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The Whitehead group and the lower algebraic K –theory
of braid groups on S2 and RP 2

DANIEL JUAN-PINEDA

SILVIA MILLAN-LÓPEZ

Let M D S2 or RP 2 . Let PBn.M / and Bn.M / be the pure and the full braid
groups of M respectively. If � is any of these groups, we show that � satisfies
the Farrell–Jones Fibered Isomorphism Conjecture and use this fact to compute the
lower algebraic K–theory of the integral group ring Z� , for � D PBn.M / . The
main results are that for � D PBn.S2/ , the Whitehead group of � , zK0.Z�/ and
Ki.Z�/ vanish for i � �1 and n > 0 . For � D PBn.RP 2/ , the Whitehead group
of � vanishes for all n > 0 , zK0.Z�/ vanishes for all n > 0 except for the cases
nD 2; 3 and Ki.Z�/ vanishes for all i � �1 .

19A31, 19B28; 55N25

1 Introduction

Aravinda, Farrell, and Roushon in [2] showed that if � is the pure braid group on
any compact (connected) surface, except for the 2–sphere S2 and the real projective
plane RP2 , then the Whitehead group Wh.�/ of � vanishes. Later on, in [14], Farrell
and Roushon extended this result to the full braid groups. They showed that if � is the
full braid group on any compact (connected) surface, except for the 2–sphere and the
2–projective plane, then Wh.�/ also vanishes. A natural question is what happens to
the Whitehead group of the pure and full braid groups in the two remaining cases?

The main tool to answer this question is the Fibered Isomorphism Conjecture of
Farrell and Jones [13]. This conjecture has been verified for several groups, for
instance, for discrete cocompact subgroups of virtually connected Lie groups by Farrell
and Jones [13], for finitely generated Fuchsian groups by Berkove, Juan-Pineda and
Pearson [5] and for some mapping class groups by Berkove, Juan-Pineda and Lu in [4].

Let M D S2 or RP2 . Let PBn.M / and Bn.M / be the pure and the full braid groups
on M respectively. In this paper we recall from [18; 19] that PBn.M / and Bn.M /

satisfy the Farrell–Jones isomorphism conjecture and use this fact to compute the
Whitehead group of PBn.M / and the lower algebraic K–groups for the integral group
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ring ZPBn.M /. This conjecture states that given a group � , the algebraic K–groups
for Z� should be computed from the algebraic K–groups of the integral group rings
ZH , where H runs over the family of virtually cyclic subgroups of � , and from
homological information. We prove the following results in this paper:

Theorem Let � D PBn.S2/ be the pure braid group on n strands (n > 0) on the
2–sphere. Then Wh.�/; zK0.Z�/ and Ki.Z�/ vanish for all i � �1.

Theorem Let � D PBn.RP2/ be the pure braid group on n strands (n > 0) on the
projective plane. Then we have that Wh.�/D 0 and Ki.Z�/D 0 for i < 0. Moreover,
when n¤ 2; 3 we have zK0.Z�/D 0 and in the remaining two cases nD 2; 3, we have
that zK0.Z�/D Z2 .

This paper is divided into four sections. In Section 2 we state the Fibered Farrell–Jones
Isomorphism Conjecture. In Section 3, we recall that PBn.M / and Bn.M / satisfy
this conjecture. Lastly, in Section 4 we state and prove the above results.
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2 Background

2.1 The Fibered Isomorphism Conjecture

The computations of the Whitehead group of a discrete group � as well as its lower
algebraic K–theory, is in general a difficult task. The Fibered Isomorphism Conjecture
provides a tool which helps with these computations. We state a short version of this
conjecture.

Let SW TOP ! �–SPECTRA be a covariant homotopy functor. Let F be the cat-
egory of continuous surjective maps: objects in F are continuous surjective maps
pW E! B , where E;B are objects in TOP, and morphisms between p1W E1! B1

and p2W E2! B2 consist of continuous maps f W E1!E2 and gW B1!B2 making
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the following diagram commute:

E1

f
����! E2

p1

??y p2

??y
B1

g
����! B2

In this setup, Quinn [24] constructs a functor from F to �–SPECTRA . The value of
this �–spectrum at pW E! B is denoted by

H.BIS.p//;

and its value at the object E!� is S.E/. The map of spectra A associated to

E1

f
����! E2

p1

??y p2

??y
B1

g
����! B2

is known as the Quinn assembly map.

Definition 2.1 A group is called virtually cyclic if it contains a cyclic subgroup of
finite index.

In particular all finite groups are virtually cyclic and there is a description of infinite
virtually cyclic groups thanks to the work of C T C Wall [27]. This description is
provided in the following theorem.

Theorem 2.2 [27] An infinite virtually cyclic group � fits into one of the two
following short exact sequences, with F a finite group

1 �! F �! � �! Z �! 1

1 �! F �! � �!D1 �! 1:or

In the first case � is the semidirect product F Ì Z. In the latter case, � is the
amalgamated product H1 �F H2 , where H1 and H2 are finite and F is an index two
subgroup in both H1 and H2 .

We now state the Fibered Isomorphism Conjecture.

Given a discrete group � , let EVC� be a universal � –space for the family of virtually
cyclic subgroups of � [13, Appendix], denote by BVC� the orbit space EVC�=� ,
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and let X be any free and properly discontinuous � –space. If .f;g/ is the following
morphism in F

EVC� �� X
f

����! X=�

p1

??y p2

??y
BVC�

g
����! �

then the Fibered Isomorphism Conjecture for the functor S , the space X , and the
group � is the assertion that

AW H.BVC�IS.p1// �! S.X=�/

is a homotopy equivalence and hence the induced map

A�W �n.H.BVC�IS.p1// �! �n.S.X=�//

is an isomorphism for all n 2 Z.

This conjecture was stated in [13] for the functors S D P�. /;K. /, and L�1 , the
pseudoisotopy, algebraic K–theory and L�1–theory functors. Throughout this work
we will use the functor S D P�. /.

The relation between P�. / and the lower algebraic K–theory is described in the work
of Anderson and Hsiang in [1], who proved the following:

�j .P�.X//D

8̂<̂
:

Wh.Z�1.X// j D�1;

zK0.Z�1.X// j D�2;

KjC2.Z�1.X// j � �3:

For the rest of this work we will use FIC to denote the Fibered Isomorphism Conjecture
in the manner described above.

2.2 Braid groups and strongly poly-free groups

Let Qm D fq1; : : : ; qmg a fixed set of m distinct points of a compact (connected)
surface X . Define

F.X �Qm; n/D f.x1; : : : ;xn/ j xi 2X �Qm; xi ¤ xj ; if i ¤ j g:

Observe that when mD 0, the above definition reduces to

F.X; n/D f.x1; : : : ;xn/ j xi 2X; xi ¤ xj ; if i ¤ j g:

Also, we observe that Sn , the symmetric group on n symbols, acts naturally on F.X; n/

by permuting the coordinates.
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Definition 2.3 [2] The pure braid group, PBn.X /, of n strands on X is the funda-
mental group of F.X � @X; n/.

Definition 2.4 The full braid group, Bn.X /, of n strands on X is the fundamental
group of F.X � @X; n/=Sn .

Strongly poly-free groups were introduced by Aravinda, Farrell and Roushon [2]
to compute the Whitehead group of braid groups on the plane and on surfaces. It
was proven that the Whitehead group of braid groups on the plane and on compact
(connected) surfaces, except for the 2–sphere and the 2–projective plane, vanish.
Strongly poly-free groups were fundamental for the proof of these results. Inspired by
this work, we revisit the definition of strongly poly-free group.

Definition 2.5 A discrete group � is called strongly poly-free if there exists a finite
filtration by subgroups 1D �0 � �1 � � � � � �nD � such that the following conditions
are satisfied:

(1) �i is normal in � for each i .

(2) �iC1=�i is a finitely generated free group for all i .

(3) For each  2 � there is a compact surface F and a diffeomorphism f W F ! F

such that the induced homomorphism f# on �1.F / is equal to c in Out.�1.F //,
where c is the action of  on �iC1=�i by conjugation and �1.F / is identified
with �iC1=�i via a suitable isomorphism.

The third condition says that the algebraic action of  on �iC1=�i can be geometrically
realized, ie f# D �

�1 ıC ı� from the following diagram:

�1.F; f0/
f# //

�

��

�1.F; f0/

�iC1=�i

C // �iC1=�i

��1

OO

Examples of strongly poly-free groups are finitely generated free groups and braid
groups on the plane; see Aravinda, Farrell and Roushon [2] and Farrell and Roushon [14].
For the rest of this work we will abbreviate strongly poly-free by spf.

3 The braid groups on S2 and RP 2 satisfy the FIC

In [18; 19], it was proved that the braid groups on S2 and on RP2 satisfy the FIC. In
this section we provide a different proof for the case when M D S2 . The proof for the
RP2 case can be reviewed in [19].
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Theorem 3.1 The pure braid group PBn.S2/ of n strands on the sphere S2 satisfies
the FIC for all n> 0.

Proof For nD 1; 2; 3, PBn.S2/ is known to be finite (see [18; 6]), and so satisfies
the FIC. For n> 3, we use the following locally trivial fiber bundle [11]:

F.S2; n/
P
�! F.S2; 3/

.x1;x2; : : : ;xn/ 7! .x1;x2;x3/

with fiber F.S2 �Q3; n� 3/. Applying the homotopy long exact sequence to this
fibration and using that �2.F.S

2; 3//D 0 (see [12]) and �0.F.S
2�Q3; n� 3//D 0,

we obtain the short exact sequence

(1) 1 �! �1.F.S
2
�Q3; n� 3// �! �1.F.S

2; n// �! �1.F.S
2; 3// �! 1:

Claim 3.2 � D �1.F.S
2�Q3; n� 3// is a strongly poly-free group.

Before verifying the claim, observe that S2�Q3 is homeomorphic to R2�Q2 . Thus,
�1.F.S

2 �Q3; n� 3// Š �1.F.R
2 �Q2; n� 3// for all n > 3. For simplicity let

i D n � 3 to reduce the problem to showing that �1.F.R
2 �Q2; i// is a strongly

poly-free group for all i > 0.

Proof of Claim 3.2 Let �k D�1.F.R
2�QiC2�k ; k// with 0< k < iC2. Note that

�k describes a filtration (in the sense of an spf group; see [2]), for the classical .iC2/–
pure braid group, PBiC2.R

2/D �1.F.R
2; i C 2// and that �i D �1.F.R

2�Q2; i//

is a subgroup in this filtration. In [2] it was proven that this group is strongly poly-free
and it is not difficult to observe that every subgroup in the filtration of a strongly
poly-free group is also strongly poly-free. Hence �i D �1.F.R

2�Q2; i// is spf.

Since �1.F.S
2; 3//Š Z2 [8], Equation (1) reduces to

(2) 1 �! � �! PBn.S
2/ �! Z2 �! 1

where � is spf. To conclude, we now apply the main theorem from [14] and so the
pure braid group of S2 also satisfies the FIC for all n> 3.

Let X be a topological space. Since Sn acts freely and properly discontinuous on
F.X; n/, the projection map

F.X; n/
p
�! F.X; n/�Sn
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is a regular covering map with fiber Sn . Hence

p#.�1.F.X; n//E �1.F.X; n/�Sn/

and we have the following short exact sequence

1�!�1.F.X; n//�!�1.F.X; n/�Sn/�!�1.F.X; n/�Sn/��1.F.X; n//�!1;

which in the language of braid groups translates into

(3) 1 �! PBn.X / �! Bn.X / �! Sn �! 1:

Theorem 3.3 The full braid group Bn.S2/ of n strands on S2 satisfies the FIC for
all n> 0.

Proof Let X D S2 in the above remark to obtain the following short exact sequence

(4) 1 �! PBn.S
2/ �! Bn.S

2/ �! Sn �! 1

and recall the following facts:

� The center of Bn.S2/ is isomorphic to Z2 .

� Bn.S2/ contains a unique element of order 2. See Fadell and van Buskirk [12].

� PBn.S2/Š Z2 ��1.F.R
2�Q2; n� 3//. See Cohen and Pakianathan [8].

From the above �1.F.R
2�Q2; n� 3//D � is an spf group. Since Z2 is the center

of Bn.S2/ we have that Z2 E PBn.S2/ and Z2 E Bn.S2/. Using this normality we
obtain that

PBn.S
2/=Z2 E Bn.S

2/=Z2;

.Bn.S
2/=Z2/=.PBn.S

2/=Z2/Š Bn.S
2/=PBn.S

2/Š Sn:

This gives the short exact sequence

(5) 1 �! PBn.S
2/=Z2 �! Bn.S

2/=Z2 �! Sn �! 1:

Using the fact that PBn.S2/=Z2 Š � , (5) can be written as

(6) 1 �! � �! Bn.S
2/=Z2 �! Sn �! 1

and the main theorem of [14] we have that Bn.S2/=Z2 satisfies FIC.

Now, we look at the short exact sequence

1 �! Z2 �! Bn.S
2/ �! Bn.S

2/=Z2 �! 1

and apply [4, lemma 2.9] to show that Bn.S2/ satisfies the FIC.
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4 The Whitehead group and the lower algebraic K –theory

4.1 The Whitehead group of PBn.S2/

Let � D PBn.S2/ and recall the structure of PBn.S2/; see the notes of F Cohen and
J Pakianathan [8]:

PBn.S
2/D

8̂<̂
:

1 nD 1; 2,

Z2 nD 3,

Z2 �PBn�3.R
2�Q2/ n> 3.

Our first step will be to describe the virtually cyclic subgroups of � . To do this, we
must describe all the finite subgroups and use Theorem 2.2. With this in mind and the
structure of PBn.S2/ we have the following:

Proposition 4.1 Let � D PBn.S2/ be the pure braid group of n strands on the 2–
sphere. Then, the virtually cyclic subgroups of � are isomorphic to one of the following
groups: f1g;Z2;Z, or Z2 �Z.

Proof For n > 3, the result is immediate from the fact that PBn�3.R
2 �Q2/ is

torsion-free, along with the above description.

Thus, for PBn.S2/ we have the following:

(1) A finite subgroup of � is either trivial or isomorphic to Z2 .

(2) A virtually cyclic subgroups of � is isomorphic to one of the following groups:

f1g; Z2; Z; Z2 �Z:

In particular, the infinite virtually cyclic subgroups of PBn.S2/ are all isomorphic to
either Z or Z2 �Z.

Theorem 4.2 Let � DPBn.S2/ be the pure braid group of n strands on the 2–sphere.
Then Wh.�/; zK0.Z�/ and Ki.Z�/ vanish for all i � �1 and n> 0.

Proof The fact that � satisfies the FIC reduces the problem to compute the homotopy
groups �k.H.BVC�IP�.Fx/// for the family of virtually cyclic subgroups of � . We
would like to reduce our computations to the family of finite subgroups. For this, by
the transitivity principle [13, A.10], we need to verify that for any infinite virtually
cyclic subgroup, H , of � the relative assembly map

.A�/FH ;ALLW �q.H.BFH
H IP�.p/// �! �q.P�.E�=H ///
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is an isomorphism for all q � k . It suffices to show that the corresponding Nil-groups
for the infinite virtually cyclic subgroups Z;Z2�Z vanish. This follows for Z as it is
a regular ring and by [3, page 677] we have NKi.ZŒC2�/D 0 for all i � 1. Hence our
relative assembly map is an isomorphism for all q ��1 and the relative assembly map

.A�/FIN ;VC W �k.H.BFIN�IP�.Fx/// �! �k.H.BVC�IP�.Fx///

is also an isomorphism for all k � �1. Thus, the composition map

.A�/FIN ;ALL D .A�/VC;ALL ı .A�/FIN ;VC

is also an isomorphism which reduces the problem to compute the homotopy groups
�k.H.BFIN�IP�.Fx/// for k � �1.

By Quinn [24] (see also Davis and Lück [10] and Farrell and Jones [13]) there is an
Atiyah–Hirzebruch–Quinn spectral sequence with E2 –term

E2
p;q DHp.BFIN�I f�q.P�.Fx//g/

for the family FIN , that converges to �pCq.H.BFIN�IP�.Fx///. The local coeffi-
cients f�q.P�.Fx//g, are described as follows:

�q.P�.Fx//D

8̂<̂
:

Wh.�1.Fx// q D�1;

zK0.Z�1.Fx// q D�2;

KqC2.Z�1.Fx// q � �3;

with �1.Fx/ 2 FIN .

But if �1.Fx/ is either f1g or Z2 , it is well known that �q.P�.Fx// D 0 for all
q � �1. Hence, the spectral sequence E2

p;q collapses and the homotopy groups

�k.H.BFIN�IP�.Fx///

vanish for all k � �1.

4.2 The Whitehead group of PBn.RP 2/

Recall from Gonçalves and Guaschi [15] the description for the group PBn.RP2/

PBn.RP2/D

8̂<̂
:

Z2 nD 1;

Q8 nD 2;

F2 Ì Q8 nD 3;

where Q8 is the quaternion group of order 8 and F2 the free group on two generators
x;y . From this work we have that PB3.RP2/ has generators fx;y; a; bg, where x
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and y generate a free group and a; b generate the Q8 subgroup (and can be identified
with the unit quaternionic numbers i; j ), and relations:

a2
D b2 ax D ya

a4
D b4

D 1 ay D xa

a�1baD b�1 bx D y�1b

by D x�1b

For n> 3, see Gonçalves and Guaschi [16] for a presentation of the group. Next, we
recall the classification of the virtually cyclic subgroups of PBn.RP2/ described by
Gonçalves and Guaschi in [17].

Proposition 4.3 [17] Let n � 3 and �n D PBn.RP2/, the pure braid group of
n strands on the projective plane. Then the virtually cyclic subgroups of �n are
isomorphic to one of the following groups:

(1) feg; Z2; Z4; Q8; Z; Z2 �Z; Z4 �Z2
Z4 if nD 3.

(2) feg; Z2; Z4; Z; Z2 �Z; Z4 �Z2
Z4 if n> 3.

A universal FIN space for F2 Ì Q8 One of the main ingredients for our computa-
tions is to find a suitable universal space for the family of virtually cyclic subgroups of
our groups. It turns out that in our case, it suffices to find such a space for the family
of finite subgroups. Let F2 be the free group on two generators x and y and Ca be
the Cayley graph of F2 . Recall that Ca is the universal cover of the figure eight; see
Figure 1. Where p is the natural projection map from Ca to Ca=� . The vertices of
the graph are the elements of the free group and the natural action of F2 on the graph
is by left multiplication on the vertex set. Recall that we have an edge in Ca from g to
gu where u 2 fx˙1;y˙1g and g 2 F2 , hence left multiplication by elements of F2

naturally extends to the edges to give an action of F2 on Ca.

Define the space cCa to be the Cayley graph equipped with the barycentric subdivision.
Note that cCa is a one dimensional simplicial complex and F2 also acts on it. Using
this action and the action of Q8 on F2 described above we have:

Proposition 4.4 Let � DF2 ÌQ8 and let cCa be the space described above. Then cCa
is a universal � –space for the family of finite subgroups of � .

Proof Define the action of � on cCa by the group homomorphism  W F2 Ì Q8!

homeo.cCa/, as follows: elements of F2 act by left multiplication and the generator a

acts by  .a/ which sends a word w to yw where yw is obtained from w by replacing x
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y

yx�1

x�1y

x�1

x�2

x�1y�1

y�1x�1

y�2

y2

yx

xy

x

x2

xy�1

y�1x

y�1

yd

yc0

yd 0

yc e

p

y x

d c
�

Figure 1: Universal cover for the figure eight

by y and y by x . It is clear that if one has an edge from g to gu in Ca, it follows
that cgu is of the form ygyu with yu 2 fx˙1;y˙1g, hence it is also an edge. Similarly,
the action by the element b is defined by  .b/ where  .b/ applied to a word w is the
word xw where the latter is obtained from w by replacing x by y�1 and y by x�1 . It
is immediate that this extends to an action on Ca.

To verify that  is a homomorphism one may check that it satisfies the relations for
the group � . As an example, we show that  .ax/D  .ya/: let w be a vertex in Ca,
then  .ax/.w/D .bxw/D y yw and on the other hand  .ya/.w/D y yw . The others
can be verified similarly.
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As cCa is a tree and the action is cellular, we only need to check that the fixed points
are determined by the finite subgroups of � . We recall that up to isomorphism, the
finite subgroups of PB.RP2/ are just Z2;Z4 , and Q8 .

Now, we need to check that for any nontrivial finite subgroup H of � , .cCa/H ¤∅
and it is contractible. This follows from the general theory of groups acting on trees.
Let H be any finite group acting by automorphisms on a tree T . By the work of Serre
[26, Theorem 15, page 58], we have that T H is nonempty. Recall that in a tree, there is
a unique shortest simplicial path joining any pair of points, thus T H is path connected:
Let u; v be two points in T H and let  be the shortest path joining u and v , then for
h 2H the path h joins huD u to hv D v , so by uniqueness it follows that h D  .
Furthermore, as a nonempty path connected subset of a tree is itself a tree it follows
that T H is a tree, hence contractible.

For any infinite group H we have .cCa/H D ∅: Let H be a subgroup of � , if
H \ F2 D f1g, from the semidirect product description of � , it follows that H is
finite. Hence H \F2 6D f1g for any infinite subgroup H of � . Let g 2H \F2 be a
nonidentity element. We will show that g cannot fix any vertex: if v is a vertex in Ca
we have that gvD v in F2 , if and only if gD 1, as the action is by left multiplication.
Now, if v is a vertex in cCa that was not a vertex in Ca, then g would fix this vertex if
and only if g leaves invariant the corresponding edge e in the original Cayley graph. It
follows that g would interchange the vertices of e , hence g2 2F2 would fix the edge e

and hence a vertex in the original Cayley graph. It follows that g2 D 1, but g 2 F2

which is a torsion free group, hence g D 1 which is a contradiction to the choice of g .
It follows that g 2H does not fix any vertex in cCa , and hence .cCa/H D∅.

As F2 is a normal subgroup of F2 ÌQ8 , we have that the orbit space .cCa=F2 Ì Q8/�

.cCa=F2/=Q8 . As we know .cCa=F2/ is the figure eight with vertex point � and has
two extra vertices c; d in each leaf (from the barycenters of the intervals of Ca; see
Figure 1). Now observe that the action of Q8 identifies c and d and there is a single
orbit for the edges. Hence, the orbit space cCa=F2 Ì Q8 is the 1–simplex described by
the two vertices � and c and the edge ec� (see Figure 2). Note that the vertex � is

Q8

�

Z4

cec�

Z2

Figure 2: The orbit space BFIN�

stabilized by Q8 , while the vertex c is stabilized by Z4 and the edge ec� is stabilized
by Z2 . Thus, we have a full description of the orbit space for the family of finite
subgroups of � , BFIN� .
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Theorem 4.5 Let �DPBn.RP2/ be the pure braid group on n strands (n> 0) on the
projective plane. Then we have that Wh.�/D 0 and Ki.Z�/D 0 for i < 0. Moreover,
when n¤ 2; 3 we have zK0.Z�/D 0 and in the remaining two cases nD 2; 3, we have
that zK0.Z�/D Z2 .

Proof For the cases nD 1, and 2 we have that

PBn.RP2/D

(
Z2 nD 1;

Q8 nD 2.

The Whitehead group of � and the lower algebraic K–groups for the integral group
ring Z� are well known for � D Z2 . For Q8 the Whitehead group can be found
in Keating [20], the reduced K0 in Martinet [22], and K�1 can be computed using
Carter’s formula [7, Theorem 1]:

K�1.ZŒQ8�/D Zr
˚ .Z2/

s;

where r D 1� �C �2� r2 and �; �2 and r2 are the number of irreducible classes of
Q;Q2 , and F2 representations respectively. In this case, � D �2 as both correspond
to the number of conjugacy classes of cyclic subgroups of Q8 and r2 D 1 as this is a
2–group [25, Chapters 12 and 15]. Hence r D 0. On the other hand s is the number
of simple components of QŒQ8� which have even Schur index m but have odd local
Schur indices mQ at every finite prime Q of the center which divides 8. From [9,
page 740], we have that

QŒQ8�ŠQ4
˚H4:

The Schur index of the first term above is 1 and that of H4 (the rational quaternion
algebra) is 2, thus the local Schur index of H4 at the prime 2 is also 2. This gives
s D 0, hence K�1.QŒQ8�/D 0. Summarizing, the results are

Wh.Z2/D 0;

zK0.ZŒZ2�/D 0;

Ki.ZŒZ2�/D 0 i < 0,

Wh.Q8/D 0;

zK0.ZŒQ8�/D Z2:

For n> 3, the isomorphism types of virtually cyclic subgroups of � are precisely

feg; Z2; Z4; Z; Z2 �Z; Z4 �Z2
Z4:

As before, we now need to compute the homotopy groups �k.H.BVC�IP�.Fx/// for
the family of virtually cyclic subgroups of � . As for the case PBn.S2/, we reduce
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the computations to the family of finite groups by showing that the corresponding
Nil-groups for the infinite virtually cyclic subgroups of � vanish.

The first cases were treated before and the only new case to analyze is the Nil groups
of Z4 �Z2

Z4 . From work of Lafont and Ortiz [21] it follows that these Nil groups
also vanish for all i � 1. Hence, the relative assembly map

.A�/FIN ;VC W �q.H.BFIN�IP�.Fx/// �! �q.H.BVC�IP�.Fx///

is an isomorphism for all q � �1. As before, we now concentrate on the com-
putation of the homotopy groups �k.H.BFIN�IP�.Fx/// for the family of finite
subgroups of � . We analyze the Atiyah–Hirzebruch–Quinn spectral sequence E2

p;q D

Hp.BFIN�I f�q.P�.Fx//g/ for the family of finite subgroups, FIN . The family
FIN for this case consists of subgroups isomorphic to

f1g; Z2; Z4

and the local coefficients f�q.P�.Fx//g are described as

�q.P�.Fx//D

8̂<̂
:

Wh.�1.Fx// q D�1;

zK0.Z�1.Fx// q D�2;

KqC2.Z�1.Fx// q � �3;

with �1.Fx/ 2 FIN .

However, if �1.Fx/ D f1g; Z2 or Z4 , it is well known that the local coefficients
�q.P�.Fx//D 0 for all q��1. For Z4 , see Oliver [23, Theorem 14.2, Example 14.4]
for the Whitehead group, see Curtis and Reiner [9, Corollary 50.17] for reduced K0

and Carter’s formula [7, Theorem 1] is immediate. Hence, the spectral sequence E2
p;q

collapses and the homotopy groups

�k.H.BFIN�IP�.Fx///

vanish for all k � �1. Therefore, Wh.�/; zK0.Z�/ and Ki.Z�/ vanish for all n> 3

and i � �1 .

To complete the proof of our theorem we are left with studying the case nD 3. Recall
that the virtually cyclic subgroups of � in this case are

feg; Z2; Z4; Q8; Z; Z2 �Z; Z4 �Z2
Z4;

so FINDffeg;Z2;Z4;Q8g and the infinite virtually cyclic subgroups are VC�FIND
fZ;Z2 �Z;Z4 �Z2

Z4g.
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Observe that the difference with the case n> 3 is the presence of the finite group Q8 .
Thus, the only local coefficient that may change our results are the ones corresponding
to the group Q8 .

We begin by computing Wh.�/. To do this, look at the spectral sequence

E2
p;q DHp.BFIN�I f�q.P�.Fx//g/

where the orbit space BFIN� is the 1–simplex described earlier. Therefore, the only
terms of the spectral sequence that contribute to compute Wh.�/ are E2

0;�1
, and

E2
1;�2

.

The term E2
0;�1

is H0.BFIN�I f��1.P�.Fx//g/. The local coefficients are

f��1.P�.Fx//g D fWh.�1.Fx//g�1.Fx/2FIN :

We already know that Wh.�1.Fx//D 0 for all �1.Fx/ 2 FIN . Hence, E2
0;�1
D 0.

The term E2
1;�2

is H1.BFIN�I f��2.P�.Fx//g/ and the local coefficients are

f��2.P�.Fx//g D f zK0.Z�1.Fx/g�1.Fx/2FIN :

The chain complex that provides this homology is the following:

0 �! zK0.ZŒZ2�/ �! zK0.ZŒQ8�/˚ zK0.ZŒZ4�/ �! 0

Hence, H1.BFIN�I f��2.P�.Fx//g/D 0 and Wh.�/D 0.

Now, to compute zK0.Z�/ the only terms that contribute are E2
0;�2

, and E2
1;�3

. Using
the above chain complex we have that

E2
0;�2 DH0.BFIN�I f��2.P�.Fx//g/D Z2:

As E2
1;�3 DH1.BFIN�I f��3.P�.Fx//g/D 0;

since the local coefficients

f��3.P�.Fx//g D fK�1.Z�1.Fx/g�1.Fx/2FIN

and K�1.Z�1.Fx//D 0 for all �1.Fx/ 2 FIN , we obtain that zK0.Z�/D Z2 .

Lastly, note that the local coefficients for q < �3

f�q.P�.Fx//g D fKqC2.Z�1.Fx/g�1.Fx/2FIN

are all zero. Thus, the spectral sequence collapses for all p and for all q <�3. Hence,
the lower algebraic K–groups for the integral group ring Z� vanish.
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Final remarks Similar computations may be carried out for the groups Bn.S2/ and
Bn.RP2/. New ingredients appear: the infinite virtually cyclic groups are more
complex and there are many cases where the computations cannot be reduced to the
family of finite groups.
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