Volume 10, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The simplicial volume of hyperbolic manifolds with geodesic boundary

Roberto Frigerio and Cristina Pagliantini

Algebraic & Geometric Topology 10 (2010) 979–1001
Bibliography
1 A Basmajian, Tubular neighborhoods of totally geodesic hypersurfaces in hyperbolic manifolds, Invent. Math. 117 (1994) 207 MR1273264
2 R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer (1992) MR1219310
3 M Bucher-Karlsson, Simplicial volume of locally symmetric spaces covered by $\mathrm{SL}_3\mathbb R/\mathrm{SO}(3)$, Geom. Dedicata 125 (2007) 203 MR2322549
4 M Bucher-Karlsson, The simplicial volume of closed manifolds covered by $\mathbb H^2\times\mathbb H^2$, J. Topol. 1 (2008) 584 MR2417444
5 S Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped $3$–manifolds, Int. Math. Res. Not. (2004) 425 MR2040346
6 R Frigerio, Commensurability of hyperbolic manifolds with geodesic boundary, Geom. Dedicata 118 (2006) 105 MR2239451
7 M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) MR686042
8 M Gromov, I Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. (1988) 93 MR932135
9 U Haagerup, H J Munkholm, Simplices of maximal volume in hyperbolic $n$–space, Acta Math. 147 (1981) 1 MR631085
10 S K Hansen, Measure homology, Math. Scand. 83 (1998) 205 MR1673914
11 D L Johnson, A short proof of the uniqueness of Haar measure, Proc. Amer. Math. Soc. 55 (1976) 250 MR0396914
12 D Jungreis, Chains that realize the Gromov invariant of hyperbolic manifolds, Ergodic Theory Dynam. Systems 17 (1997) 643 MR1452185
13 S Kojima, Polyhedral decomposition of hyperbolic manifolds with boundary, Proc. Workshop Pure Math. 10 (1990) 37
14 S Kojima, Geometry of hyperbolic $3$–manifolds with boundary, Kodai Math. J. 17 (1994) 530 MR1296924
15 T Kuessner, Efficient fundamental cycles of cusped hyperbolic manifolds, Pacific J. Math. 211 (2003) 283 MR2015738
16 T Kuessner, Proportionality principle for cusped manifolds, Arch. Math. $($Brno$)$ 43 (2007) 485 MR2381790
17 J F Lafont, B Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math. 197 (2006) 129 MR2285319
18 J M Lee, Introduction to smooth manifolds, Graduate Texts in Math. 218, Springer (2003) MR1930091
19 C Löh, Measure homology and singular homology are isometrically isomorphic, Math. Z. 253 (2006) 197 MR2206643
20 C Löh, R Sauer, Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume, J. Topol. 2 (2009) 193 MR2499443
21 N Peyerimhoff, Simplices of maximal volume or minimal total edge length in hyperbolic space, J. London Math. Soc. $(2)$ 66 (2002) 753 MR1934304
22 J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math. 149, Springer (1994) MR1299730
23 W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
24 A Weil, L'intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind. 869, Hermann et Cie. (1940) 158 MR0005741
25 A Zastrow, On the (non)-coincidence of Milnor–Thurston homology theory with singular homology theory, Pacific J. Math. 186 (1998) 369 MR1663826