Volume 10, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On the universal $sl_2$ invariant of ribbon bottom tangles

Sakie Suzuki

Algebraic & Geometric Topology 10 (2010) 1027–1061
Bibliography
1 C De Concini, C Procesi, Quantum groups, from: "$D$–modules, representation theory, and quantum groups (Venice, 1992)", Lecture Notes in Math. 1565, Springer (1993) 31 MR1288995
2 M Eisermann, The Jones polynomial of ribbon links, Geom. Topol. 13 (2009) 623 MR2469525
3 K Habiro, Bottom tangles and universal invariants, Algebr. Geom. Topol. 6 (2006) 1113 MR2253443
4 K Habiro, A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, Invent. Math. 171 (2008) 1 MR2358055
5 K Habiro, T T Q Le, in preparation
6 R J Lawrence, A universal link invariant using quantum groups, from: "Differential geometric methods in theoretical physics (Chester, 1988)", World Sci. Publ., Teaneck, NJ (1989) 55 MR1124415
7 R J Lawrence, A universal link invariant, from: "The interface of mathematics and particle physics (Oxford, 1988)", Inst. Math. Appl. Conf. Ser. New Ser. 24, Oxford Univ. Press (1990) 151 MR1103138
8 G Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser (1993) MR1227098
9 Y Mizuma, Ribbon knots of 1–fusion, the Jones polynomial, and the Casson–Walker invariant, Rev. Mat. Complut. 18 (2005) 387 MR2166517
10 Y Mizuma, An estimate of the ribbon number by the Jones polynomial, Osaka J. Math. 43 (2006) 365 MR2262340
11 T Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links, J. Knot Theory Ramifications 2 (1993) 211 MR1227011
12 N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 MR1036112
13 S Suzuki, On the universal $sl_2$ invariant of ribbon bottom tangles, dissertation, Kyoto University (2009)