1 D f jT2 D

�
1 0

0 �1

�
:
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Then we can obtain an orientation-preserving homeomorphism f on L.p; q/ with
f�.l/D˙ql .

If f sends Ni to Ni as a homeomorphism, then f must send l to a longitude of N1

and so does f� in �1.L.p; q//: f�.l/D˙l . The homeomorphisms can be realized
as in the last case.

Thus we can compute RC.M / directly:

Proposition 3.3 For the lens space L.p; q/, Out.�1.L.p; q///Š Out.Zp/Š Up ,

MCGC.L.p; q//D

8̂<̂
:
feg if p D 2;

Z2 if p − .q2� 1/ or q D˙1;

Z2 �Z2 if p j .q2� 1/ and q ¤˙1;

RC.L.p; q//D

8̂<̂
:

1 if p D 2;

‰.p/=2 if p − .q2� 1/ or q D˙1;

‰.p/=4 if p j .q2� 1/ and q ¤˙1:

The L.p; q/ part of Theorem 1.1 follows from this Proposition and Lemma 2.7.

Lemma 3.4 L.p; q/ admits a degree �1 self-map if and only if 4 − p and all the odd
prime factors of p are of the form 4kC 1.

Proof By Proposition 2.3, we need only determine for which p , there is an integer q ,
such that q2 ��1 mod p .

Suppose 4 − p and all odd prime factors of p are of the form 4kC 1. By Lemma 2.6,
Up is direct sum of some order 4k cyclic groups and the order of �1 in Up is 2, so q

exists.

On the other hand, if 4 j p , there is no q such that q2 ��1 mod p , since odd squares
are congruent to 1 mod 4. If some prime factor p1 of p is of the form 4kC 3, then
q4kC2 � 1 mod p1 , by Fermat’s Little Theorem, and so again there is no q such that
q2 ��1 mod p .

By the same computation as Lemma 3.2, we get:

Lemma 3.5 L.p; q/ admits an orientation-reversing homeomorphism if and only if
q2 ��1 mod p . In this case, a degree �1 self-map f on L.p; q/ is homotopic to an
orientation-reversing homeomorphism if and only if f�.l/D˙ql .

If L.p; q/ admits an orientation-reversing homeomorphism, then L.p; q/ has property
1H if and only if L.p; q/ has property �1H. Synthesizing Lemma 3.4, Lemma 3.5
and Proposition 3.3, we get Proposition 1.2.
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4 Out.�1.M // of S 3–manifolds

We are only interested in the order of Out.�1.M //, so we only compute the order
here. Moreover, we also give a presentation of Out.�1.M //, since it will help us in
Section 5. All the arguments in this section are combinatorial.

If .m; jGj/D 1, we have Out.Zm�G/ŠOut.Zm/�Out.G/ŠUm�Out.G/. So the
main aim of this section is to compute Out.G/ for G in Theorem 2.2 without cyclic
summands.

We know that SU.2/�O.4/Š IsoC.S3/. Let pW SU.2/!O.3/ be the canonical two-
to-one Lie group homomorphism. T �;O�; I� and D�4˛3

are the preimage of T;O; I

and D2˛3
respectively. T;O; I are the symmetry groups of regular tetrahedron, octagon

and icosahedron (isomorphic to A4;S4;A5 respectively), and D2˛3
is the dihedral

group.

Case 1 G Š T � or O� or I� .

By [7, VIII-2], Out.T �/Š Out.O�/Š Out.I�/Š Z2 . The elements in Out.G�/ not
equal to identity can be presented as follows (we can lift an element of Out.G/ to
Out.G�/ to obtain the presentation (G Š T;O; I ), and we will talk more about this
method in the next case):

T � W �.x/D x3; �.y/D y5;

O� W �.x/D x3; �.y/D y5;

I� W �.x/D xyx�1y�1x�1; �.y/D x2y2:

Case 2 G ŠD�4˛3
Š fx;y j x2 D .xy/2 D y˛3g.

We determine Out.D2˛3
/ first. D2˛3

Šfx;y jx2D .xy/2Dy˛3 D 1g. Every element
in D2˛3

can be presented by yn or xyn and order of xyn is 2.

If ˛3 D 2, D�4˛3
ŠQ8 Š f˙1;˙i;˙j ;˙kg, Out.D�

8
/Š S3 . So we assume ˛3 > 2

in the following.

By elementary combinatorial arguments, we can get the following consequence (the
condition ˛3 > 2 is used here):

(1) When ˛3 is odd, Out.D2˛3
/ is presented by �.x/ D x; �.y/ D yk , where

1� k � ˛3=2; .k; ˛3/D 1.

(2) When ˛3 is even, Out.D2˛3
/ is presented by �.x/D x; �.y/D yk I �.x/D

xy; �.y/D yk , where 1� k � ˛3=2; .k; ˛3/D 1.

Algebraic & Geometric Topology, Volume 10 (2010)



878 Hongbin Sun

For pW D�4˛3
!D2˛3

, ker.p/ is the center of D�4˛3
. Every automorphism �0 on D�4˛3

sends the center to the center, so induces an automorphism � on D2˛3
. If two induced

automorphism �1; �2 are conjugate in D2˛3
, then two automorphisms �0

1
; �0

2
on D�4˛3

are conjugate. So we can work in this process: given a presentation of Out.D2˛3
/,

�1; : : : ; �k , list all the possible liftings of every �i (there are at most four), and check
whether there are any pair of liftings of the same �i are conjugate with each other.
Then we get a presentation of Out.D�4˛3

/.

Lemma 4.1 A presentation of Out.D�4˛3
/ is given by the following:

(1) ˛3 D 2, jOut.D�
8
/j D 6:

id; �.x/ D x; �.y/ D xy ; �.x/ D y; �.y/ D x ; �.x/ D y; �.y/ D xy ;
�.x/D xy; �.y/D x ; �.x/D xy; �.y/D y .

(2) ˛3 odd, jOut.D�4˛3
/j D jU4˛3

j=2:
�.x/ D x; �.y/ D yk ; �.x/ D x3; �.y/ D yk , here 1 � k � ˛3; .k; ˛3/ D

1; k odd.

(3) ˛3 > 2 even, jOut.D�4˛3
/j D jU4˛3

j=2:
�.x/D x; �.y/D yk ; �.x/D x3y; �.y/D yk , here 1� k � ˛3; .k; ˛3/D 1.

Case 3 G ŠD02kC2˛3
Š fx;y j x2kC2

D y˛3 D 1;xy D y�1xg, here ˛3 is odd.

In D02kC2˛3
, every element can be written as xuyv . Since the subgroup generated by y

is product of normal Sylow subgroups of D02kC2˛3
, it is a characteristic subgroup. So

for any automorphism � of D02kC2˛3
, there is �.x/Dxuyv; �.y/Dyw , .w; ˛3/D 1.

To guarantee � is a homomorphism, u should be odd, and it is enough for � to
be an automorphism. The inversion of � is �0.x/ D xu0yv

0

; �0.y/ D yw
0

, uu0 �

1 mod 2kC2; ww0 � 1 mod ˛3; vC v
0w � 0 mod ˛3 . Aut.D02kC2˛3

/ is given as

�.x/D xuyv; �.y/D yw; .w; ˛3/D 1;u odd:

So jAut.D02kC2˛3
/j D 2kC1˛3jU˛3

j.

For every automorphism �.x/ D xuyv; �.y/ D yw , conjugate by xpyq , we get
�0.x/ D xuy.�1/p.v�2q/; �0.y/ D y.�1/pw . So the inner automorphism group of
D02kC2˛3

has order 2˛3 .

So we get jOut.D02kC2˛3
/j D 2k jU.˛3/j. A presentation of Out.D02kC2˛3

/ is

�.x/D xu; �.y/D yv; u odd; 1� v �
˛3

2
; .v; ˛3/D 1:

Case 4 G Š T 08�3kC1 Š fx;y; z j x2D y2D .xy/2; z3kC1

D 1; zxz�1D y; zyz�1D

xyg.
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Here we assume k � 1, since T 0
24
Š T �

24
. We can observe that N D fx;y j x2D y2D

.xy/2g is a normal Sylow subgroup of T 08�3kC1 , so every automorphism � must send
N to itself. By conjugation, we can assume �.x/D x; �.y/D y or xy .

There are eight possibilites for �.z/: zn; znx; zny; znxy; znx2; znx3; znyx; zny3 , so
� may have sixteen forms. However, to guarantee � to be an automorphism, � can
only be one of the following:

�.x/D x; �.y/D y; �.z/D zn; n� 1 mod 3;

�.x/D x; �.y/D xy; �.z/D znx; n� 2 mod 3:

We can check that all these automorphisms are not conjugate to each other, so they
give a presentation of Out.T 08�3kC1/, and jOut.T 08�3kC1/j D 2 � 3k .

5 Mapping class group of S 3–manifolds

We determine the mapping class group of S3 –manifolds M ¤L.p; q/. In this section,
all the manifolds have Seifert manifold structure M D fbIˇ1=˛1; ˇ2=˛2; ˇ3=˛3g. For
these manifolds, MCG.M /DMCGC.M /.

In [1; 12], the mapping class groups of S3 –manifolds have been determined, and
some partial results are given in [8; 17; 18]. However, we would like to recompute the
mapping class group based on the fact that all homeomorphisms on an S3 –manifold
M ¤L.p; q/ can be isotoped to fiber-preserving homeomorphism [1; 10].

5.1 Geometric generators of mapping class group

At first, we construct two types of homeomorphisms of M DfbIˇ1=˛1; ˇ2=˛2; ˇ3=˛3g

(the second type may be available only for certain types of M ). Then we prove these
two types of homeomorphisms generate MCG.M /.

Homeomorphism Type I As Definition 2.1, we first define the homeomorphism on
M 0 D F �S1 , and then extend it over three solid tori N1;N2;N3 .

Here F is the three punctured sphere, and we draw it as in Figure 1. Define �1 to
be the reflection with respect to the x–axis; �1 to be the homeomorphism on S1 ,
�1.�/D�� .

Let f 0
1
D �1��1 on M 0 . This preserves the orientation of M 0 , and reverses the orien-

tation on F and S1 . The restriction of f 0
1

to the boundary tori is .�; �/! .��;��/,
which sends li D ˛ici Cˇihi to �� li . So we can extend f 0

1
to a homeomorphism

f1 on M .
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Homeomorphism Type II In this case we need ˇ1=˛1 D ˇ2=˛2 . The two boundary
components c1; c2 of F corresponding to ˇ1=˛1; ˇ2=˛2 are drawn in Figure 1.

Take the polar coordinate .r; �/ on D2 , assume c1; c2 are symmetric with respect to the
� rotation on D2 . Define homeomorphism �2 on F as follows: �2.r; �/D .r; �C�/.
Then �2 exchanges c1 and c2 .

F

c1 c2

x

Figure 1

Let f 0
2
D �2 � idS1 on M 0 . This preserves the orientation of M 0;F and S1 . Since

ˇ1=˛1 D ˇ2=˛2 , so f 0
2

exchanges l1; l2 , and sends l3 to itself. So we can extend f 0
2

to a homeomorphism f2 on M .

We can see that these two types of homeomorphisms are involutions of M and they
commute with each other.

We will prove that these two types of homeomorphisms generate MCG.M /. First, we
need this proposition [1, Proposition 3.1; 10, Lemmas 3.5, 3.6]:

Proposition 5.1 Suppose M is an S3 –manifold which has a Seifert structure with
orbifold S2 with three singular points. Then any homeomorphism f W M !M is
isotopic to a fiber-preserving homeomorphism with respect to the fibration.

Lemma 5.2 Suppose F is a three punctured sphere, gW F ! F is a homeomorphism
and gj@F D id@F . Then g is isotopic to identity.

Proof We denote the three boundary components of F by c1; c2; c3 . Take a simple
arc ˛ connecting c1 and c2 .

A basic fact due to Dehn is that we can isotope g so that gj˛ D id˛ , and we can still
require g to be identity on @F . Cutting along ˛ , we get an annulus F1 and g induces
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a homeomorphism g1 on F1 such that g1j@F1
D id@F1

. The boundary component of
F1 consists of arcs c1; c2 and ˛ is denoted by ˛0 . Then we can isotopy g1 to idF1

and the isotopy process fix all points on ˛0 .

Then we can paste the isotopy on F1 to an isotopy on F , since the isotopy process
fixes ˛0 pointwise. Thus we can isotope g to idF .

Lemma 5.3 Suppose that M D fbI r1; r2; r3g, f W M ! M is a fiber-preserving,
orientation-preserving homeomorphism, the induced map xf W O.M /! O.M / pre-
serves the orientation of orbifold, and xf .xi/D xi for the singular points xi ; i D 1; 2; 3.
Then f is homotopic to the identity.

Proof Decompose M as the union of M 0 D F �S1 and solid tori N1;N2;N3 as in
Definition 2.1; the boundary torus of Ni is denoted by Ti . F can be identified with a
subsurface of O.M /: O.M / minus neighborhood of singular points. @F consists of
three boundary components c1; c2; c3 , which correspond to singular points x1;x2;x3

respectively (see Figure 2). Suppose ri D ˇi=˛i .

F

c1 c2


1 
2c3

Figure 2

Since xf .xi/D xi , we can assume f .M 0/DM 0 and f .Ni/DNi .

Since Ni is a solid torus, the homeomorphism must send the meridian to meridian, so
we have .f jTi

/�.˛ici Cˇihi/D˙.˛ici Cˇihi/ on the boundary torus Ti . Since xf
preserves the orientation of O.M /, f preserves the orientation of M , and so preserves
the orientation of regular fiber, we have f�.h/D h, thus .f jTi

/�.hi/D hi . Then we
get .f jTi

/�.ci/D ci .

Take two loops 
1; 
2 to be generators of �1.F / as shown in Figure 2. Since
.f jTi

/�.ci/D ci , and ci is isotopic to 
i in F , for the subgroup �1.F / < �1.M
0/,

we have .f jM 0/�.�1.F //D �1.F / and also .f jM 0/�.h/D h.
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For gD xf jF , we have gj@F D id. By Lemma 5.2, we get a homotopy H W .F; @F /�I!

.F; @F /, such that H0 D g;H1 D id. So g� is conjugate to id�1.F / .

Conjugate by the same element in �1.F / < �1.M
0/, we get .f jM 0/� is conjugate to

id j�1.M
0/ . Since i�W �1.M

0/! �1.M / is surjective, f� conjugates to the identity.
By Proposition 2.4, f is homotopic to the identity.

Lemma 5.4 Suppose that f W M !M is a fiber-preserving, orientation-preserving
homeomorphism and xf preserves the orientation of O.M /. If f sends singular
fiber with index .˛1; ˇ1/ to singular fiber with index .˛2; ˇ2/, then ˛1 D ˛2 and
˛1j.ˇ2�ˇ1/.

Proof The notation is as in the last lemma.

We can assume that f .N1/DN2 . Since f jN1
W N1!N2 is a homeomorphism, f jN1

sends the meridian to meridian, thus .f jT1
/�.˛1c1 C ˇ1h1/ D ˙.˛2c2 C ˇ2h2/ 2

�1.T2/. Since xf preserves the orientation of O.M /, we have . xf jF /�.c1/D c2 , so
.f jT1

/�.c1/D c2C lh2 . Since xf preserves the orientation of O.M /, f preserves the
orientation of M and the Seifert structure of M , we have .f jT1

/�.h1/D h2 . Then
we have

˛2c2Cˇ2h2 D .f jT1
/�.˛1c1Cˇ1h1/D ˛1c2C .l˛1Cˇ1/h2 2 �1.T2/:

Since c2; h2 is a basis of �1.T2/, we get ˛1 D ˛2 and ˛1j.ˇ2�ˇ1/.

Proposition 5.5 For an S3 –manifold M ¤L.p; q/, the mapping class group of M

is generated by the homeomorphisms of type I and type II defined at the beginning of
Section 5.1.

Proof Suppose f is an orientation-preserving homeomorphism of M . Then by
Proposition 5.1, we can isotope f to a fiber-preserving homeomorphism.

If necessary, compose f with homeomorphism of type I. For the new homeomorphism
f1 , we can assume Sf1 preserves the orientation on O.M /. If Sf1 sends a singular
point x1 to singular point x2 , by Lemma 5.4, we have ˛1 D ˛2 and ˛1j.ˇ2�ˇ1/.
If necessary, rechoose the section F , we can assume ˇ1 D ˇ2 . Composing with
homeomorphism of type II, we get a new homeomorphism f2 such that Sf2.x1/D x1 ,
and Sf2 still preserves the orientation on O.M /. By induction, we obtain a map f3

that sends every singular fiber to itself.

Now f3 satisfies the condition of Lemma 5.3, so f3 is homotopic to identity. Since
we compose f with homeomorphisms of type I and II to get f3 � id, we obtain that
f is homotopic to composition of homeomorphisms of type I and II.
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5.2 Equivalence of two presentations

The presentations of �1.M / in Theorem 2.2 do not reflect the Seifert structure of
S3 –manifolds. However, for a Seifert manifold M DfbIˇ1=˛1; ˇ2=˛2; ˇ3=˛3g, there
is a natural presentation of �1.M / from the Seifert structure [16]:

�1.M /Šfh; c1; c2 j Œc1; h�D Œc2; h�D 1; c
˛1

1
hˇ1 D c

˛2

2
hˇ2 D .c1c2/

�˛3hb˛3Cˇ3 D 1g:

For simplicity, we call the presentation given in Theorem 2.2 the classical presentation,
and denote it by G ; we call the presentation given by the Seifert structure Seifert
presentation, and denote it by G0 .

The induced maps on �1 of the homeomorphisms of type I and II are more easily
obtained for the Seifert presentation:

� For a type I homeomorphism f1 , we have .f1/�.c1/D c�1
1

, .f1/�.c2/D c�1
2

,
.f1/�.h/D h�1 .

� For a type II homeomorphism f2 , we have .f2/�.c1/ D c2 , .f2/�.c2/ D c1 ,
.f2/�.h/D h.

However, we have given a presentation of Out.�1.M // by the classical presentation,
so we shall show how the presentations correspond to each other. Then we can present
the induced map on fundamental group of type I and II homeomorphisms by the known
presentation of Out.�1.M //.

Denote by i W G ! G0; j W G0 ! G the isomorphism between the two presentations
of Out.�1.M // such that j i D idG ; j i D idG0 . We will give i; j explicitly in the
following.

Case 1 M D fbI 1=2; 1=2; ˇ3=˛3g, mD .bC 1/˛3Cˇ3 , .m; 2˛3/D 1.

(i) If ˛3 > 2, classical presentation: G D fa;x;yjam D 1; Œx; a�D Œy; a�D 1;x2 D

.xy/2D y˛3g; Seifert presentation: G0Dfh; c1; c2 j Œc1; h�D Œc2; h�D 1; c2
1
hD c2

2
hD

.c1c2/
�˛3hb˛3Cˇ3 D 1g.

i.a/D h1�m; i.x/D c�m2

1 ; i.y/D c1c�1
2 ;

j .h/D ax2; j .c1/D a.m�1/=2x�1; j .c2/D a.m�1/=2y�1x�1:

(ii) If ˛3 D 2, we take the same classical presentation but another Seifert pre-
sentation, since this presentation can reflect the symmetry of the orbifold better.
G0Dfh; c1; c2; c3 j Œc1; h�D Œc2; h�D Œc3; h�D 1; c2

1
hD c2

2
hD c2

3
hD c1c2c3h�bD 1g:

i.a/D h2bC4; i.x/D h2b2C4bC1c�1
1 ; i.y/D h2b2�4c2;

j .h/D ax2; j .c1/D abC1x; j .c2/D abC1y; j .c3/D abC1.xy/2b�1:
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Case 2 M D fbI 1=2; 1=2; ˇ3=˛3g, mD .bC 1/˛3Cˇ3 , mD 2km0 .

Classical presentation: G D fa;x;y j am0 D 1; Œx; a� D Œy; a� D 1;x2kC2

D y˛3 D

1;xy D y�1xg; Seifert presentation: G0 D fh; c1; c2 j Œc1; h� D Œc2; h� D 1; c2
1
h D

c2
2
hD .c1c2/

�˛3hb˛3Cˇ3 D 1g. Suppose the integer w satisfies wm0 � 1 mod 2kC2 .

i.a/D h1�m0w; i.x/D .h.m
0�1/=2c�1

1 /w; i.y/D c�1�2m
1 c2;

j .h/D ax2; j .c1/D a.m
0�1/=2x�1; j .c2/D a.m

0�1/=2x�1�2my:

Case 3 M D fbI 1=2; ˇ2=3; ˇ3=3g, m D 6bC 3C 2.ˇ2C ˇ3/; .m; 12/ D 1. Then
we can assume ˇ2 D ˇ3 D 1, so mD 6bC 7.

Classical presentation: G D fa;x;y j am D 1; Œx; a� D Œy; a� D 1;x2 D .xy/3 D

y3;x4 D 1g; Seifert presentation: G0 D fh; c1; c2 j Œc1; h�D Œc2; h�D 1; c3
1
hD c3

2
hD

.c1c2/
2h�1�2b D 1g.

i.a/D h6bC8; i.x/D c1c2h�4b�4; i.y/D c�1
2 h2bC2;

j .h/D ax2; j .c1/D a2bC2xy; j .c2/D a2bC2y�1:

Case 4 M DfbI 1=2; ˇ2=3; ˇ3=3g, mD6bC3C2.ˇ2Cˇ3/; .m; 12/¤1. We assume
ˇ2 D 1; ˇ3 D 2. Then mD 6bC 9D 3km0 , so we can also assume m0 D 3nC 1.

Classical presentation: G D fa;x;y; z j am0 D 1; Œx; a� D Œy; a� D Œz; a� D 1;x2 D

.xy/2 D y2; zxz�1 D y; zyz�1 D xy; z3kC1

D 1g; Seifert presentation: G0 D

fh; c1; c2 j Œc1; h�D Œc2; h�D 1; c3
1
hD c3

2
h2 D .c1c2/

2h�1�2b D 1g.

i.a/D h.1�m0/k ; i.x/D c1c2h�4b�5;

i.y/D c2c1h2bC4; i.z/D c�1
2 c�2

1 h�.1�m0/kC1=3C4bC5;

j .h/D ax2z3; j .c1/D a�.m
0�1/2=3z�1x�1; j .c2/D a4bC5C.m0�1/2=3xy3z12bC16:

Actually, in Case 5 and Case 6, we do not need the isomorphism to determine MCG.M /.
However, for completion, we list the isomorphisms here.

Case 5 M D fbI 1=2; ˇ2=3; ˇ3=4g, m D 12b C 6C 4ˇ2 C 3ˇ3 . We can assume
ˇ2 D 1.

Classical presentation: G D fa;x;y j am D 1; Œx; a� D Œy; a� D 1;x2 D .xy/3 D

y4;x4D 1g; Seifert presentation: G0Dfh; c1; c2 j Œc1; h�D Œc2; h�D 1; c3
1
hD c4

2
hˇ3 D

.c1c2/
2h�1�2b D 1g.

(i) ˇ3 D 1, so mD 12bC 13:

i.a/D h12bC14; i.x/D c1c2h12b2�6b�20; i.y/D c�1
2 h12b2C4b�10;

j .h/D ax2; j .c1/D a4bC4xy; j .c2/D a3bC3y�1:
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(ii) ˇ3 D 3, so mD 12bC 19:

i.a/D h12bC20; i.x/D c1c2h12b2C12b�20; i.y/D c�1
2 h12b2C22bC4;

j .h/D ax2; j .c1/D a4bC6xy; j .c2/D a3bC4y�1:

Case 6 M D fbI 1=2; ˇ2=3; ˇ3=5g, mD 30bC 15C 10ˇ2C 6ˇ3 . We can assume
ˇ2 D 1.

Classical presentation: G D fa;x;y j am D 1; Œx; a� D Œy; a� D 1;x2 D .xy/3 D

y5;x4D 1g; Seifert presentation: G0Dfh; c1; c2 j Œc1; h�D Œc2; h�D 1; c3
1
hD c5

2
hˇ3 D

.c1c2/
2h�1�2b D 1g.

(i) ˇ3 D 1 or 3:

i.a/D h30bC26C6ˇ3 ; i.x/D c1c2h�16b�13�3ˇ3 ; i.y/D c�1
2 h6bC5Cˇ3 ;

j .h/D ax2; j .c1/D a10bC8C2ˇ3xy; j .c2/D a6bC5Cˇ3y�1:

(ii) ˇ3 D 2 or 4:

i.a/D h30bC26C6ˇ3 ; i.x/D c�1
1 c�1

2 h16bC13C3ˇ3 ; i.y/D c2h�6b�5�ˇ3 ;

j .h/D ax2; j .c1/D a10bC8C2ˇ3y�1x�1; j .c2/D a6bC5Cˇ3x2y:

5.3 Determination of mapping class group

Given the equivalence connecting the classical and Seifert presentations of �1.M /,
we can compute the MCG.M / now (for S3 –manifolds M ¤L.p; q/, MCG.M /D

MCGC.M /).

Case 1 M D fbI 1=2; 1=2; ˇ3=˛3g, mD .bC 1/˛3Cˇ3 , .m; 2˛3/D 1, �1.M /Š

Zm �D�4˛3
.

(i) We first assume ˛3 > 2. Since only one pair of singular fibers of M satisfies
˛1 D ˛2 , and ˛1j.ˇ2�ˇ1/, M only admit one homeomorphism of type II.

Suppose f is the homeomorphism of type I: f�.c1/ D c�1
1
; f .c2/ D c�1

2
; f�.h/ D

h�1 . By the equivalence given in the last part, in the classical presentation, we have
f�.a/D a�1; f�.x/D x3; f�.y/D y .

Suppose g is the unique homeomorphism of type II: g�.c1/D c2;g�.c2/D c1;g�.h/D

h. In the classical presentation, we have g�.a/D a;g�.x/D .xy/�1;g�.y/D y�1 .

When ˛3 is odd, conjugating by xy�.˛3�1/=2 , we get g� is conjugated to �.a/ D
a; �.x/Dx3; �.y/Dy . Comparing with the presentation of Out.D�4˛3

/ in Section 4,
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we have: when mD 1, f� � g� 6� id (here � means conjugate), MCG.M /Š Z2 ;
when m> 1, id 6� f� 6� g� 6� id, MCG.M /Š Z2 �Z2 .

When ˛3 is even, conjugating by y˛3=2 , f� is conjugated to �.a/ D a�1 , �.x/ D
x ,�.y/ D y ; conjugate by xy˛3=2C1 , g� is conjugated to �.a/ D a, �.x/ D x3y ,
�.y/ D y . Comparing with Section 4, we have: when m D 1, id � f� 6� g� ,
MCG.M /Š Z2 ; when m> 1, id 6� f� 6� g� 6� id, MCG.M /Š Z2 �Z2 .

(ii) When ˛3 D 2, the three singular fibers are symmetric with each other, so there
are more homeomorphisms of type II.

We take the section F 0 of M 00 D F 0 �S1 as in Figure 3; here F 0 is a four-punctured
sphere, while one puncture corresponds to a regular fiber, ci corresponds to singular
fiber li , i D 1; 2; 3 respectively.

F

c1 c2

c3

Figure 3

Suppose f is the homeomorphism of type I, f�.c1/ D c�1
1
; f .c2/ D c�1

2
; f .c2/ D

c�1
2
; f�.h/Dh�1 . By the isomorphism given in the last part, for the Seifert presentation,

f�.a/D a�1; f�.x/D x3; f�.y/D y3 ; conjugating by xy , we have f� is conjugated
to �.a/D a�1; �.x/D x; �.y/D y .

Suppose g;g0 are two homeomorphisms of type II where g exchanges l1; l2 , fixes l3 ,
while g0 exchanges l2; l3 , fixes l1 , and the type II homeomorphism that exchanges
l1; l3 and fixes l2 is equal to gg0g . The group generated by the g;g0 actions on
l1; l2; l3 acts as the permutation group S3 , so the corresponding subgroup of MCG.G/
is a quotient group of S3 .

Under the Seifert presentation, g;g0 are: g�.c1/ D c2;g�.c2/ D c1; g�.c3/ D

c�1
1

c3c1 , g�.h/ D h; g0�.c1/ D c�1
2

c1c2;g
0
�.c2/ D c3;g

0
�.c3/ D c2;g

0
�.h/ D h. On

the classical presentation, we have g�.a/ D a;g�.x/ D y;g�.y/ D x ; g0�.a/ D

a;g0�.x/D x3;g0�.y/D .xy/2b�1 . Conjugating by y or xy , we have g0� conjugates
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to  .a/D a;  .x/D x;  .y/D xy . Comparing with Section 4, we have: the action
of g� and g0� on D�

8
generate the whole Out.D�

8
/Š S3 .

Considering f� , we have: when mD 1, MCG.M /ŠS3 ; when m> 1, MCG.M /Š

Z2 �S3 .

Case 2 M D fbI 1=2; 1=2; ˇ3=˛3g, m D .b C 1/˛3 C ˇ3 , m D 2km0 , �1.M / Š

Z0m �D02kC2˛3
.

Suppose f is the homeomorphism of type I. In the classical presentation, we have
f�.a/D a�1; f�.x/D x�1; f�.y/D y .

Suppose g is the unique homeomorphism of type II. In the classical presentation, we
have g�.a/D a;g�.x/D x2kC1C1y;g�.y/D y�1 . Conjugating by xy.1C˛3/=2 , g�
conjugates to �.a/D a; �.x/D x2kC1C1; �.y/D y .

Comparing with the presentation of Out.D02kC2˛3
/ in Section 4, we have: id 6� f� 6�

g� 6� id, MCG.M /Š Z2 �Z2 .

Case 3 M D fbI 1=2; ˇ2=3; ˇ3=3g, mD 6bC3C2.ˇ2Cˇ3/, .m; 12/D 1. We can
assume ˇ2 D ˇ3 D 1, �1.M /Š Zm �T �

24
.

Suppose f is the homeomorphism of type I. In the classical presentation, we have
f�.a/D a�1; f�.x/D y�1x�1y; f�.y/D y�1 . Conjugating by y , f� conjugates to
�.a/D a�1; �.x/D x�1; �.y/D y�1 .

Suppose g is the unique homeomorphism of type II. In the classical presentation, we
have g�.a/ D a;g�.x/ D y�1xy;g�.y/ D y�1x�1 . Conjugating by y�1xy2 , g�
conjugates to  .a/D a;  .x/D x�1;  .y/D y�1 .

Comparing with the presentation of Out.T �
24
/ in Section 4, we have: when m D 1,

f��g� 6� id, MCG.M /ŠZ2 ; when m>1, id 6�f� 6�g� 6� id, MCG.M /ŠZ2�Z2 .

Case 4 M D fbI 1=2; ˇ2=3; ˇ3=3g, m D 6b C 3C 2.ˇ2 C ˇ3/; .m; 12/ ¤ 1. We
assume ˇ2D 1; ˇ3D 2, so mD 6bC9D 3km0 , and we can still assume m0D 3nC1,
�1.M /Š Zm0 �T 08�3kC1 .

Here M does not admit a homeomorphism of type II. Suppose f is the homeomor-
phism of type I. In the classical presentation, we have f�.a/Da�1; f�.x/Dy; f�.y/D

x; f�.z/ D xz�1 . Conjugating by z�1 , f� is conjugate to �.a/ D a�1; �.x/ D

x; �.y/D xy; �.z/D z�1x .

Comparing with the presentation of Out.T 08�3kC1/ in Section 4, we have f� 6� id,
MCG.M /Š Z2 .

Case 5 M DfbI 1=2; ˇ2=3; ˇ3=4g, mD 12bC6C4ˇ2C3ˇ3 , �1.M /ŠZm�O�
48

.
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Case 6 M DfbI 1=2; ˇ2=3; ˇ3=5g, mD30bC15C10ˇ2C6ˇ3 , �1.M /ŠZm�I�
120

.

In these two cases, M does not admit a homeomorphism of type II, so MCG.M /ŠZ2

or is trivial. Suppose f is the homeomorphism of type I.

When m> 1, then the fiber h corresponds with an element of type .N1;u/ 2 �1.M /Š

Zm �O�
48

or �1.M /Š Zm � I�
120

. So we have f�.N1;u/D .�N1;g.u//, and f� 6� id,
so MCG.M /Š Z2 .

When mD 1, by Section 4, we have Out.O�
48
/ŠOut.I�

120
/ŠZ2 , and U 2

48
ŠU 2

120
Š

Z2 . But jK.M /j D jOut.�1.M //j=jU 2.j�1.M /j/jj, so we have K.M /Dfidg. Since
f is a degree one self-map on M , f is homotopic to identity, thus MCG.M /Š feg.

Bringing together the above results, we get the following:

Theorem 5.6 The mapping class groups of S3 –manifolds are shown as follows:

(i) M D S3 , MCG.M /Š feg.

(ii) M DL.p; q/:
(a) q D˙1, or p − q2� 1, p − q2C 1, MCG.M /Š Z2 .
(b) p j q2� 1, q ¤˙1, MCG.M /Š Z2 �Z2 .
(c) p j q2C 1, q ¤˙1, MCG.M /Š Z4 .

(iii) �1.M /Š Zm �D�4˛3
:

(a) ˛3D2: when mD1, MCG.M /ŠS3 ; when m>1, MCG.M /ŠZ2�S3 .
(b) ˛3>2: when mD1, MCG.M /ŠZ2 ; when m>1, MCG.M /ŠZ2�Z2 .

(iv) �1.M /Š Z0m �D02kC2˛3
, ˛3 > 1 odd, MCG.M /Š Z2 �Z2 .

(v) �1.M /ŠZ0m�T �
24

: when mD1, MCG.M /ŠZ2 ; when m>1, MCG.M /Š

Z2 �Z2 .

(vi) �1.M /Š Z0m �T 08�3kC1 , k > 0, MCG.M /Š Z2 .

(vii) �1.M /ŠZ0m�O�
48

: when mD1, MCG.M /Šfeg; when m>1, MCG.M /Š

Z2 .

(viii) �1.M /ŠZ0m�I�
120

: when mD1, MCG.M /Šfeg; when m>1, MCG.M /Š

Z2 .

6 Conclusions

The computational results of Out.�1.M //, MCG.M /, RC.M / (M ¤L.p; q/) are
shown in Table 1. By elementary computation, we can get the part of Theorem 1.1 for
M ¤L.p; q/ easily.
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�1.M / jOut.�1.M //j jMCG.M /j RC.M /

Zm �D�
8

6jUmj
6 mD 1

12 m> 1

1 mD 1

‰.m/=2 m> 1

Zm �D�4˛3
;

˛3 > 2
jUmjjU4˛3

j=2
2 mD 1

4 m> 1

‰.4˛3/=4 mD 1

‰.m/‰.4˛3/=8 m> 1

Zm �D02kC2˛3
;

˛3 > 1 odd
2k jUmjjU˛3

j 4 ‰.m/‰.˛3/=2

Zm �T �
24

2jUmj
2 mD 1

4 m> 1

1 mD 1

‰.m/=2 m> 1

Zm �T 08�3kC1 ;

k > 0
2 � 3k jUmj 2 ‰.m/

Zm �O�
48

2jUmj
1 mD 1

2 m> 1

1 mD 1

‰.m/=2 m> 1

Zm � I�
120

2jUmj
1 mD 1

2 m> 1

1 mD 1

‰.m/=2 m> 1

Table 1
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