The Lusternik–Schnirelmann category
and the fundamental group

ALEXANDER DRANISHNIKOV

We prove that
\[\text{cat}_{LS} X \leq \text{cd}(\pi_1(X)) + \left\lceil \frac{\dim X - 1}{2} \right\rceil \]
for every CW–complex \(X \) where \(\text{cd}(\pi_1(X)) \) denotes the cohomological dimension of the fundamental group of \(X \).

55M30

1 Introduction

The Lusternik–Schnirelmann category \(\text{cat}_{LS} X \) of a topological space \(X \) is the minimal number \(n \) such that there is an open cover \(\{U_0, \ldots, U_n\} \) of \(X \) by \(n+1 \) contractible in \(X \) sets (we note that sets \(U_i \) are not necessarily contractible). The Lusternik–Schnirelmann category has proven useful in different areas of mathematics. In particular, the classical theorem of Lusternik and Schnirelmann (see Cornea et al [3]) proven in the 30s states that \(\text{cat}_{LS} M \) gives a lower bound for the number of critical points on \(M \) of any smooth not necessarily Morse function. For nice spaces, such as CW–complexes, it is an easy observation that \(\text{cat}_{LS} X \leq \dim X \). In the 40s Grossman [8] (and independently in the 50s G W Whitehead [16; 3]) proved that for simply connected CW–complexes \(\text{cat}_{LS} X \leq \dim X/2 \). In the presence of a fundamental group as small as \(\mathbb{Z}_2 \) the Lusternik–Schnirelmann category can be equal to the dimension. An example is \(\mathbb{R} P^n \).

Nevertheless, Yu Rudyak conjectured that in the case of free fundamental group there should be a Grossman–Whitehead-type inequality at least for closed manifolds. There were partial results towards Rudyak’s conjecture (see Dranishnikov, Katz and Rudyak [6] and Strom [13]) until it was settled by the author [5]. Also it was shown in [5] that a Grossman–Whitehead-type estimate holds for complexes with fundamental group of cohomological dimension \(\leq 2 \). We recall that free groups (and only them by Stallings [12] and Swan [15]) have cohomological dimension one. In this paper we prove an inequality for complexes with fundamental groups having finite cohomological dimension. Complexes of type \(\mathbb{C}P^n \times B\pi \) show that our inequality is sharp when \(\pi \) is free.

Published: 17 April 2010

DOI: 10.2140/agt.2010.10.917
We conclude the introductory part with definitions and statements from [5] which are used in this paper. Let \(\mathcal{U} = \{ U_a \}_{a \in A} \) be a family of sets in a topological space \(X \). Formally, it is a function \(U: A \rightarrow 2^X \setminus \{ \emptyset \} \) from the index set to the set of nonempty subsets of \(X \). The sets \(U_a \) in the family \(\mathcal{U} \) will be called elements of \(\mathcal{U} \). The multiplicity of \(\mathcal{U} \) (or the order) at a point \(x \in X \), denoted \(\text{Ord}_x \mathcal{U} \), is the number of elements of \(\mathcal{U} \) that contain \(x \). The multiplicity of \(\mathcal{U} \) is defined as \(\text{Ord} \mathcal{U} = \sup_{x \in X} \text{Ord}_x \mathcal{U} \). A family \(\mathcal{U} \) is a cover of \(X \) if \(\text{Ord}_x \mathcal{U} \neq 0 \) for all \(x \). A cover \(\mathcal{U} \) is a refinement of another cover \(\mathcal{C} \) (\(\mathcal{U} \) refines \(\mathcal{C} \)) if for every \(U \in \mathcal{U} \) there exists \(C \in \mathcal{C} \) such that \(U \subset C \). We recall that the covering dimension of a topological space \(X \) does not exceed \(n \), \(\dim X \leq n \), if for every open cover \(\mathcal{C} \) of \(X \) there is an open refinement \(\mathcal{U} \) with \(\text{Ord} \mathcal{U} \leq n + 1 \).

Definition 1.1 A family \(\mathcal{U} \) of subsets of \(X \) is called a \(k \)-cover, \(k \in \mathbb{N} \), if every subfamily of \(k \) elements forms a cover of \(X \).

The following is obvious (see Dranishnikov [5]).

Proposition 1.2 A family \(\mathcal{U} \) that consists of \(m \) subsets of \(X \) is an \((n + 1) \)-cover of \(X \) if and only if \(\text{Ord}_x \mathcal{U} \geq m - n \) for all \(x \in X \).

The following theorem can be found in Ostrand [10].

Theorem 1.3 (Kolmogorov–Ostrand) A metric space \(X \) is of dimension \(\leq n \) if and only if for each open cover \(\mathcal{C} \) of \(X \) and each integer \(m \geq n \), there exist \(m \) disjoint families of open sets \(\mathcal{V}_0, \ldots, \mathcal{V}_m \) such that their unions \(\bigcup \mathcal{V}_i \) is an \((n + 1) \)-cover of \(X \) and it refines \(\mathcal{C} \).

Let \(f: X \rightarrow Y \) be a map and let \(X' \subset X \). A set \(U \subset X \) is fiberwise contractible to \(X' \) if there is a homotopy \(H: U \times [0, 1] \rightarrow X \) such that \(H(x, 0) = x \), \(H(U \times \{ 1 \}) \subset X' \), and \(f(H(x, t)) = f(x) \) for all \(x \in U \).

We refer to [5] for the proof of the following:

Theorem 1.4 Let \(\mathcal{U} = \{ U_0, \ldots, U_k \} \) be an open cover of a normal topological space \(X \). Then for any \(m = 0, 1, 2, \ldots, \infty \) there is an open \((k + 1)\)-cover \(\mathcal{U}_m = \{ U_0, \ldots, U_{k+m} \} \) of \(X \) extending \(\mathcal{U} \) such that for \(n > k \), \(U_n = \bigcup_{i=0}^{k} V_i \) is a disjoint union with \(V_i \subset U_i \).

Corollary 1.5 Let \(f: X \rightarrow Y \) be a continuous map of a normal topological space and let \(\mathcal{U} = \{ U_0, \ldots, U_k \} \) be an open cover of \(X \) by sets fiberwise contractible to \(X' \subset X \). Then for any \(m = 0, 1, 2, \ldots, \infty \) there is an open \((k + 1)\)-cover \(\mathcal{U}_m = \{ U_0, \ldots, U_{k+m} \} \) of \(X \) by sets fiberwise contractible to \(X' \).
2 Generalization of Ganea’s fibrations

Let $A \subset Z$ be a closed subset of a path-connected space and let F denote the homotopy fiber of the inclusion. By A_Z we denote the space of paths in Z issued from A, i.e., the space of continuous maps $\phi : [0,1] \to Z$ with $\phi(0) \in A$ and we define a map $p_A : A_Z \to Z$ by the formula $p(\phi) = \phi(1)$. Note that A_Z deforms to A and p_A is a Hurewicz fibration. Then by the definition F is the fiber of p_A.

Proposition 2.1 There is a Hurewicz fibration $\pi : F \to A$ with fiber ΩZ, the loop space on Z.

Proof The map $q' : A_Z \to A \times Z$ that sends a path to the end points is a Hurewicz fibration as a pullback of the Hurewicz fibration $q : Z^{[0,1]} \to Z \times Z$ [11]. The fiber of q is the loop space ΩZ. Since $p_A = pr_2 \circ q'$, the fiber $F = p_A^{-1}(x) = (q')^{-1} pr_2^{-1}(x) = q^{-1}(A)$ is the total space of a Hurewicz fibration q over A with the fiber ΩZ. □

We define the k–th *generalized Ganea’s fibration* $p_k : E_k(Z, A) \to Z$ over a path connected space Z with a fixed closed subset A as the fiberwise join product of $k + 1$ copies of the fibrations $p_A : A_Z \to Z$. Since p_A is a Hurewicz fibration and the fiberwise join of Hurewicz fibrations is a Hurewicz fibration, so are all p_k by Švarc [14]. Note that the fiber of p_k is the join product $s^{k+1}F$ of $k + 1$ copies of F (see Cornea et al [3] for more details). Also we note that for $A = \{z_0\}$ the fibration p_k is the standard Ganea fibration. The following is a generalization of the Ganea–Švarc theorem.

Theorem 2.2 Let $A \subset X$ be a subcomplex contractible in X. Then $\operatorname{cat}_{L,S}(X) \leq k$ if and only if the generalized Ganea fibration

$$p_k : E_k(Z, A) \to Z$$

admits a section.

Proof When A is a point this statements turns into the classical Ganea–Švarc theorem [3; 14]. Since for $z_0 \in A$, the above fibration $p_k : E_k(Z, z_0) \to Z$ is contained in $p_k : E_k(Z, A) \to Z$, the classical Ganea–Švarc theorem implies the only if direction.

The barycentric coordinates of a section to p_k define an open cover U_0, \ldots, U_k of U_l with each U_l contractible to A. Since A is contractible in Z, all sets U_l are contractible in Z. □
We call a map \(f: X \to Y \) a \textit{stratified locally trivial bundle} (with two strata) with fiber \((Z, A)\) if there \(X' \subset X \), such that \((f^{-1}(y), g^{-1}(y)) \cong (Z, A)\) for all \(y \in Y \), where \(g = f|_{X'} \), and there is an open cover \(\mathcal{U} = \{U\} \) of \(Y \) such that \((f^{-1}(U), g^{-1}(U)) \) is homeomorphic as a pair to \((Z \times U, A \times U)\) by means of a fiber preserving homeomorphism. Such a bundle is called a \textit{trivial stratified bundle} if one cannot take \(\mathcal{U} \) consisting of one element \(U = Y \).

Now let \(f: X \to Y \) be a stratified locally trivial bundle with a subbundle \(g: X' \to Y \) and a fiber \((Z, A)\). We define a space

\[
E_0 = \{ \phi \in C(I, X) \mid f \phi(I) = f \phi(0), \; \phi(0) \in g^{-1}(f \phi(0)) \}
\]

to be the space of all paths \(\phi \) in \(f^{-1}(y) \) for all \(y \in Y \) with the initial point in \(g^{-1}(y) \). The topology in \(E_0 \) is inherited from \(C(I, X) \). We define a map \(\xi_0: E_0 \to X \) by the formula \(\xi_0(\phi) = \phi(1) \). Then \(\xi_k: E_k \to X \) is defined as the fiberwise join of \(k + 1 \) copies of \(\xi_0 \). Formally, we define inductively \(E_k \) as a subspace of the join \(E_0 \ast E_{k-1} \):

\[
E_k = \bigcup \{ \phi * \psi \in E_0 * E_{k-1} \mid \xi_0(\phi) = \xi_{k-1}(\psi) \},
\]

which is the union of all intervals \([\phi, \psi] = \phi * \psi\) with the endpoints \(\phi \in E_0 \) and \(\psi \in E_{k-1} \) such that \(\xi_0(\phi) = \xi_{k-1}(\psi) \). There is a natural projection \(\xi_k: E_k \to X \) that takes all points of each interval \([\phi, \psi]\) to \(\phi(0) \).

Note that when \(f: X = Z \times Y \to Y \) is a trivial stratified bundle with the subbundle \(g: A \times Y \to Y, \; A \subset Z \), then \(E_k = E_k(Z, A) \times Y \) and \(\xi_k = p_k \times 1_Y \) where \(p_k: (E_k, A) \to Z \) is the generalized Ganea fibration.

Lemma 2.3 Let \(f: X \to Y \) be a stratified locally trivial bundle between paracompact spaces with a fiber \((Z, A)\) in which \(A \) is contractible in \(Z \). Then:

(i) For each \(k \) the map \(\xi_k: E_k \to X \) is a Hurewicz fibration.

(ii) The fiber of \(\xi_k \) is the join of \(k + 1 \) copies of the fiber \(F \) of \(p_A: A \times Z \to Z \).

(iii) If the projection \(\xi_k \) has a section, then \(X \) has an open cover \(\mathcal{U} = \{U_0, \ldots, U_k\} \) by sets each of which admits a fiberwise deformation into \(X' \) where \(g: X' \to Y \) is the subbundle.

Proof (i) First, we note that this statement holds true for trivial stratified bundles. By the assumption there is a cover \(\mathcal{U} \) of \(Y \) such that \(f|_{f^{-1}(U)}: f^{-1}(U) \to U \) is a trivial stratified bundle and hence \(\xi_k \) is a Hurewicz fibration over \(f^{-1}(U) \) for all \(U \in \mathcal{U} \). Then by Hurewicz [9] (see also Dold [4]) we conclude that \(\xi_k \) is a Hurewicz fibration over \(X \).
(ii) We note that k over $f^{-1}(y)$ coincides with the generalized Ganea fibration p_k for (Z, A). Therefore, the fiber of ξ_k coincides with the fiber of p_k. Then we apply Proposition 2.1

(iii) Suppose ξ_k has a section $\sigma: X \to E_k$. For each $x \in X$ the element $\sigma(x)$ of $\ast^{k+1} \Omega F$ can be presented as the $(k + 1)$–tuple

$$\sigma(x) = ((\phi_0, t_0), \ldots, (\phi_k, t_k))$$

where $\sum t_i = 1$ and $t_i \geq 0$.

Here we use the notation $t_i = t_i(x)$ and $\phi_i = \phi_i^x$. Clearly, $t_i(x)$ and ϕ_i^x are continuous functions of x.

A section $\sigma: X \to E_k$ defines a cover $\mathcal{U} = \{U_0, \ldots, U_k\}$ of X as follows:

$$U_i = \{x \in X | t_i(x) > 0\}.$$

By the construction of U_i for $i \leq n$ for every $x \in U_i$ there is a canonical path connecting x with $g^{-1} f(x)$. These paths define a fiberwise deformation $H: U_i \times [0, 1] \to X'$ of U_i into $g^{-1} f(U_i) \subset X'$ by the formula $H(x, t) = \phi_i^x(1-t)$.

\[\Box\]

3 The main result

We recall that the homotopical dimension of a space X, $\text{hd}(X)$, is the minimal dimension of a CW–complex homotopy equivalent to X [3].

Proposition 3.1 Let $p: E \to X$ be a fibration with $(n - 1)$–connected fiber where $n = \text{hd}(X)$. Then p admits a section.

Proof Let $h: Y \to X$ be a homotopy equivalence with the homotopy inverse $g: X \to Y$ where Y is a CW–complex of dimension n. Since the fiber of p is $(n - 1)$–connected, the map h admits a lift $h': Y \to E$. Let H be a homotopy connecting $h \circ g$ with 1_Y. By the homotopy lifting property there is a lift $H': X \times I \to E$ of H with $H|_{X \times \{0\}} = h' \circ g$. Then the restriction $H|_{X \times \{1\}}$ is a section.

\[\Box\]

We recall that $\lceil x \rceil$ denotes the smallest integer n such that $x \leq n$.

Lemma 3.2 Suppose that a stratified locally trivial bundle $f: X \to Y$ with a fiber (Z, A) is such that Z is r–connected, A is $(r - 1)$–connected, A is contractible in Z, and Y is locally contractible. Then

$$\text{cat}_{LS} X \leq \dim Y + \left\lceil \frac{\text{hd}(X) - r}{r + 1} \right\rceil.$$
We show that for all i X iswise contractible to be an extension of U. Proof

Let $\dim Y = m$ and $\text{hd}(X) = n$. By Lemma 2.3 the fiber K of the fibration $\xi_k: E_k \to X$ is the join product $*^{k+1}F$ of $k + 1$ copies of the fiber F of the map $p_A: AZ \to Z$. By Proposition 2.1, F admits a fibration $\phi: F \to A$ with fibers homotopy equivalent to the loop space ΩZ. Since the base A and the fibers are $(r - 1)$–connected, F is $(r - 1)$–connected. Thus, K is $(k + (k + 1)r - 1)$–connected. By Proposition 3.1 there is a section $\sigma: X \to E_k$ to the fibration $\xi_k: E_k \to X$, whenever $k(r + 1) + r \geq n$. Let k be the smallest integer satisfying this condition. Thus, $k = \lceil (n - r)/(r + 1) \rceil$.

By Lemma 2.3 a section $\sigma: X \to E_k$ defines a cover $\mathcal{U} = \{U_0, \ldots, U_k\}$ by sets fiberwise contractible to X' where $X' \subset X$ is the first stratum. Let $\mathcal{U}_m = \{U_0, \ldots, U_{k+m}\}$ be an extension of \mathcal{U} to a $(k + 1)$–cover of X from Corollary 1.5.

Let O be an open cover of Y such that f is trivial stratified bundle over each $O \in O$. Let C be an open cover of Y such that for every $C \in C$ there is $O \in O$ such that $C \subset O$ and C is contractible in O. Such a cover exists since Y is locally contractible. By Theorem 1.3 there are $m + k + 1$ families of open sets V_0, \ldots, V_{m+k} such that their union forms an $(m + 1)$–cover of Y refining C. We define $V_i = \bigcup_\alpha V_i^\alpha$ to be the unions of all sets from $V_i = \{V_i^\alpha\}$. Then $V = \{V_0, \ldots, V_{m+k}\}$ is an open $(m + 1)$–cover of Y such that for every i, $V_i = \bigcup_\alpha V_i^\alpha$ is a disjoint union of open sets V_i^α contractible to a point in $O_i^\alpha \subset O$.

We show that for all $i \in \{0, 1, \ldots, m + k\}$, the sets $W_i = f^{-1}(V_i) \cap U_i$ are contractible in X. Since

$$W_i = \bigcup_\alpha f^{-1}(V_i^\alpha) \cap U_i$$

is a disjoint union, it suffices to show that the sets $f^{-1}(V_i^\alpha) \cap U_i$ are contractible in X for all α. By Corollary 1.5 the set U_i is fiberwise contractible into X' for $i \leq m + k$. Hence we can contract $f^{-1}(V_i^\alpha) \cap U_i$ to $f^{-1}(V_i^\alpha) \cap X' \cong V_i^\alpha \times A$ in X. Then we apply a contraction to a point of V_i^α in O_i^α and A in F to obtain a contraction to a point of $f^{-1}(V_i^\alpha) \cap X' \cong V_i^\alpha \times A$ in $f^{-1}(O_i^\alpha) \cong O_i^\alpha \times F$.

Next we show that $\{W_i\}_{i=0}^{m+k}$ is a cover of X. Since V is an $(m + 1)$–cover, by Proposition 1.2 every $y \in Y$ is covered by at least $k + 1$ elements V_{i_0}, \ldots, V_{i_k} of V. Since \mathcal{U}_m is a $(k + 1)$–cover, U_{i_0}, \ldots, U_{i_k} is a cover of X. Hence W_{i_0}, \ldots, W_{i_k} covers $f^{-1}(y)$.

Theorem 3.3 For every CW–complex X with the following inequality holds true:

$$\text{cat}_{LS} X \leq \text{cd}(\pi_1(X)) + \left\lceil \frac{\text{hd}(X) - 1}{2} \right\rceil$$

Algebraic & Geometric Topology, Volume 10 (2010)
Proof Let $\pi = \pi_1(X)$ and let \tilde{X} denote the universal cover of X. We consider Borel’s construction:

$$
\begin{array}{ccc}
\tilde{X} & \leftarrow & \tilde{X} \times E\pi \\
\downarrow & & \downarrow \\
X & \leftarrow & \tilde{X} \times_\pi E\pi \overset{f}{\rightarrow} B\pi.
\end{array}
$$

We refer for the properties of Borel’s construction also known as the twisted product to [1]. Note that the 1–skeleton $X^{(1)}$ of X defines a π–equivariant stratification $\tilde{X}^{(1)} \subset \tilde{X}$ of the universal cover. This stratification allows us to treat f as a stratified locally trivial bundle with the fiber $(\tilde{X}, \tilde{X}^{(1)})$. We note that all conditions of Lemma 3.2 are satisfied for $r = 1$. Therefore,

$$
cat_{LS}(\tilde{X} \times_\pi E\pi) \leq \dim B\pi + \left\lfloor \frac{hd(\tilde{X} \times_\pi E\pi) - 1}{2} \right\rfloor.
$$

Since g is a fibration with homotopy trivial fiber, the space $\tilde{X} \times_\pi E\pi$ is homotopy equivalent to X. Thus, $cat_{LS}(\tilde{X} \times_\pi E\pi) = cat_{LS} X$ and $hd(\tilde{X} \times_\pi E\pi) = hd(X)$. In view of the results of Eilenberg and Ganea [7] (see also Brown [2]) we may assume that $\dim B\pi = \cd(\pi)$ if $\cd(\pi) > 2$. The case when $\cd(\pi) \leq 2$ is treated in [5].

Acknowledgements This work was partially supported by NSF grant DMS-0904278. I would like to thank the anonymous referee for helpful comments on an earlier draft.

References

Alexander Dranishnikov

Department of Mathematics, University of Florida
PO Box 118105, 358 Little Hall, Gainesville, FL 32611-8105
dranish@math.ufl.edu

Received: 23 September 2009 Revised: 16 February 2010

Algebraic & Geometric Topology, Volume 10 (2010)