Volume 10, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On the tunnel number and the Morse–Novikov number of knots

Andrei Pajitnov

Algebraic & Geometric Topology 10 (2010) 627–635
Bibliography
1 B Clark, The Heegaard genus of manifolds obtained by surgery on links and knots, Internat. J. Math. Math. Sci. 3 (1980) 583 MR582900
2 H Doll, A generalized bridge number for links in $3$–manifolds, Math. Ann. 294 (1992) 701 MR1190452
3 H Goda, On handle number of Seifert surfaces in $S^3$, Osaka J. Math. 30 (1993) 63 MR1200821
4 H Goda, Some estimates of the Morse–Novikov numbers for knots and links, from: "Intelligence of low dimensional topology 2006" (editors J S Carter, S Kamada, L H Kauffman, A Kawauchi, T Kohno), Ser. Knots Everything 40, World Sci. Publ., Hackensack, NJ (2007) 35 MR2371706
5 H Goda, A V Pajitnov, Twisted Novikov homology and circle-valued Morse theory for knots and links, Osaka J. Math. 42 (2005) 557 MR2166722
6 H Goda, A V Pajitnov, Dynamics of gradient flows in the half-transversal Morse theory, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009) 6 MR2488751
7 M Hirasawa, L Rudolph, Constructions of Morse maps for knots and links, and upper bounds on the Morse–Novikov number, to appear in J. Knot Theory Ramifications arXiv:math.GT/0311134
8 D Kim, J Lee, Some invariants of pretzel links, Bull. Austral. Math. Soc. 75 (2007) 253 MR2312569
9 T Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications 3 (1994) 179 MR1279920
10 T Kobayashi, Y Rieck, On the growth rate of the tunnel number of knots, J. Reine Angew. Math. 592 (2006) 63 MR2222730
11 T Kohno, Tunnel numbers of knots and Jones–Witten invariants, from: "Braid group, knot theory and statistical mechanics, II" (editors C N Yang, M L Ge), Adv. Ser. Math. Phys. 17, World Sci. Publ. (1994) 275 MR1338606
12 J H Lee, An upper bound for tunnel number of a knot using free genus, Lecture notes, 4–th East Asian School of knots (2008)
13 M Lustig, Y Moriah, Generalized Montesinos knots, tunnels and $\mathcal N$–torsion, Math. Ann. 295 (1993) 167 MR1198847
14 K Morimoto, On the additivity of tunnel number of knots, Topology Appl. 53 (1993) 37 MR1243869
15 K Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 MR1317043
16 K Morimoto, On the super additivity of tunnel number of knots, Math. Ann. 317 (2000) 489 MR1776114
17 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “$1+1=3$”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
18 K Morimoto, M Sakuma, Y Yokota, Identifying tunnel number one knots, J. Math. Soc. Japan 48 (1996) 667 MR1404816
19 S P Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31 MR630459
20 A V Pajitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. $(6)$ 4 (1995) 297 MR1344724
21 A V Pajitnov, Circle-valued Morse theory, de Gruyter Studies in Math. 32, de Gruyter (2006) MR2319639
22 L Rudolf, Murasugi sums of Morse maps to the circle, Morse–Novikov numbers, and free genus of knots arXiv:math.GT/0108006
23 M Scharlemann, J Schultens, The tunnel number of the sum of $n$ knots is at least $n$, Topology 38 (1999) 265 MR1660345
24 M Scharlemann, J Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000) 783 MR1777119
25 H Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245 MR0072483
26 K Veber, A V Pajitnov, L Rudolf, The Morse–Novikov number for knots and links, Algebra i Analiz 13 (2001) 105 MR1850189