Volume 10, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Commensurability classes containing three knot complements

Neil Hoffman

Algebraic & Geometric Topology 10 (2010) 663–677
Bibliography
1 C C Adams, Noncompact hyperbolic $3$–orbifolds of small volume, from: "Topology '90 (Columbus, OH, 1990)" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 1 MR1184398
2 I R Aitchison, J H Rubinstein, Combinatorial cubings, cusps, and the dodecahedral knots, from: "Topology '90 (Columbus, OH, 1990)" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 17 MR1184399
3 J Berge, The knots in $D^2\times S^1$ which have nontrivial Dehn surgeries that yield ${D^2\times S^1}$, Topology Appl. 38 (1991) 1 MR1093862
4 M Boileau, S Boyer, G Walsh, On commensurability of knot complements, Preprint
5 M Boileau, J Porti, Geometrization of $3$–orbifolds of cyclic type, Astérisque 272 (2001) 208 MR1844891
6 D Calegari, N M Dunfield, Commensurability of $1$–cusped hyperbolic $3$–manifolds, Trans. Amer. Math. Soc. 354 (2002) 2955 MR1895211
7 T Chinburg, D Long, A W Reid, Cusps of minimal non-compact arithmetic hyperbolic $3$–orbifolds, Pure Appl. Math. Q. 4 (2008) 1013 MR2440250
8 M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237 MR881270
9 M Eudave-Muñoz, On hyperbolic knots with Seifert fibered Dehn surgeries, from: "Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999)" (2002) 119 MR1903687
10 R Fintushel, R J Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980) 33 MR595630
11 F González-Acuña, W C Whitten, Imbeddings of three-manifold groups, Mem. Amer. Math. Soc. 99 (1992) MR1117167
12 O Goodman, Snap: a computer program for studying arithmetic invariants of hyperbolic 3–manifolds
13 O Goodman, D Heard, C Hodgson, Commensurators of cusped hyperbolic manifolds, Experiment. Math. 17 (2008) 283 MR2455701
14 J Hoste, P D Shanahan, Commensurability classes of twist knots, J. Knot Theory Ramifications 14 (2005) 91 MR2124555
15 M L Macasieb, T W Mattman, Commensurability classes of $(-2,3,n)$ pretzel knot complements, Algebr. Geom. Topol. 8 (2008) 1833 MR2448875
16 C Maclachlan, A W Reid, The arithmetic of hyperbolic $3$–manifolds, Graduate Texts in Math. 219, Springer (2003) MR1937957
17 B Martelli, C Petronio, Dehn filling of the “magic” $3$–manifold, Comm. Anal. Geom. 14 (2006) 969 MR2287152
18 R Meyerhoff, The cusped hyperbolic $3$–orbifold of minimum volume, Bull. Amer. Math. Soc. $($N.S.$)$ 13 (1985) 154 MR799800
19 W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: "Topology '90 (Columbus, OH, 1990)" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273 MR1184416
20 A W Reid, Arithmeticity of knot complements, J. London Math. Soc. $(2)$ 43 (1991) 171 MR1099096
21 A W Reid, G S Walsh, Commensurability classes of $2$–bridge knot complements, Algebr. Geom. Topol. 8 (2008) 1031 MR2443107
22 D Rolfsen, Knots and links, Math. Lecture Ser. 7, Publish or Perish (1976) MR0515288
23 M o Takahashi, Two-bridge knots have property $\mathrm{P}$, Mem. Amer. Math. Soc. 29 (1981) MR597092
24 W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
25 S C Wang, Q Zhou, Symmetry of knots and cyclic surgery, Trans. Amer. Math. Soc. 330 (1992) 665 MR1031244
26 J Weeks, Snappea: A computer program for creatingand studying hyperbolic 3 manifolds