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Chimneys, leopard spots and the identities
of Basmajian and Bridgeman

DANNY CALEGARI

We give a simple geometric argument to derive in a common manner orthospectrum
identities of Basmajian and Bridgeman. Our method also considerably simplifies
the determination of the summands in these identities. For example, for every odd
integer n, there is a rational function ¢, of degree 2(n—2) so that if M is a compact
hyperbolic manifold of dimension # with totally geodesic boundary S, there is an
identity x(S) =Y, ¢qn (e!i) where the sum is taken over the orthospectrum of M .
When n = 3, this has the explicit form ) ; 1/(e?i —1) = —x(S)/4.

57M50; 11J06

1 Orthospectrum identities

Let M be a compact hyperbolic n—manifold with totally geodesic boundary S'. An
orthogeodesic is a properly immersed geodesic arc perpendicular to S at either end.
The orthospectrum is the set of lengths of orthogeodesics, counted with multiplicity.

Basmajian [1] and Bridgeman—Kahn [2; 3] derived identities relating the orthospectrum
of M to the area of S and the volume of M respectively. The following identity is
implicit in [1]:

Basmajian’s Identity [1] There is a function a, depending only on n, so that it M
is a compact hyperbolic n—manifold with totally geodesic boundary S, and /; denotes
the (ordered) orthospectrum of M , with multiplicity, there is an identity:

area(S) = Z an(l;)

Basmajian’s identity is not well known; in fact, Bridgeman and Kahn were apparently
unaware of Basmajian’s work when they derived the following by an entirely different
method:
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Bridgeman’s Identity [2; 3] There is a function v, depending only on n, so that
if M is a compact hyperbolic n—manifold with totally geodesic boundary S, and [;
denotes the (ordered) orthospectrum of M , with multiplicity, there is an identity:

volume(M) = Z vn(li)

In this paper, we show that both theorems can be derived from a common geometric
perspective. In fact, the derivation gives a very simple expression for the functions a,
and v,, which we describe in Section 2. The derivation rests on a simple geometric
decomposition.

Definition Let 7 and 7’ be totally geodesic H”~!’s in H” with disjoint closure in
H" U Sgo_l . A chimney is the closure of the union of the geodesic arcs from 7 to 7’
that are perpendicular to .

Thus, the boundary of the chimney consists of three pieces: the base, which is a
round disk in m, the side, which is a cylinder foliated by geodesic rays, and the top,
which is the plane 7’. Note that the distance from the base to the top is realized by a
unique orthogeodesic, called the core. The height of the chimney is the length of this
orthogeodesic, and the radius is the radius of the base (these two quantities are related,
and either one determines the chimney up to isometry).

Chimney Decomposition Let M be a compact hyperbolic n—manifold with totally
geodesic boundary S. Let Mg be the covering space of M associated to S. Then
Mg has a canonical decomposition into a piece of zero measure, together with two
chimneys of height [; for each number /; in the orthospectrum.

Proof If S is disconnected, the cover Mg is also disconnected, and consists of a
union of connected covering spaces of M , one for each component of S'. The boundary
of Mg consists of a copy of .S, together with a union of totally geodesic planes. Each
such plane is the top of a chimney, with base a round disk in S, and these chimneys
are pairwise disjoint and embedded. Since M is geometrically finite, the limit set has
measure zero, and therefore these chimneys exhaust all of Mg except for a subset
of measure zero. Every oriented orthogeodesic in M lifts to a unique geodesic arc
with initial point in Mg. Evidently this arc is the core of a unique chimney in the
decomposition, and all chimneys arise this way. a

Basmajian’s identity is immediate (in fact, though Basmajian does not express things
in these terms, the argument we give is quite similar to his):
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Proof S in Mg is decomposed into a set of measure zero together with the union of
the bases of the chimneys. Thus

area(S) =2 Z area of the base of a chimney of height /;. |

1

Remark Thurston calls the chimney bases leopard spots; they arise in the definition
of the skinning map (see eg Otal [7]).

Bridgeman’s identity takes slightly more work, but is still elementary:

Proof If p isapointin M, and y is an arc from p to S, there is a unique geodesic
in the relative homotopy class of p which is perpendicular to .S. Thus, the unit tangent
sphere to p is decomposed into a set of measure zero, together with a union of round
disks, one for each relative homotopy class of arc y.

The area of the disk in U T}, associated to y can be computed as follows. Let ) be the
unique lift of y to Mg with one endpoint on S, and let p, a lift of p, be the other
endpoint of . If N is the complete hyperbolic manifold with M as compact core and
Ng denotes the cover of N associated to S (so that Mg is a convex subset of Ng),
let g be the harmonic function on Ng whose value at every point ¢ is the probability
that Brownian motion starting at ¢ exits the end associated to S'. Note that hg = 1/2
on S, and at every point ¢ depends only on the distance from ¢ to .S. Then the area
of the disk in U T), associated to y is 2,—1-hs(p), where Q,_; := 272"2/T(n/2)
denotes the area of a Euclidean sphere of dimension n — 1 and radius 1.

Since the volume of the unit tangent bundle of M is ,_; - volume(M), it follows
that the volume of M is equal to the integral of hg over Mg. In each chimney, &g
restricts to a harmonic function /, equal to 1/2 on the base, and whose value at each
point depends only on the distance to the base. Hence

volume(M) =2 Z integral of /1 over a chimney of height /;. m|

1

Remark In fact, precisely because our derivation is utterly unlike that of [3], we
do not know whether Bridgeman’s function v, is equal to the integral of & over an
n—dimensional chimney of given height, only that there is such a function v, with
the desired properties. If n = 2, our v, and Bridgeman’s v, agree, but the proof is
not easy; one short derivation follows from [4], together with a geometric dissection
argument.
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2 Explicit formulae

In this section we show that the summands in the area and volume identities have a
very nice explicit form. The expressions we obtain depend on the following elementary
ingredients:

Quadrilateral A chimney is a solid of revolution, obtained by revolving a hyperbolic
quadrilateral Q with three right angles and one ideal vertex about the S”~2 of directions
perpendicular to one of the finite sides (which becomes the core of the chimney, the
other finite side becoming the radius of the base). In a quadrilateral with three right
angles and one ideal vertex, the length of one finite edge determines the other. If one
finite edge has length /, let ¢(/) denote the length of the other finite edge, so that ¢ is
an involution on (0, c0). Then ¢ is defined implicitly by the fact that it is positive, and
the identity
1/ cosh?(1) + 1/ cosh?(¢(1)) = 1

or equivalently,

sinh(¢(/)) = 1/ sinh(/).

If we write & = ¢/ and B = ¢!) then o and B are related by
o+o
o (223)

Hyperbolic volume If B is a ball of radius r in n—dimensional hyperbolic space, let
V,H (r) denote the volume of B. One has the following integral formula for V, :

.
VHEG) =Q, / sinh™~1(¢) dt
0

The base of an n—dimensional chimney of height / is just the volume of an (n—1)-
dimensional ball in hyperbolic space of radius ¢(/). When 7 is even, the integral
f D Ginhr— Y(t) dt is a polynomial in B + B!, and therefore a rational function
in o of degree 2(n — 1). If the dimension of M is at least 3, the set of numbers e’
where / runs over the orthospectrum are algebraic (by Mostow rigidity), and contained
in a quadratic extension of the trace field of M .

If S has even dimension, then the area of S is proportional to the Euler characteristic,
by the Chern—Gauss—Bonnet theorem; in fact, for a hyperbolic manifold of dimension
where n is even, one has

area(S) = (27T)"/2X(S)”n

where 1, is a rational number depending on 7.
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The following corollary appears to be new:

Rational Identity For every odd integer n, there is a rational function g, of degree
2(n —2), with integral coefficients, so that if M is a compact hyperbolic manifold of
(odd) dimension n with totally geodesic boundary S, there is an identity

X(S) = "qu(e")

where x denotes Euler characteristic (which takes values in 7 ) and [; denotes the
orthospectrum of M (with multiplicity). Note that for n > 3, the numbers eli are all
contained in a fixed number field K (depending on M ).

Example It is elementary to compute g, for small n. For example:

4
X)=——
q3(x) 2

5x0 —33x* +63x2-27
8(x2—1)3

gs(x) =
The denominator is easily seen to be an integer multiple of (x2 —1)"~2.

Remark In the case of 3 dimensions, the identity has the following form. Let M be
a hyperbolic 3—manifold with totally geodesic boundary S. Then

1
Xl:ezlt——l =—x(S)/4.

This is vaguely reminiscent of McShane’s identity [5], which says that for S a hyper-
bolic once-punctured torus, there is an identity

1
Z It+eli 1/2

i

where the sum is taken over lengths /; of simple closed geodesics in the surface S .

If there is a simple relation between our identities and McShane’s identity, it is not
obvious. However, Mirzakhani [6] showed how to derive and generalize McShane’s
identity as a sum over embedded orthogeodesics on a surface with boundary. The
appearance of orthogeodesics in yet another identity is quite suggestive of a more
substantial connection, though we do not know what it might be.

To determine the summands in the volume identity, one needs the following additional
ingredients:
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¢—Quadrilateral If Q is a hyperbolic quadrilateral with three right angles and one
vertex with angle ¢, then one of the lengths / of the edges ending at right angles
determines the other t4(/), defined implicitly by the identity

sinh(tg(/)) = sinh(¢(/)) cos(¢) = cos(¢)/ sinh(/).

Spherical volume If B is a ball of radius » in n—dimensional spherical space, let
V,S(r) denote the volume of B. One has the following integral formula for V3 :

,
VS(r) = Qu_i / sin” "1 (¢) dt
0

Harmonic Let /2 be the harmonic function on H" equal to the indicator function of
a round disk D in S”!, so that 4 = 1/2 on the plane 7 bounded by dD. For ¢
bounded away from D by m, if ¢ is the distance from ¢ to 7, then A(g) is Q;_ll
times the volume of a ball in S”~! of radius #, where sin() = 1/ cosh(z).

Level sets Nearest point projection from an equidistant surface to a totally geodesic
hyperplane multiplies distances by 1/ cosh(¢). If C is a chimney of height / (and
radius ¢(/)), let C; be the level set at distance ¢ from the base. Orthogonal projection
of C; to the base of the chimney is surjective if # </, and otherwise surjects onto an
annulus with outer radius ¢(/), and inner radius t4(/), where ¢ is defined implicitly
by sin(¢) = cosh(/)/ cosh(?).

The area of C; is therefore

cosh" Y () VH (u(1)) ift <1,

C =
wreal ) {coshn—lm(vnfgl(t(z))—Vfil(tqs(z))) ifr=1.

Putting this all together, we get an explicit integral formula for vy :

l
vn(l)/2 = / cosh™ Y () VH («(1))V,S | (arcsin(1/ cosh(2))2, !, dt
0

+ / - cosh” ' () (VE (1) = V. (14(1))) V.2, (arcsin(1/ cosh(1))) 2, L, dt
/

Notice when 7 is even this can be expressed in closed form in terms of elementary
functions (compare with the formulae and the derivation in [3, pages 4-11]).
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