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Simplicial models of trace spaces

MARTIN RAUSSEN

Directed algebraic topology studies topological spaces in which certain directed paths
(d-paths) are singled out; in most cases of interest, the reverse path of a d-path is
no longer a d-path. We are mainly concerned with spaces of directed paths between
given end points, and how those vary under variation of the end points. The original
motivation stems from certain models for concurrent computation. So far, homotopy
types of spaces of d-paths and their topological invariants have only been determined
in cases that were elementary to overlook.

In this paper, we develop a systematic approach describing spaces of directed paths –
up to homotopy equivalence – as finite prodsimplicial complexes, ie with products of
simplices as building blocks. This method makes use of a certain poset category of
binary matrices related to a given model space. It applies to a class of directed spaces
that arise from a certain class of models of computation – still restricted but with a
fair amount of generality. In the final section, we outline a generalization to model
spaces known as Higher Dimensional Automata.

In particular, we describe algorithms that allow us to determine not only the funda-
mental category of such a model space, but all homological invariants of spaces of
directed paths within it. The prodsimplical complexes and their associated chain
complexes are finite, but they will, in general, have a huge number of cells and
generators.

55P10, 55P15, 55U10; 68Q55, 68Q85

1 Introduction

1.1 Background

With motivations arising originally from concurrency theory within computer science,
a new field of research, directed algebraic topology, has emerged; for a comprehensive
overview from a categorical perspective, we refer to the recent book by Grandis [13].
Directed algebraic topology involves spaces of ”directed paths” (or timed paths, execu-
tions): these directed paths can be concatenated, but in general not reversed; time is
not reversible.
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A particular model for concurrent computation, called Higher Dimensional Automata
(HDA), was introduced by V Pratt [23] back in 1991. Mathematically, HDA can be
described as (labelled) precubical sets (cf Brown and Higgins [2; 1]) with a preferred set
of directed paths respecting the natural partial orders in any of the cubes of the model;
(di-)homotopies of such directed paths have to respect the order along a deformation;
cf Fajstrup, Goubault and Raussen [6].

Compared to other well-studied concurrency models like labelled transition systems,
event structures, Petri nets etc (for a survey on those, see Winskel and Nielsen [30]), it
has been shown by R J van Glabbeek [9] that Higher Dimensional Automata have the
highest expressivity; on the other hand, they are certainly less studied and less often
applied so far.

All concurrency models deal with sets of states and with sets of execution paths – with
some further structure. The interest is mainly in the path spaces; typically, it is difficult
to get an overview and to infer valuable information about the path space from the state
space model.

A general framework for topological spaces with directed paths was defined and
investigated as the category of d-spaces (d for directed). The objects are topological
spaces with a preferred set of d-paths; the morphisms are the continuous maps preserving
d-paths; cf in particular Grandis [12; 11; 13]. Grandis investigates first of all the
fundamental category of a d-space – generalising the fundamental group of a topological
space. Unlike the classical case, spaces of d-paths depend critically on the chosen end
points. This makes it interesting to investigate how spaces of d-paths (with given fixed
end points) vary under variation of these end points (cf Raussen [26]) and how this
gives rise to a suitable decomposition of the state space into “components”; cf Fajstrup,
Goubault, Haucourt and Raussen [7; 10].

General topological properties of spaces of d-paths and of traces (Dd-paths up to
monotone reparametrizations; cf Fahrenberg and Raussen [4; 27]) in semicubical
complexes were investigated in Raussen [28]. But so far, apart from low-dimensional
examples with convincing drawings, there have been very few explicit examples of
actual computations of spaces of such traces (for an attempt in dimension two, see
Raussen [24]); let alone a general method to perform such computations.

It is the aim of this article to make the homotopy types of trace spaces computable for
a restricted class of Higher Dimensional Automata – those arising from the semaphore
or PV–models introduced by Dijkstra [3] back in 1968. The state spaces for such
models are complements of a number of hyperrectangular “holes” in a partially ordered
hypercube EIn . We describe trace spaces for these models explicitly as finite-dimensional
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prodsimplicial complexes (cf Kozlov [20]; with products of simplices as their building
blocks) with the nerve of a particular poset category as barycentric subdivision.

For applications in concurrency, it is already very important to know the Betti number ˇ0

and to get hold on the connected components of a trace space: The reason is that traces
in each connected component will always lead to the same result in a concurrent
computation. Using the prodsimplicial structure makes it possible – at least in principle,
the complexes may have lots of cells – to calculate algebraic topological invariants of
such trace spaces.

We will finally hint on how to extend our results to general HDA. The overall philosophy
reminds of the analysis of the topology of path spaces in CW–complexes in Milnor’s
article [22]: Also the spaces of d-paths in a precubical complex with given end points
are equi locally convex (ELCX) (cf Raussen [28]) and thus locally contractible; for
the PV–models analysed here, suitably chosen contractible subsets can be described
explicitly, by a blend of order and combinatorics. They and their intersections form
a poset category with a geometric realization that is homotopy equivalent to the path
space under consideration.

Note that Jardine [16], using a different approach, has recently described a method
to calculate the path category P .X / of a simplicial or cubical set X as the path
component category of a related explicitly constructed 2–category. It is a challenge to
compare the two methods.

1.2 Structure and overview of results

Dijkstra’s PV–models [3] are a particular class of models for linear concurrent computa-
tions with semaphores, a particularly simple, but instructive class of Higher Dimensional
Automata. These models are introduced in Section 2; the state space X for such a
model is embedded in a hypercube EIn and inherits a partial order. To get going, we
define certain subspaces of the model space and show that the space of d-paths within
any of these subspaces (for simplicity, from the bottom 0 2 EIn to the top 1 2 EIn ) is
empty or contractible by a specific contraction. Moreover we show, that every d-path
in the model space is contained in at least one of these subspaces.

This allows us in Section 3 to define a poset category C.X /.0; 1/ indexing the non-
empty subspaces of restricted d-paths in X (for simplicity, with paths starting at 0
and ending at 1) described above and their nonempty intersections. That category
is naturally isomorphic to a poset subcategory of a product of a number of order
categories of nonempty subsets of the positive integers Œ1 W n� less than or equal to n.
A topological realization of this subcategory can thus be modelled on products of
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simplices and gives rise to a prodsimplicial complex [20]. Using standard methods
(nerve lemma, projection lemma etc; cf Kozlov [20]), we show that the space of d-paths
(or rather traces, ie, d-paths modulo monotone reparametrizations; cf Fahrenberg and
Raussen [4]) ET .X /.0; 1/ in such a model space is in fact homotopy equivalent to
an explicit prodsimplicial complex T.X /.0; 1/ that arises as geometric realization of
the poset category C.X /.0; 1/ – with the nerve �.C.X /.0; 1// of that category as
barycentric subdivision.

It is the aim of Section 4 to exploit this theoretical result by achieving an explicit
description of the index category C.X /.0; 1/. To this end, it is necessary to decide,
for each of the subspaces mentioned above, whether it is empty or not, ie whether
there exists a d-path within it from bottom to top. Every subspace can be described
as the complement of a number l of homothetic hyperrectangles (with faces parallel
to the coordinate planes) extending the original holes. It turns out that it is enough
to find out whether there exist deadlock points (the only d-path with a deadlock as
source is trivial) in these extended models. A combinatorial search algorithm for
deadlocks was earlier described in Fajstrup, Goubault and Raussen [5]. The outcome
of a systematic search for deadlocks (in all extended models) is a set D.X /.0; 1/ of
minimal nonfaces – all of dimension n�1 – of the prodsimplicial complex T.X /.0; 1/
within the prodsimplicial complex .�n�1/l . The maximal faces of T.X /.0; 1/ can
then be determined via minimal transversals in an associated hypergraph.

The explicit determination of the complex T.X /.0; 1/ thus achieved makes the cal-
culation of algebraic topological invariants of the trace space ET .X /.0; 1/ possible.
Even if, for complicated model spaces, the “curse of dimensionality” might prohibit
explicit calculations, it will still be interesting and possible to study the change of
invariants under change of end points (in rounds of computation; compare Herlihy and
Rajsbaum [15] and other sources in distributed computing for this point of view).

For simplicity of the presentation, we restrict in this paper attention to an investigation
of the traces from the bottom corner 0 to the top corner 1 in a state space without
holes on the boundary @In � In . More general situations are important: First of
all, most semaphore models allow holes intersecting the boundary @In . A study of
the fundamental category as in Grandis [12] or of associated categories modelling
higher invariants as in Raussen [26] of the model space relies on information about the
topology of general spaces ET .X /.c;d/ at intermediate points c;d2 EIn . A modification
of the setup discussed here has been described in Raussen [29]; it will be published
elsewhere.

The final Section 5 takes first steps in generalizing the methods described so far.
Dijkstra’s PV–models can easily be generalized to a state space that is a product of

Algebraic & Geometric Topology, Volume 10 (2010)



Simplicial models of trace spaces 1687

digraphs with “hyperrectangular holes” modelling processes that may branch, merge
and loop. For these, the topology of the trace space can be determined in two steps:
First determine (the components of) the traces in the product of digraphs without holes.
That space is homotopy equivalent to a product of trace spaces of the 1–dimensional
digraphs; it is thus homotopy discrete. For each of the components, one can pull back
(or “unloop”) to a state space, including holes, of the type previously investigated. It
will still have to be investigated how to unloop in a coherent manner in order to reuse
calculations (of deadlocks etc) performed during previous steps.

For general HDA (modelled on general precubical sets), it is no longer possible to use
the explicit contraction method for specific subspaces yielding local contractability
used in this article. Instead, it is probably necessary to use the method described in
Raussen [28] with a higher combinatorial complexity still to be sorted out.

2 Models of computation and subspaces

2.1 A simple higher dimensional automaton

To start with, we analyse spaces of directed paths in a simple model space that can
be described as follows: A (linear) schedule for each of a number of n individual
processors Pj , 1 � j � n, is modelled on the directed interval EIj D Œ0; 1�. On
subintervals I i

j D �a
i
j ; b

i
j Œ � Ij ; 1� i � l , there is potential conflict with the schedules

of the other processors. Let ai D .ai
1
; : : : ; ai

n/;bi D .bi
1
; : : : ; bi

n/ 2 In n @In and let
Ri Dfx2 In j ai

j < xj < bi
j ; 1� j � ng denote the “homothetic” hyperrectangle (faces

parallel to the coordinate planes) with bottom corner a and top corner b.

The state space for concurrent executions of n linear processes is then the space
X D EIn n F � EIn excluding the forbidden region F D

Sl
iD1 Ri . The forbidden

region F models conflicts and may not be entered. Consult Figure 1 for a simple
3–dimensional example.

The space X inherits a partial order � from the componentwise partial order � on EIn .
We study compound schedules (execution paths) in such a state space X : A d-path in X

is a continuous path pW EI!X that is continuous and order-preserving: each coordinate
�j ı pW EI ! X � EIn ! EI ; 1 � j � n, is weakly increasing. The set EP .X /.c;d/
consists of all d-paths in X starting at c 2 X and ending at d 2 X ; in particular,
these d-paths avoid the “forbidden region” F � EIn . Consult eg Gunawardena [14] and
Fajstrup, Goubault and Raussen [5] for detailed descriptions.

As a topological space, EP .X /.c;d/ is given the subspace topology inherited from
the space P .X /.c;d/ D Œ.I; 0; 1/I .X; c;d/� of all paths in X from c to d in the
compact-open topology (= uniform convergence topology).
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Figure 1: Three-dimensional state space X as complement of a forbidden
region F consisting of two hyperrectangles within a unit cube

Reparametrization equivalent d-paths [4] in X have the same directed image (= trace)
in X . Dividing out the action of the monoid of (weakly-increasing) reparametrizations
of the parameter interval EI , we arrive at trace space ET .X /.c;d/ (cf Fahrenberg and
Raussen [4; 27]) which is shown in Raussen [28] to be homotopy equivalent to path
space EP .X /.c;d/ for a far wider class of directed spaces X . In the latter paper, it
is also shown that trace spaces enjoy nice properties: They are metrizable, locally
compact, locally contractible, and they have the homotopy type of a CW–complex.

It is the aim of the present paper to describe and analyze a combinatorial/topological
model of spaces of traces (and hence also of d-paths) in a model space X up to
homotopy equivalence in order to make calculations of their algebraic topological
invariants feasible.

2.2 Subspaces of the model space

We will now describe certain subspaces of X and then prove that associated spaces of
d-paths within these subspaces are either empty or contractible.

We use the following notation:

� The set of elements “below” dD .d1; : : : dn/ 2X is denoted

#d WD fx 2X j x� dg D fx 2 In
j x� d; x 62 Fg:

Remark that it is not always possible to reach d from every x 2#d by a d-path.
Likewise "cD fx 2X j c� xg denotes the set of elements “above” c.

� The upper boundary fx 2#d j 91� i � nW xi D dig of the hyperrectangle with
upmost vertex in d with X will be denoted @C#d.

� ai D .ai
1
; : : : ; ai

n/; bi D .bi
1
; : : : ; bi

n/.
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Consider Example 2.3 and Figure 2 for 2–dimensional illustrations of the following
definition:
Definition 2.1 (1) For 1� i � l; 1� ji � n, let

Xj1;:::;jl
WD fx 2X j 8i W xji

� ai
ji

or 9kW xk � bi
kg:

(2) For nonempty subsets Ji � Œ1 W n�, 1� i � l , let

XJ1;:::;Jl
WD fx 2X j 8i W xi

ji
� ai

ji
; ji 2 Ji ; or 9kW xk � bi

kg:

For later use, we note an equivalent formulation of these conditions:

x 2X; 8i W .8k xk < bi
k ) xji

� ai
ji
/(2-1)

x 2X; 8i W .8k xk < bi
k ) xji

� ai
ji
.for all j 2 Ij //:(2-2)

Remark 2.2 An execution path in Xj1;:::;jl
has the following characterization: Pro-

cessor ji is late at Ri : it has not yet reached the “conflict” interval J i
ji

when one of
the others, say ki , has already left the corresponding conflict interval J i

ki
.

Example 2.3 Figure 2 shows in each of the two rows an example of a model space
X D EI2nF given as the complement of the forbidden region F consisting of two black
squares. The grey-shaded areas show, in both cases, the subspaces X11;X12;X21 ,
resp. X22 , in that order. Remark that an empty space of d-paths EP .Xij /.0; 1/ D ∅
occurs only in the second row – and only for X12 .

Figure 2: Two examples of a model space X and of subspaces Xij ; 1 �

i; j � 2 , the grey-shaded areas

Example 2.4 In Figure 3, X D EI3 n F;F D EJ 3 and EJ � EI is an interior open
interval. Apart from the forbidden region “black box” EJ 3 with upper corner b, you
see the shaded areas Xj \ @C #b; 1 � j � 3. Remark that every pair Xj1

;Xj2
of

these areas intersect, whereas the intersection X1\X2\X3 is empty. In particular,
EP .XJ /.0; 1/D∅ for ∅¤ J � Œ1 W 3� if and only if J D Œ1 W 3�.
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Figure 3: Intersections of Xi with the upper boundary @C#b of the box with
upper corner b

The subspaces from Definition 2.1 above have the following obvious property:

Lemma 2.5 XJ1;:::;Jl
D
T

ji2Ji
Xj1;:::;jl

.

2.3 Restricted path spaces are empty or contractible

With a D .a1; : : : ; an/;b D .b1; : : : ; bn/, the binary operation _ on Rn (the least
upper bound) is given by a_bD .max.a1; b1/; : : : ;max.an; bn//. Observe ((1) as a
consequence of Definition 2.1):

Lemma 2.6 (1) Xj1;:::;jl
is closed under _ for every choice ji 2 Œ1 W n�; i 2 Œ1 W l �.

(2) Intersections of _–closed sets are _–closed.

(3) XJ1;:::;Jl
is closed under _ for every collection of nonempty subsets Ji � Œ1 W n�,

1� i � l .

A similar result holds for the binary operation ^ (the greatest lower bound) given
by a ^ b D .min.a1; b1/; : : : ;min.an; bn// after a suitable change of definition for
Xj1;:::;jl

.

Note that Lemma 2.6 no longer holds if one of the sets Ji may be empty!

Remark 2.7 It should also be possible to exploit the least upper bound operation _
for the definition and analysis of (future) components (cf Fajstrup, Goubault, Haucourt
and Raussen [7; 10]) as follows: x; y2X are elementarily future related if z1_z2 2X ,
for every z1; z2 2X with EP .X /.x; zi/¤∅¤ EP .X /.zi ; y/. Consider the equivalence
relation future equivalent generated by symmetric and transitive closure. This idea will
be pursued elsewhere.

The next observation that is valid for more general binary operations � is essential for
our purposes:
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Proposition 2.8 Assume A�X; a;b 2A.

Let �W A�A!A denote a commutative continuous map satisfying

� xi � yi) x1 � x2 � y1 � y2 , ie, � is a d-map;
� x� y 2A) x� yD y:

Then the following holds:

(1) The trace space ET .A/.c;d/ is either empty or contractible.

(2) Let ∅ ¤ Ji � Œ1 W n�; 1 � i � l and c;d 2 XJ1;:::Jl
. Then the trace space

ET .XJ1;:::Jl
/.c;d/ is either empty or contractible.

Proof (2) follows from (1) and Lemma 2.6 with � D _.

To prove (1), we show first that EP .A/.c;d/ is either contractible or empty. If EP .A/.c;d/
is nonempty, then, for any pair p; q 2 EP .A/.c;d/, define a one-parameter family
H.p; q/W EP .A/.c;d/� I ! EP .A/.c;d/ by

Ht .p; q/.s/ WD q.s/�p.ts/; t 2 I:

Remark that H0.p; q/.s/D q.s/ � cD q.s/;Ht .p; q/.0/D c � cD c;Ht .p; q/.1/D

d�p.t/D d and that H1.p; q/.s/D q.s/�p.s/. Thus H.p; q/ defines an increasing
d-homotopy (cf Grandis [12]) q 7! p � q between d-paths in EP .A/.c;d/. Likewise,
H.q;p/ is an increasing d-homotopy p 7!q�pDp�q . Their concatenation G.q;p/D

H.p; q/�H�.q;p/ (orientations are reversed for the second d-homotopy) is a “zig-zag”
d-homotopy from q to p ; in particular a path from q to p within EP .c;d/. The map
G.�;�/ defines a continuous section of the “end path map” ev0 � ev1W

EP .c;d/I !
EP .c;d/� EP .c;d/ that associates to a pair .q;p/ the d-homotopy G.p; q/.

Given an arbitrary p 2 EP .A/.c;d/, the map G.�;p/W EP .c;d/ � I ! EP .c;d/ is a
contraction of EP .c;d/ to p . By Raussen [28], Proposition 2.16, the trace space ET .c;d/
is homotopy equivalent to the space of d-paths EP .c;d/ and is thus also contractible.

Remark 2.9 (1) A similar result holds for a map � satisfying x� y) x� yD x.

(2) If Ji D Œ1 W n� for at least one i , then ET .XJ1;:::;Jl
/.0; 1/ is always empty; in this

case, condition (2) from Definition 2.1 amounts to x< bi) x� ai . But every d-path
from 0 to 1 needs to pass through the region #bi n .#ai/ in between.

The trace spaces considered above cover the total trace space: With notation as in
Proposition 2.8, we obtain:

Lemma 2.10 ET .X /.c;d/D
S
Œ1Wn�l

ET .Xj1;:::;jl
/.c;d/ for any c;d 2X .
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Proof For a given d-path pD .p1; : : : ;pn/2 EP .X /.c;d/� EP . EIn/.c;d/ and 1� i � l ,
choose a minimal ti such that there exists ki 2 Œ1 Wn� with pki

.ti/D zb
i
ki
WDmin.bi

ki
; di/.

If zbi
ki
� ai

ki
, then ji 2 Œ1 W n� can be chosen arbitrarily; otherwise choose si < ti such

that pki
.�si ; ti Œ/D � a

i
ki
; zbi

ki
Œ. Since p.t/ 62 Ri for every t and pj .t/ < bi

j for all
.j ; t/ with t < ti , there exists ji such that pji

.t/� ai
ji

for si < t < ti and hence, by
monotonicity, for t < ti . In conclusion, p 2 EP .Xj1;:::;jl

/.c;d/.

In the following Section 3, we need to cover a trace space ET .X /.c;d/ by open subsets.
Therefore, we carefully augment the spaces XJ1;:::;Jl

: Choose " > 0 such that all
distances jai

j � ak
j j; ja

i
j � bk

j j; jb
i
j � ak

j j> 4" unless they vanish.

Definition 2.11 (1) Yj1;:::;jl
WD fx 2X j 8i W xji

< ai
ji
C" or 9kW xk > bi

k
�"g �

Xj1;:::;jl
.

(2) YJ1;:::;Jl
D
T

ji2Ji
Yj1;:::;jl

�XJ1;:::;Jl
.

Proposition 2.12 Suppose that, for every 1� j � n, no upper boundary bi
j is equal

to a lower boundary ak
j ; ie, that fai

j gi \fb
i
j gi D∅ for every j .

(1) There exists a d-map 'W X ! X (continuous and order preserving) and a d-
homotopy (cf Grandis [12]) ˆD .ˆt /W X � EI !X; '! idX keeping Xj1;:::;jl

pointwise fix that satisfy

'.YJ1;:::;Jl
/�XJ1;:::;Jl

and ˆ.YJ1;:::;Jl
� I/� YJ1;:::;Jl

for all .J1; : : : ;Jl/� Œ1 W n�
l .

(2) Xj1;:::;jl
is a deformation retract of Yj1;:::;jl

.

(3) XJ1;:::;Jl
is a deformation retract of YJ1;:::;Jl

.

Proof Choose weakly increasing reparametrizations 'j W
EI ! EI ; 1 � j � n, of the

unit interval I that are piecewise linear, equal to the identity map outside the intervals
�ai

j ; a
i
j C 2"Œ and �bi

j � 2"; bj Œ and that map the intervals Œai
j ; a

i
j C "� constantly to ai

j

and Œbi
j � "; b

i
j � constantly to bi

j . The product ' D
Qn

jD1 'j W
EIn! EIn restricts to a

map 'W X !X such that '.Yj1;:::;jl
/�Xj1;:::;jl

and hence '.YJ1;:::;Jl
/�XJ1;:::;Jl

.

The linear homotopy ˆ that connects ' and the identity map idI n is a d-homotopy that
restricts to d-homotopies on the spaces Yj1;:::;jl

and YJ1;:::;Jl
; it induces homotopies

between the identity map and the maps induced by the restrictions of ' on associated
trace spaces.
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Corollary 2.13 Let c;d 2X .

(1) Every subspace Yj1;:::;jl
�X is open. The path spaces ET .Yj1;:::;jl

/.c;d/ form
an open cover of ET .X /.c;d/.

(2) ET .YJ1;:::;Jl
/.c;d/ is contractible, resp. empty, if and only if ET .XJ1;:::;Jl

/.c;d/
is contractible, resp. empty.

Proof Immediate from Proposition 2.8 and Proposition 2.12.

3 (Prod)simplicial models for trace spaces

In this and the next Section 4, we concentrate on an investigation of trace spaces
ET .X /.0; 1/ from the bottom vertex 0 to the top vertex 1 of X � EIn under the further
simplifying restriction that all forbidden hyperrectangles Ri � F are contained in
the interior of In . The necessary modifications arising for more general state spaces
and for trace spaces of type ET .X /.c;d/, resp. ET .X /.c; @C.#d// are discussed in
Raussen [29]; these results will be published elsewhere.

3.1 The index category C.X/.0; 1/

3.1.1 A matrix representation of a power poset The index multisets .J1; : : : ;Jl/

with Ji � Œ1 W n� considered in the previous Section 2 may be viewed as elements of
.P.Œ1 W n�//l Š P.Œ1 W l �� Œ1 W n�/. Elements of the latter power set can be encoded by
their characteristic functions which can be viewed as binary l � n–matrices:

Let Ml;nDMl;n.Z=2/ denote the set of all binary l�n–matrices – with 2ln elements.
Componentwise logical aut and logical and define addition and multiplication of a ring
structure on Ml;n – that does not concern us here. The total order on Z=2 given by
a � b unless (a D 1 and b D 0) extends to a componentwise given partial order �
on Ml;n . With this partial order defining the morphisms, Ml;n will be viewed as a
poset category.

There is a natural order-preserving bijection between the subsets of Œ1 W l � � Œ1 W n�
(elements of the power set P.Œ1 W l �� Œ1 W n�/ with partial order given by inclusion) and
elements in Ml;n given by

(3-1) J D .J1; : : : ;Jl/ 7!M J
D .mJ

ij /; mJ
ij D 1, j 2 Ji

with inverse M D .Mij / 7! J M , j 2 J M
i ,mij D 1.

Under this bijection, the relevant multisets J D .J1; : : : ;Jl/ with Ji ¤∅; 1� i � l ,
correspond to matrices in the subset M R

l;n
�Ml;n consisting of the .2n� 1/l matrices
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such that no row vector is a zero vector. We view M R
l;n

as the full subposet category
within Ml;n .

3.1.2 Subcategories and pasting functors To ease notation, we will in the following
write ET .XM /.0; 1/ instead of ET .XJ M /.0; 1/. The relevant index category to consider
here is the full subposet category C.X /.0; 1/�M R

l;n
�Ml;n consisting of all matrices

M such that

(3-2) ET .XM /.0; 1/ is nonempty:

This index category C.X /.0; 1/ gives rise to functors D and E into Top:

� The functor DW C.X /.0; 1/op! Top associates ET .XM /.0; 1/ to the matrix M ;
the reverse partial order on C.X /.0; 1/ corresponds to inclusion in Top.

� The functor E W C.X /.0; 1/! Top restricts from a functor E l
nW M

R
l;n
! Top; it

associates to M J with J D .J1; : : : ;Jl/ – all Ji ¤∅! – the standard simplex
product �jJ1j�1� � � � ��jJl j�1 �RjJ1j� � � � �RjJl j � .Rn/l ; RjJi j is included
in Rn as the subspace given by the equations xj D 0; j 62 Ji . For this functor,
the original partial order on C.X /.0; 1/ corresponds to inclusion in Top.

The functor E l
n should be considered as a pasting scheme for the product of simplices

.�n�1/l ; the functor E becomes then a pasting scheme for a subprodsimplicial complex
(cf Kozlov [20]) XM � .�

n�1/l to be explained below.

Remark 3.1 We prefer C.X /.0; 1/ as indexing category to the nerve of the covering
given by the spaces Xj1;:::;jl

, since an intersection XM – in view of Lemma 2.5 –
can arise in many ways as intersection of the basic spaces Xj1;:::;jl

corresponding to
matrices in which every row is a unit vector; even as intersection of a varying number of
the basic covering sets. The nerve of that latter covering carries redundant information:
it does not take care of the product structure that gives rise to automatically commuting
morphisms. It is in fact a barycentric subdivision of C.X /.0; 1/ as will be explained
below.

3.2 Trace spaces and prodsimplicial complexes as colimits

Regarding the functors E and D as pasting schemes, we consider their colimits:

� colim.D/D ET .X /.0; 1/ by Lemma 2.10.

� colim.E l
n/D .�

n�1/l .
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� T.X /.0; 1/W D colim.E/ � colim.E l
n/D .�

n�1/l is a prodsimplicial complex
(in the terminology of Kozlov [20]) consisting of all those products of simplices
�jJ1j�1 � � � � ��jJl j�1 that correspond to tuples .J1; : : : ;Jl/ such that M J 2

C.X /.0; 1/; in other words, the functor E is a pasting scheme for a prodsimplicial
complex with one simplex product for each M 2M R

l;n
giving rise to a nonempty

trace space ET .XM /.0; 1/.

Remark 3.2 This prodsimplicial complex is not a general complex of morphisms in
the sense of Kozlov [20, 9.2.4]. Whether ET .XJ1;:::Jl

/.0; 1/ is nonempty cannot be
decided by investigating whether all ET .Xj1;:::jl

/.0; 1/; ji 2 Ji , are nonempty. The
topology of the complex does not only depend on its 1–skeleton [20, Proposition 18.1].

Comparing with colim.E l
n/D .�

n�1/l , we obtain at once:

Lemma 3.3 The prodsimplicial complex T.X /.0; 1/ is a subcomplex of .@�n�1/l Š

.Sn�2/l . It has at most nl vertices, and dim.T.X /.0; 1//� .n� 2/l .

Proof From Remark 2.9, it follows that ET .XM /.0; 1/ D ∅ as soon as M has a
row vector consisting of digits one only; in particular, no product can have a (full)
factor �n�1 . The complex .@�n�1/l has the number of vertices and the dimension
given in the lemma.

Example 3.4 Assume that the obstruction hyperrectangles Ri D �ai ;bi Œ have the
property bi < aiC1; 1� i < l ; ie, the holes are totally ordered with respect to the partial
order in Rn . This is the case in the first row of Example 2.3. It is not difficult to see
that then ET .XM /.0; 1/D∅ if and only if M has a row in which all coefficients are
equal to 1. We conclude that T.X /.0; 1/D .@�n�1/l Š .Sn�2/l in this case; compare
Example 4.11(4). Hence the bounds given in Lemma 3.3 are sharp!

3.3 Homotopy equivalences

Theorem 3.5 Assume that, for every 1� i � n, no upper boundary coordinate bi
j is

equal to a lower boundary coordinate ak
j . Then trace space ET .X /.0; 1/ is homotopy

equivalent to the prodsimplicial complex T.X /.0; 1/� .@�n�1/l and to the nerve of the
category C.X /.0; 1/; the latter simplicial complex arises as a barycentric subdivision
of T.X /.0; 1/.

Proof First, we determine the homotopy colimits of the functors defining the pasting
schemes above. We apply the homotopy lemma [20, Theorem 15.12] to the natural
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transformation ‰W D) T � from D to the trivial functor T �W C.X /.0; 1/op! Top
which sends every object into the same one-point space. Since the maps corresponding
to ‰ are homotopy equivalences at any object M in C.X /.0; 1/ (from a contractible
space ET .XM /.0; 1/ – by Proposition 2.8(2) – to a point), the map hocolimD !
hocolim T � induced by ‰ is a homotopy equivalence by the homotopy lemma. By
definition, hocolim T � is the nerve �.C.X /.0; 1// of the indexing category.

A similar argument shows that also the trivial natural transformation from E to
T W C.X /.0; 1/! Top induces a homotopy equivalence of homotopy colimits.

Next, we wish to apply the projection lemma [20, Theorem 15.19] – with two twists
– to the fiber projection maps hocolimD ! colimD and hocolim E ! colim E . If
applicable, that lemma ensures that these projection maps are homotopy equivalences.
Altogether, the maps discussed above fit to yield a homotopy equivalence

ET .X /.0; 1/D colim.D/ hocolim.D/oo // hocolim.T �/
OO

��
T.X /.0; 1/D colim.E/ hocolim.E/oo // hocolim.T /

since the two opposite categories C.X /.0; 1/ and C.X /.0; 1/op have the same classify-
ing space �.C.X /.0; 1//. In particular, T.X /.0; 1/ is also homotopy equivalent to the
nerve �.C.X /.0; 1// – which is thus a barycentric subdivision of T.X /.0; 1/.

The first twist alluded to above consists in using, instead of the nerve diagram of the
covering given by the spaces Xj1;:::;jl

, the functors D and E with the smaller indexing
category C.X /.0; 1/; cf Remark 3.1. To get to the conclusion in case of the functor E ,
we use moreover, that T.X /.c;d/ has a prodsimplicial and thus a CW–structure;
cf Kozlov [20, Remark 15.20].

As to the functor D , we need to verify the conditions of the projection lemma: It was
shown in Raussen [28], that ET .X /.0; 1/ is paracompact – even under much weaker
assumptions to X . Furthermore, Proposition 2.12 allows us to replace the cover
given by the subspaces ET .Xj1;:::;jl

/.0; 1/ to that given by the homotopy equivalent
open subspaces ET .Yj1;:::;jl

/.0; 1/ from Definition 2.11, with the same colimit and a
homotopy equivalent homotopy colimit.

Remark 3.6 A modified version of Theorem 3.5 holds without assuming that the
obstruction hyperrectangles are contained in the interior of In ; also for trace spaces
of type ET .X /.c;d/ and ET .X /.c; @C#d/ described in Section 2. The only necessary
change is a different description of the corresponding index category; this has been
worked out in Raussen [29].

Algebraic & Geometric Topology, Volume 10 (2010)



Simplicial models of trace spaces 1697

When these index categories C.X /.c;d/ are determined (cf Section 4 and Raussen [29,
Chapter 5]) one may replace the morphism sets ET .X /.c;d/ in the trace category
ET .X / [26] by the corresponding prodsimplicial complexes T.X /.c;d/ and calculate
their homological invariants. In particular, their homology groups in dimension 0

describe the fundamental category of the d-space X .

4 Determination of the index category

To determine, using Theorem 3.5, the prodsimplicial model T.X /.0; 1/ of trace space
ET .X /.0; 1/, we need to describe the indexing category C.X /.0; 1/ explicitly. We
have to determine which of the subspaces ET .XM /.0; 1/ corresponding to matrices
M 2M R

l;n
are empty and which not; cf (3-2).

It turns out that (non)emptyness can be investigated by a method that was originally
designed in Fajstrup, Goubault and Raussen [5] for the detection of deadlocks and
associated unsafe regions in models for the simple Higher Dimensional Automata
described in Section 2.1.

A deadlock in X is an element x 2X that admits only the constant path as d-path with
source x. The unsafe region corresponding to the deadlock x consists of all y2X such
that no d-path in X with source y can leave the hyperrectangle spanned by y and x.

It will be shown that ET .XM /.0; 1/D∅ is equivalent to the existence of a deadlock
(¤ 1) within XM . This in turn depends on whether a certain set of inequalities –
determined by M – between coordinates of the obstruction hyperrectangles Ri holds.

A simple-minded version of the procedure worked out below was described earlier in
Raussen [24]; it was restricted entirely to dimension nD 2.

4.1 Empty path spaces and deadlocks

Remember the notation convention: 1� i � l enumerates the obstruction hyperrectan-
gles Ri ; 1� j � n enumerates the n coordinate directions in Rn .

We begin with a “dual” look at the spaces XJ1;:::;Jl
from Definition 2.1, resp. XM from

(3-1) in Section 3.1. For each of the original forbidden hyperrectangles Ri D
Qn

jD1 I i
j

(cf Section 2), we define n extended hyperrectangles

(4-1) Ri
j D

j�1Y
kD1

zI i
k � I i

j �

nY
kDjC1

zI i
k ; 1� i � l; 1� j � n;

Algebraic & Geometric Topology, Volume 10 (2010)



1698 Martin Raussen

with zI i
k
D Œ0; ai

k
�[ I i

k
D Œ0; bi

k
Œ; an interval with 0 as its lower boundary. For illustra-

tions, consult Figure 2 – the black rectangles are extended in several ways by white
rectangles – and Figure 4 showing an extension of the forbidden black cube to a box
containing also the grey-shaded part.

Remark 4.1 Each of the hyperrectangles Ri
j has a lowest vertex for which all apart

from one of the coordinates are 0.

Figure 4: Extension of a three-dimensional hyperrectangle

By negating (2-2) from Definition 2.1, one obtains immediately for every matrix
M D .mij / 2Ml;n :

Lemma 4.2 XM D
EIn n

S
mijD1 Ri

j .

The following result shows that (non)-emptyness of the relevant trace spaces can
be established by checking a bunch of inequalities. These inequalities arise via the
detection of deadlocks in the subspaces XM by identifying nonempty intersections
of n extended hyperrectangles among the Ri

j ; mij D 1; and their associated unsafe
regions; cf Fajstrup, Goubault and Raussen [5, Theorem 2.1].

Proposition 4.3 For a matrix M 2M R
l;n

, the following are equivalent:

(1) M is not an object in C.X /.0; 1/.
(2) ET .XM /.0; 1/D∅.

(3) There is a map i W Œ1 W n�! Œ1 W l � such that

mi.j/;j D 1 for all 1� j � n and
\

1�j�n

Ri.j/
j ¤∅:
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(4) There is a map i W Œ1 W n�! Œ1 W l � with

ai.j/
j < b

i.k/
j for all j ; k 2 Œ1 W n�:

Proof The equivalence of (1) and (2) follows from the definition of C.X /.0; 1/;
cf (3-2). To establish the equivalence of (3) and (4), note that an intersection of
(homothetic) hyperrectangles is nonempty if and only if each coordinate of the bottom
vertex of one of the participating hyperrectangles is smaller than the corresponding
coordinates of the top vertices of all the other participating hyperrectangles. From
Remark 4.1 we know that all but one of the lower coordinates of the Ri.j/

j are zero;
the requirement has thus only to be checked for ai.j/

j ; exactly what is required in (4).

Assuming (2), ie ET .XM /.0; 1/ D ∅, the bottom vertex 0 must be contained in the
unsafe region associated to a deadlock (¤ 1) for some configuration of n forbidden
hyperrectangles chosen among the Ri

j ; j 2 Ji . (If a deadlock making 0 unsafe arises
by a configuration containing one or several of the original hyperrectangles Ri , then
extending Ri to some Ri

j ;mij D1; will enlarge the compound obstruction and certainly
again give rise to a configuration with the same property. Hence, we may restrict
attention to configurations consisting of extended hyperrectangles only. It is important
that the matrix M 2M R

l;n
has no zero row vector for this argument to hold; cf also

Remark 4.4 below.) The existence of a deadlock in XM is equivalent to the existence
of a nonempty intersection

T
1�j�n Ri.j/

j (see Fajstrup, Goubault and Raussen [5,
Theorem 2.1]), ie of a map as given in (3).

On the other hand, granted (3), if
T

1�j�n Ri.j/
j ¤ ∅, the intersection gives rise to

a deadlock eD .e1; : : : ; en/¤ 1 in XM ; in fact the coordinates ej of e are maximal
among the j –th coordinates of the Ri.j/

j ; in our case ej D ai.j/
j , cf [5, Theorem 2.1].

The associated unsafe region has as its bottom vertex the point in X the n coordinates
of which are next to maximal among these lower coordinates of the Ri.j/

j ; 1� j � n

[5, Theorem 2.2].

Now we exploit that the extended hyperrectangles are special (cf Remark 4.1), in the
sense that all these coordinates (next to maximal among the lower coordinates) are 0!
Hence 0 is automatically in the unsafe region associated to (any) deadlock e ¤ 1
in XM . In particular, there is no d-path with source 0 leaving #e. This proves (2):
ET .XM /.0; 1/D∅.

Remark 4.4 In proving (2) implies (3) above, it is crucial that all index sets Ji are
nonempty. Otherwise, a number of extended hyperrectangles Ri

j might, together with
some of the original Ri , generate a deadlock with 0 in the unsafe region that does
not arise from a nonempty intersection of extended hyperrectangles. Figure 5 gives an
illustration for that phenomenon in dimension two.
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Figure 5: Deadlock arising from a combination of extended and nonextended rectangles

4.2 Algorithmic determination of C.X/.0; 1/

4.2.1 The map ‰ and its properties We will also consider the following subset of
the set of binary matrices in Ml;n :

� M C
l;n
�Ml;n consists of the matrices such that every column vector is a unit

vector – they form a subset with ln elements. Every such matrix M represents
the characteristic function of the graph of some map i W Œ1 W n� ! Œ1 W l �; cf
Proposition 4.3(3-4).

To i W Œ1 W n� ! Œ1 W l �, we associate the matrix M.i/ 2 M C
l;n

whose only nonzero
coefficients are given as mi.j/;j .

Define the map ‰W Ml;n! Z=2 by ‰.M /D 1, ET .XM /.0; 1/D ∅; equivalently,
‰.M /D 0,M 2 C.X /.0; 1/ for matrices M 2M R

l;n
.

Proposition 4.5 (1) ‰ is order-preserving.

(2) ‰.M /D 0 if M 2Ml;n has a zero vector among its column vectors.

(3) ‰.M /D 1, there exists N 2M C
l;n

with ‰.N /D 1 and N �M 2Ml;n .

Proof (1) If M �M 0 2Ml;n , then ET .XM 0/.0; 1/� ET .XM /.0; 1/. If the latter set
is empty, the first set needs to be empty, as well.

(2) Assume that the j –th column in M is the zero vector. Then no obstruction
hyperrectangle Ri is extended in direction j . Hence, all j –th lower coordinates
chosen from the extended hyperrectangles corresponding to M are strictly positive. In
particular, 0 is not contained in the unsafe region of any deadlock occurring in XM ; in
particular, there exists a d-path from 0 to 1 since neither the lower face xj D 0 in In

nor the upper boundary @C#1 intersect any of the extended hyperrectangles.

(3) One implication is an immediate consequence of (1).
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For the other implication, we may assume in view of (2) that a matrix M with
‰.M /D 1 has no zero vector among its column vectors. By Proposition 4.3(3), there
is a map i W Œ1 W n�! Œ1 W l � giving rise to a deadlock with 0 in the associated unsafe
region. In particular, we conclude for the associated matrix N DM.i/ 2M C

l;n
with

M.i/�M : ET .XM.i//.0; 1/D∅ and hence ‰.M.i//D 1.

The determination of ‰ can thus be performed in two steps. First, we determine the
restriction of ‰ to the subset M C

l;n
consisting of matrices M.i/ that correspond to

maps i W Œ1 W n�! Œ1 W l �. In particular, we determine the set of matrices (D for “dead”)

(4-2) D.X /.0; 1/ WD fM 2M C
l;n j‰.M /D 1g:

Using this set D.X /.0; 1/, we will then apply Proposition 4.5(3) to determine the set
of matrices

(4-3) C.X /.0; 1/ WD fM 2M R
l;n j‰.M /D 0g:

describing the objects of the relevant index category.

4.2.2 Determination of D.X /.0; 1/ To a matrix M 2M C
l;n

, we associate its row
set R.M / WD f1 � i � l j mi ¤ 0g � Œ1 W l � – indexing the nonzero rows mi of M .
The row set R.M.i// is equal to the image i.Œ1 W n�/� Œ1 W l �.

The condition from Proposition 4.3(4) leads us to consider the same upper bounds
b

i.k/
j for matrices M with the same row set R.M /D B � Œ1 W l �: To each of the

min.n;l/X
kD1

�
n

k

�
� 2l
� 1

nonempty subsets B � Œ1 W l � of cardinality at most min.n; l/ corresponds an upper
bound bB D .b

r1

1
; : : : ; b

rn
n / 2 Œ0; 1�

n with b
rj

j Dmini2B bi
j .

Ordering the j –th coordinates ai
j , resp. bi

j of subinterval boundaries for EI i
j �
EIj (eg by

a quicksort algorithm) gives rise to 2n (not necessarily well-determined) permutations
�0

j ; �
1
j 2†l such that

a�
0
j
.1/

j � � � � � a�
0
j
.n/

j and b�
1
j
.1/

j � � � � � b�
1
j
.n/

j :

A comparison of these two ordered lists leads to maps Cj W Œ1 W l �! Œ1 W l � given by

Cj .k/ WDmaxfr j 1� r � l; a�
0
j
.r/

j < b�
1
j
.k/

j g; 1� j � n:

Note that Cj .k/� k for all j and that Cj is monotone. Only the relative order of the
ai

j ; b
i
j matters!
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Every n–tuple .r1; : : : ; rn/ in Œ1 W l �n corresponds to a “mixed vertex”

.a�
0
1
.r1/

1 ; : : : ; a�
0
n.rn/

n /I

likewise .s1; : : : sn/ corresponds to

.b�
1
1
.s1/

1 ; : : : ; b�
1
n.sn/

n /:

The upper bound bB corresponding to a nonempty (row) subset B� Œ1 W l � is determined
by the (componentwise) minimum .sB

1
; : : : ; sB

n / of the .si
1
; : : : ; si

n/ corresponding to
the bi ; i 2 B ; these upper bounds can be calculated recursively.

For such a nonempty row set B � Œ1 W l �, let

zRj .B/ WD fi 2 Œ1 W l � j a
i
j < b�

1.sB
j
/

j g D �0
j .Œ1 W Cj .s

B
j /�/

and Rj .B/ WD zRj .B/\B . From condition (4) in Proposition 4.3, we conclude:

Lemma 4.6 A map i W Œ1 W n�! Œ1 W l � gives rise to a matrix M DM.i/ 2D.X /.0; 1/
if and only if

i.j / 2Rj .i.Œ1 W n�// for every 1� j � n:

What is left is to describe a method that determines the sets Rj .B/ for every nonempty
subset B � Œ1 W l � of cardinality at most n. For the determination of the sets Rj .B/,
the following properties – in particular (4) – are helpful:

Lemma 4.7 (1) If B D fig is a one-element set, then Rj .B/D B for j 2 Œ1 W n�.
Hence ‰.M /D 1 for each of the l matrices M 2M C

l;n
with a one-element row

set R.M /.

(2) ∅¤ B � C � Œ1 W l �) zRj .B/� zRj .C /, 1� j � n.

(3) Rj .B [C /D .Rj .B/\ zRj .C //[ . zRj .B/\Rj .C //.

(4) For i 62 B , let bB correspond to .sB
1
; : : : ; sB

n /;bi to .si
1
; : : : si

n/ and ai to
.r i

1
; : : : r i

n/. Then

Rj .B [fig/D

8̂<̂
:

Rj .B/; Cj .s
B
j / < r i

j ;

Rj .B/[fig; r i
j < Cj .s

B
j /; s

B
j < si

j ;

.�0
j .Œ1 W Cj .s

i
j /�/\Rj .B//[fig; si

j < sB
j :

Proof (1) follows from (the proof of) Lemma 3.3; (2) is obvious. For (3), note that
Rj .B [ C / D . zRj .B/ \ zRj .C // \ .B [ C / and use distributivity. (4) is an easy
consequence.
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4.2.3 Determination of C.X /.0; 1/ From Proposition 4.5 and Lemma 4.6, we can
conclude immediately:

Proposition 4.8 Let M 2M R
l;n

.

(1) ‰.M /D 1 if and only if there is a matrix N 2D.X /.0; 1/ (cf Lemma 4.6) such
that nij �mij for all 1� i � l; 1� j � n.

(2) ‰.M /D 0,M 2 C.X /.0; 1/ if and only if, for every matrix N 2D.X /.0; 1/,
there is a pair .i; j / 2 Œ1 W l �� Œ1 W n� such that mij D 0; nij D 1.

Matrices that are maximal with respect to the partial order � on binary matrices within
C.X /.0; 1/ constitute – by definition – the subset Cmax.X /.0; 1/ � C.X /.0; 1/. By
Proposition 4.5(1) they determine the index category C.X /.0; 1/. They correspond to
maximal simplex products in the prodsimplicial space T.X /.0; 1/.

To determine the matrices contained in these two sets, we consider (choice) subsets
C � Œ1 W l �� Œ1 W n� characterized by the property:

� For every matrix N 2D.X /.0; 1/ there exists .i; j / 2 C with nij D 1.

Remark that one index .i; j / can count for several matrices N .

Functions mC D 1��.C / for such choices are then exactly the characteristic functions
for matrices MC D .mij / 2 C.X /.0; 1/.

A choice C is minimal, if for every C 0 � C there is a matrix N 2D.X /.0; 1/ with
nij D 0 for each .i; j / 2 C 0 . The function mC D 1 � �.C / for a minimal choice
function is then the characteristic function of a maximal matrix MC 2 Cmax.X /.0; 1/.

We describe a simple-minded algorithm constructing Cmax.X /.0; 1/ step by step given
D.X /.0; 1/DfD1; : : : ;Dpg starting with A0

max.X /.0; 1/ with the matrix 1 consisting
of only 1s as the only element. Assume Ah�1

max .X /.0; 1/DfM1; : : : ;Mqh�1
g to consist

of the maximal binary matrices M such that Nk 6�M for 1� k � h� 1< p .

Compare the matrices Ml 2 Ah�1
max .X /.0; 1/ to Nh . If Nh 6� Ml , then keep Ml

unchanged as an element of Ah
max.X /.0; 1/; if M.i/DNh �Ml (cf Section 4.2.1),

then replace Ml by the n matrices M 1
l
; : : :M n

l
2Ah

max.X /.0; 1/ determined as follows:
M

j

l
arises from Ml by replacing ml

i.j/;j
D 1 in Ml by m

l;j

i.j/;j
D 0 in M

j

l
.

Assessing whether N �M is easy, given N : form the binary product
V

npqD1 mpq ;
this product is always over n entries for N 2M C

l;n
.

The maximal matrices in Cmax.X /.0; 1/ correspond to the maximal simplex products
that are patched together in T.X /.0; 1/� .�n�1/l while the matrices in D.X /.0; 1/
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correspond to minimal nonfaces in .�n�1/l . The construction above reminds of a
similar construction of a simplicial complex K.F/ associated to a set system F used
for topological investigations of colouring problems; cf eg Matoušek and Ziegler [21];
in our case, we have the product structure in the underlying category Ml;n as an
additional feature.

Corollary 4.9 Let C � Œ1 W l �� Œ1 W n� denote a choice subset.

(1) The simplex product in T.X /.0; 1/ corresponding to Mc 2 C.X /.0; 1/ consid-
ered as an object in C.X /.0; 1/ (cf Section 3.2) has dimension .n� 1/l � jC j.

(2) dim T.X /.0; 1/D .n� 1/l �min jC j.

Proof The simplex product corresponding to MC has type
Q

1�i�l �
n�1�ci with

ci D jfj j .i; j / 2 C gj.

Corollary 4.10 The Lusternik–Schnirelmann category of trace space ET .X /.0; 1/
satisfies the inequality cat. ET .X /.0; 1//� jCmax.X /.0; 1/j.

Proof The prodsimplicial complex T.X /.0; 1/ homotopy-equivalent to ET .X /.0; 1/
is covered by maximal products of simplices; there are jCmax.X /.0; 1/j of those. As
products of simplices, they are contractible; they are deformation retracts of contractible
open neighbourhoods in T.X /.0; 1/.

4.2.4 Examples

Example 4.11 (1) X is a square with two square holes as in the first row of Figure 2,
Example 2.3: D.X /.0; 1/ consists then of the two matrices�

1 1

0 0

�
and

�
0 0

1 1

�
since a deadlock arises only if a rectangle is extended in both directions from the same
obstruction. There are then four minimal choices C � Œ1 W 2�� Œ1 W 2�; each of them has
two elements. Hence Cmax.X /.0; 1/D C.X /.0; 1/ consists of the four matrices�

0 1

0 1

�
;

�
0 1

1 0

�
;

�
1 0

0 1

�
;

�
1 0

1 0

�
:

Extending each of the rectangles in one direction according to the recipe encoded in
one of these matrices yields the subspaces shown in the upper row of Figure 2. Each
of them allows exactly one d-homotopy class around the (extended) holes.
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The corresponding prodsimplicial complex T.X /.0; 1/ of type .@�1/2 consists of four
points.

(2) X is a square with two square holes as in the second row of Figure 2, Example
2.3: This time, D.X /.0; 1/ consists of the three matrices�

1 1

0 0

�
;

�
0 0

1 1

�
;

�
0 1

1 0

�
W

one additional deadlock configuration corresponding to X12 comes up with one ex-
tension for every hole. This time, there are only three minimal choices C , each of
cardinality 2, corresponding to the matrices�

0 1

0 1

�
;

�
1 0

0 1

�
;

�
1 0

1 0

�
in Cmax.X /.0; 1/D C.X /.0; 1/. T.X /.0; 1/ consists thus of three points.

(3) X a square with three holes as in Figure 5: In this case,

D.X /.0; 1/D

8<:
241 1

0 0

0 0

35 ;
240 1

1 0

0 0

35 ;
240 0

1 1

0 0

35 ;
240 0

0 1

1 0

35 ;
240 0

0 0

1 1

359=; :
There are four minimal choices giving rise to the matrices in

Cmax.X /.0; 1/D

8<:
241 0

1 0

1 0

35 ;
241 0

1 0

0 1

35 ;
241 0

0 1

0 1

35 ;
240 1

0 1

0 1

359=; :
The complex T.X /.0; 1/ consists of four points.

(4) X D EIn n EJ n as in Example 2.4: In this case, D.X /.0; 1/ has only one element,
the 1–row matrix Œ1; 1; : : : ; 1�. The n minimal choices correspond to the one row
matrices with exactly one entry 0 in Cmax.X /.0; 1/. These matrices correspond to the
maximal simplices in T.X /.0; 1/D @�n�1 . Products of spheres arise likewise in the
case considered in Example 3.4.

We conclude from Theorem 3.5:

Corollary 4.12 ET . EIn n EJ n/.0; 1/' @�n�1 .

Previous attempts to prove Corollary 4.12 directly were far more complicated.
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Example 4.13 (1) For the state space X from Figure 1, D.X / D M C
2;3

: Since
the two forbidden boxes intersect, every set of extensions in all three directions will
produce a deadlock and hence an empty trace space. As a consequence,

Cmax.X /.0; 1/D
��

0 1 1

0 1 1

�
;

�
1 0 1

1 0 1

�
;

�
1 1 0

1 1 0

��
:

Hence, T.X /.0; 1/ is the union of the three diagonal squares in a flat 2–dimensional
torus .@�2/2 covered by three times three squares. In particular, T.X /.0; 1/ is homo-
topy equivalent to a circle S1 .

This example can be generalized as follows: Let X D In nF with the forbidden region
F D

Sl
iD1 Ri consisting of l � n hyperrectangles Ri with nonempty intersectionTl

iD1 Ri . Then, T.X /.0; 1/ D
S
f .@�

n�1 n f /l with f ranging over the n faces
of @�n�1 . That latter trace space is homotopy equivalent to Sn�2 – and the homotopy
type is thus independent of the number l of contributing hyperrectangles – by the
following argument: Consider the diagonal inclusion

i W Sn�2 ' @�n�1 D
S
f @�

n�1 nf ,!
S
f .@�

n�1 nf /l D T.X /.0; 1/:

Both spaces are colimits of contractible spaces over the same poset index category given
by the nonempty proper subsets of Œ1 W n� (subsets of faces), and the inclusion respects
this filtration. The result follows thus from the homotopy lemma [20, Theorem 15.12].

More generally, it seems promising to use the intersection pattern among the contributing
hyperrectangles as an input simplifying the determination of the index categories.

(2) The space X in Figure 6 below shows a cube from which two wedges, each of
them composed of two intersecting rectangular boxes are removed. Remark that the
two wedges do not touch each other. The trace in that drawing from bottom to top
is homotopic but not dihomotopic (homotopic through a 1–parameter deformation of
d-paths) to a trace on the boundary of the cube. A simple-minded analysis of this
model in Raussen [25] showed by a quite intricate argument that the trace space for
this d-space (from bottom to top) is not connected.

The general method described in this article yields a model for trace space ET .X /.0; 1/
as a subspace of the 4-torus .@�2/4 Š .S1/4 . It turns out by inspection (similar to
(1) above) that one can handle each of the two wedges as one obstruction in this case.
It turns out that the trace space can then be seen as the union of five squares and a
disjoint extra (“corner”) point in the two-torus .@�2/2 D .S1/2 on the right hand side
of Figure 6 above. This subspace is of course homotopy equivalent to the disjoint union
of a wedge of circles and of an extra point: ET .X /.0; 1/' .S1 _S1/t�.
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Figure 6: State space X and associated models for trace space ET .X /.0; 1/

It would be interesting to find more general methods for dimension reduction as the
one described above.

4.2.5 A reformulation: Minimal transversals in hypergraphs The search for min-
imal choices in D.X /.0; 1/ can be translated into a well-known and well-investigated
problem in combinatorics.1 The set D.X /.0; 1/ may be considered as a hypergraph
(with hyperedges D simplices connecting a number of vertices; every matrix in
D.X /.0; 1/ defines a hyperedge) on the vertex set Œ1 W l �� Œ1 W n�. A minimal choice
– that allows to find the maximal elements in Cmax.0; 1/; cf Section 4.2.3 – is then a
minimal transversal (or hitting set) of that hypergraph: This means that it has nonempty
intersection with every hyperedge and it is minimal with this property. Computing
minimal transversals has many applications (eg, machine learning, indexing of databases,
data mining and optimization). There are several articles about algorithms for finding
minimal transversals and their complexity in the literature; cf eg Khachiyan, Boros,
Elbassioni and Gurvich [19].

The hypergraph given by the matrices in D.X /.0; 1/ has special properties: All
hyperedges have the same cardinality n; even more so, they are graphs of functions
from Œ1 W n� to Œ1 W l �. This ought to simplify the setting.

4.3 Homology of the trace space

By Theorem 3.5, the homology of the trace space ET .X /.0; 1/ may be calculated as
the homology of the associated prodsimplicial complex T.X /.0; 1/. Given the poset
category C.X /.0; 1/, this is the homology of a particular chain complex C.X /.0; 1/
with one generator for every product of simplices.

1I would like to thank my colleague Leif Kjær Jørgensen, Aalborg University, for mentioning hyper-
graphs and their transversals to me.
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More precisely, let Ck.X /.0; 1/ denote the free R–module generated by all matrices
in C.X /.0; 1/ with .k C l/ entries 1; R denotes the chosen coefficient ring. For a
matrix M 2Ml;n with mpq D 1, let Mpq be given by

.mpq/ij D

(
mij .i; j /¤ .p; q/;

0 .i; j /D .p; q/:

The boundary operator @ on C.X /.0; 1/ is then given by

@.M /D
P

mpqD1.�1/j.p;q/jMpq

with alternating sign: the integer j.p; q/j D
Pp�1

iD1

Pn
jD1 mij C

Pq
jD1

mpj � 1 takes
account of the ones in M preceding mpq D 1.

It should be interesting to perform actual homology calculations in “real life” examples
that give rise to huge chain complexes. The algorithms for the calculation of homology
in Kaczynski, Mrozek and Slusarek [18] by reduction of chain complexes (with field
coefficients) might be helpful. Likewise a modification of the algorithms in Kaczynski,
Mischaikow and Mrozek [17] for the homology of cubical complexes.

5 Models for more general trace spaces

5.1 Trace spaces corresponding to concurrent nonlinear programs

So far, we have only looked at model spaces corresponding to concurrent linear
programs; without branchings, mergings and loops. More realistic models can be
investigated using the same tools – but with a twist: Let �D

Qn
jD1 �j denote a product

of directed graphs (branchings, mergings and loops allowed); each �j represents a
program run by a single processor. The graphs �j are regarded as d-spaces (realizations
of precubical sets of dimension one), and � is given the product structure: as an n–
dimensional precubical complex with d-space structure (cf Grandis [12]).

A directed interval Jj from aj to bj in the geometric realization of a component �j

is uniquely given by the image pj .I/ of a trace pj 2
ET .�j /.aj ; bj / arising from an

injective d-path; no loops allowed here! Remark on the other hand, that such a directed
interval is not always determined uniquely by its end points.

A (generalized) hyperrectangle in � is a product RD
Q

j Jj �
Q

j �j D � of such
directed intervals. A forbidden region F D

S
i Ri is a union of such generalized

hyperrectangles, and the state space X D � nF is its complement.
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The aim is to analyse the space of d-paths EP .X /.x; y/� EP .�/.x; y/ (or the space of
traces ET .X /.x; y/ homotopy equivalent to it) between two points xD .x1;x2; : : : ;xn/

and y D .y1;y2; : : : ;yn/ in the space X . First, we have a look at the (bigger)
space ET .�/.x; y/ and then, we will use the map induced on traces by the inclusion
map iX W X ,! � .

For a directed graph – no cubes of higher dimension supporting homotopies are available
– dihomotopy of d-paths (with fixed end points) is equivalent to reparametrization
equivalence; cf Fahrenberg and Raussen [4]. In particular, each factor ET .�j /.xj ;yj /

is discrete; every component is represented by a (reparametrization equivalence class
of) a particular directed path from xj to yj . The product structure of � yields:

Lemma 5.1 ET .�/.x; y/'
Q
ET .�j /.xj ;yj /. In particular, ET .�/.x; y/ is homotopy

discrete.

Proof The d-space structure and the dihomotopy relations factor:

ET .�/' EP .�/Š
Y
EP .�j /'

Y
ET .�j /:

Remark 5.2 To enumerate the components (=traces) of the space of d-paths in a
directed graph � , one should first reduce � to normal form N.�/: Vertices with
valency .1;�1/ – exactly one ingoing and one outgoing arrow, different from each
other – are suppressed; the two arrows are concatenated to one. The normal form N.�/

does no longer have such vertices.

Attach a unique label to each arrow in a directed graph � in normal form and form
words in these labels along concatenable arrows. Then ET .�/ corresponds to the discrete
set of such words; ET .�/.x;y/ to the words starting and ending with one or several
specific labels, depending on whether x;y correspond to vertices or to points on a
directed edge. There is no need to distinguish between points on the interior of the
same edge.

Each component C 2 ET .�/.x; y/ can thus be represented by an n–tuple of (traces of)
specific d-paths cj2

EP .�j /.xj ;yj /. As representatives, we choose cj2
ER.�j /.xj ;yj /�

EP .�j /.xj ;yj / to be regular (ie, locally injective; cf Fahrenberg and Raussen [4]));
every other d-path in EP .�j /.xj ;yj / dihomotopic to cj is then a reparametrization
cj ı'j of cj with 'j 2

EP . EI/.0; 1/ an (increasing) d-path in the standard ordered unit
interval EI [4, Theorem 3.6 and Proposition 3.8]. The d-paths cj altogether define a d-
map (a specific “delooping”) cW EIn! � given as c.t1; : : : ; tn/D .c1.t1/; : : : ; cn.tn//,
and:
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Lemma 5.3 The d-map cW EIn! � induces a homeomorphism

cıW ET . EIn/.0; 1/! C � ET .�/.x; y/; p 7! c ıp:

Comparing d-paths in � and in X D�nF and given such a component C 2�0. ET .�//ŠQ
�0. ET .�j //, the following two questions arise naturally:

(1) Does C lift to X at all (ie, can it be represented by an – interleaving – d-path in
X rather than in � )?

(2) Determine the topology of i�1
X
.C /, ie, of the space of all d-paths in X whose

projections to the �j are (reparametrizations of) these specified execution paths
(“interleavings”).

Every directed interval J D �aj ; bj Œ��j (in the sense above) pulls back to the standard
interval c�1

j .�aj ; bj Œ/� I – which is an open subinterval of I in the subspace topology,
possibly empty. To each generalized hyperrectangle Ri D

Q
J i

j � � corresponds
thus an (honest) hyperrectangle zRi D c�1.Ri/D

Q
c�1
j .J i

j /, possibly empty. The
forbidden region F�� corresponds to a forbidden region zF D c�1.F /D

S
i
zRi � In ,

leaving zX D In n zF � In as state space (with the d-structure inherited from EIn ). By
restricting the homeomorphism cı from Lemma 5.3, we obtain

Corollary 5.4 The d-map cW zX !X induces a homeomorphism

cıW ET . zX /.0; 1/! i�1
X .C /� ET .X /.x; y/:

Example 5.5 Let �1 D
ES1 denote a circular digraph and �2 D

EI a linear one. Let
X D .�1 ��2/ nJ 2 with J 2 � .�1 ��2/ an open rectangular hole; cf Figure 7. The
component Cr in ET .�1 ��2/.0; 1/ corresponding to r C 1=2 spiral tours leads to a
state space zXr with r rectangular holes with an exponential covering map back to X :

0

1

Figure 7: State spaces X (directed cylinder with hole) and zXr
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The contractible(!) components of ET .X /.0; 1/ in this case correspond to pairs .r; s/
of integers r � s � 0. The integer r counts the number of rounds (the delooping); the
integer s describes where a d-path in the component passes from the lower to the upper
annulus.

Corollary 5.4 allows us to attack the questions asked above:

(1) This question is equivalent to: Is ET . zX /.0; 1/ nonempty? This is the case if 0 is
not contained in the unsafe region corresponding to any deadlock in zX – this
can be settled using the techniques described in Fajstrup, Goubault and Raussen
[5]; compare also Fajstrup and Sokolowski [8].

(2) The topology of a nonempty space i�1
X
.C /Š ET . zX /.0; 1/ can be analysed as

that of the prodsimplicial complex T. zX /.0; 1/ as described in Section 4.

Remark 5.6 The components C � ET .�/.�;�/ form the morphisms of the fundamen-
tal category E�1.�/ (composition induced by concatenation of paths) with the elements
of � as objects. In particular, loop components act on (the left and on the right) on
components with matching end points. In [8], Fajstrup and Sokolowski have shown
that unsafe areas corresponding to a specific deadlock point can look quite different
for components (“deloopings”) with the same end points. It should be interesting
to investigate how the topology of the spaces i�1

X
.C / behaves under composition

with loops. For applications, it is essential to find out whether there is an algorithm
determining them in a recursive fashion.

5.2 Simplicial models for trace spaces in precubical complexes

The methods used in this paper can certainly be applied more generally. General
Higher Dimensional Automata can be described as labelled precubical complexes with
a compatible d-structure defined originally for every single cube; cf Fajstrup, Goubault
and Raussen [5]. In Raussen [28], we investigated spaces of d-paths in a non-self-
linked precubical complex X and showed that, for all x0;x1 2 X , the path spaces
EP .X /.x0;x1/ are ELCX (equi locally convex) in the sense of Milnor [22]; hence that

they are locally contractible and possess the homotopy type of a CW–complex.

The main ingredient in the proof is the construction of a locally defined average map
�W U ! X defined on a neighbourhood U D

S
ˇ Vˇ � Vˇ of the diagonal with Vˇ

the open star neighbourhood of a vertex ˇ in X . This average map plays a role very
similar to that of the least upper bound _ in Section 2.

In particular, a directed sequence of adjacent vertices and their open star neighbourhoods
gives rise to a contractible space of d-paths (or traces) progressing consecutively through
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that sequence of neighbourhoods. The spaces of d-paths in all possible such sequences
give rise to a covering of the space of all d-paths (with given end points) by contractible
subspaces [28, Proposition 3.16]. Using the same method (and restrictions of the map �
above), it can be shown that intersections of such subspaces (through intersections of
open stars of certain vertices) are empty or also contractible.

The nerve lemma [20, Theorem 15.21] shows then that spaces of d-paths (and thus of
traces) in a precubical complex (with given end points) are homotopy equivalent to
the nerve of the covering described above. In particular, ET .X /.x0;x1/ has an explicit
structure of a simplicial complex. To describe it explicitly, one needs to know which
sets of sequences of adjacent vertices give rise to open star neighbourhoods with a
(common) d-path contained in each of them.

Remark 5.7 More abstractly, one may describe a category of contractible cube paths
in semicubical complexes (with contractible trace spaces and such that all subcube
paths are contractible, as well) and then consider the induced category over X (objects
= semicubical maps from a contractible cube path into X respecting given end points).
The nerve of that category (or of any subcategory that covers all d-paths in X with
given end points) is then homotopy equivalent to ET .X /.x0;x1/.
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