Volume 10, issue 2 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
$p$–Primary homotopy decompositions of looped Stiefel manifolds and their exponents

Piotr Beben

Algebraic & Geometric Topology 10 (2010) 1089–1106
Bibliography
1 P Beben, PhD thesis, University of Aberdeen (2009)
2 F R Cohen, J C Moore, J A Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. $(2)$ 110 (1979) 549 MR554384
3 F R Cohen, J A Neisendorfer, A construction of $p$–local $H$-spaces, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 351 MR764588
4 M C Crabb, K Knapp, James numbers, Math. Ann. 282 (1988) 395 MR967021
5 B Harris, On the homotopy groups of the classical groups, Ann. of Math. $(2)$ 74 (1961) 407 MR0131278
6 P G Kumpel Jr., Lie groups and products of spheres, Proc. Amer. Math. Soc. 16 (1965) 1350 MR0185037
7 M Mimura, G Nishida, H Toda, Localization of $\mathrm{CW}$–complexes and its applications, J. Math. Soc. Japan 23 (1971) 593 MR0295347
8 M Mimura, G Nishida, H Toda, $\mathrm{Mod} p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977) 627 MR0478187
9 M Mimura, H Toda, Topology of Lie groups. I, II, Transl. Math. Monogr. 91, Amer. Math. Soc. (1991) MR1122592
10 J A Neisendorfer, $3$–primary exponents, Math. Proc. Cambridge Philos. Soc. 90 (1981) 63 MR611286
11 S D Theriault, $2$–primary exponent bounds for Lie groups of low rank, Canad. Math. Bull. 47 (2004) 119 MR2032274
12 S D Theriault, The odd primary $H$–structure of low rank Lie groups and its application to exponents, Trans. Amer. Math. Soc. 359 (2007) 4511 MR2309196