Volume 10, issue 3 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On the Kontsevich integral for knotted trivalent graphs

Zsuzsanna Dancso

Algebraic & Geometric Topology 10 (2010) 1317–1365
Abstract

We construct an extension of the Kontsevich integral of knots to knotted trivalent graphs, which commutes with orientation switches, edge deletions, edge unzips and connected sums. In 1997 Murakami and Ohtsuki [Comm. Math. Phys. 188 (1997) 501–520] first constructed such an extension, building on Drinfel’d’s theory of associators. We construct a step-by-step definition, using elementary Kontsevich integral methods, to get a one-parameter family of corrections that all yield invariants well behaved under the graph operations above.

Keywords
Kontsevich integral, KTG, LMO invariant, associator
Mathematical Subject Classification 2000
Primary: 05C10, 57M15, 57M25, 57M27
References
Publication
Received: 27 November 2008
Revised: 30 January 2010
Accepted: 17 February 2010
Published: 11 June 2010
Authors
Zsuzsanna Dancso
Department of Mathematics
University of Toronto
40 Saint George Street, 6th floor
Toronto M5S 2E4
Canada
http://www.math.toronto.edu/zsuzsi