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Braids, posets and orthoschemes

TOM BRADY

JON MCCAMMOND

In this article we study the curvature properties of the order complex of a bounded
graded poset under a metric that we call the “orthoscheme metric”. In addition
to other results, we characterize which rank 4 posets have CAT.0/ orthoscheme
complexes and by applying this theorem to standard posets and complexes associated
with four-generator Artin groups, we are able to show that the 5–string braid group is
the fundamental group of a compact nonpositively curved space.

05E15, 06A06, 20F36, 20F65, 51M20; 06A11

Barycentric subdivision subdivides an n–cube into isometric metric simplices called
orthoschemes. We use orthoschemes to turn the order complex of a graded poset P

into a piecewise Euclidean complex K that we call its orthoscheme complex. Our goal
is to investigate the way that combinatorial properties of P interact with curvature
properties of K . More specifically, we focus on combinatorial configurations in P that
we call spindles and conjecture that they are the only obstructions to K being CAT.0/.

Poset Curvature Conjecture The orthoscheme complex of a bounded graded poset P

is CAT.0/ if and only if P has no short spindles.

One way to view this conjecture is as an attempt to find something like the flag condition
that tests whether a cube complex is CAT.0/. We highlight this perspective in Section 7.
Our main theorem establishes the conjecture for posets of low rank.

Theorem A The orthoscheme complex of a bounded graded poset P of rank at most 4

is CAT.0/ if and only if P has no short spindles.

Using Theorem A, we prove that the 5–string braid group, also known as the Artin
group of type A4 , is a CAT.0/ group. More precisely, we prove the following.

Theorem B Let K be the Eilenberg–Mac Lane space for a four-generator Artin group
of finite type built from the corresponding poset of W–noncrossing partitions and
endowed with the orthoscheme metric. When the group is of type A4 or B4 , the
complex K is CAT.0/ and the group is a CAT.0/ group. When the group is of type
D4 , F4 or H4 , the complex K is not CAT.0/.
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There are very few previous results establishing Artin groups as CAT.0/ groups. The
three-generator Artin groups of finite-type were analyzed by the first author in [6] using
complexes and metrics directly related to the ones used here. Right-angled Artin groups,
and more generally Artin groups of FC–type are fundamental groups of CAT.0/ cube
complexes by Altobelli and Charney [2] and thus are CAT.0/ groups. And finally,
some infinite-type examples of cohomological dimension 2 were produced by the
authors in [8]. This article produces the first examples where the geometry involved is
not cubical and the links are not essentially 1–dimensional.

The article is structured as follows. The initial sections recall basic results about
posets, complexes and curvature, followed by sections establishing the key properties
of orthoschemes, orthoscheme complexes and spindles. The final sections prove our
main results and contain some concluding remarks. The second author gratefully
acknowledges the support of the National Science Foundation and both authors would
like to thank the referee for the detailed comments.

1 Posets

We begin with elementary definitions and results about posets. For additional back-
ground see Björner [4] or Stanley [18].

Definition 1.1 (Poset) A poset is a set with a fixed implicit reflexive, antisymmetric
and transitive relation �. A chain is any totally ordered subset, subsets of chains are
subchains and a maximal chain is one that is not a proper subchain of any other chain.
A chain with nC 1 elements has length n and its elements can be labeled so that
x0 < x1 < � � �< xn . A poset is bounded below, bounded above, or bounded if it has
a minimum element 0, a maximum element 1, or both. The elements 0 and 1 are
necessarily unique when they exist. A poset has rank n if it is bounded, every chain is
a subchain of a maximal chain and all maximal chains have length n.

Definition 1.2 (Interval) For x � y in a poset P , the interval between x and y is
the restriction of the poset to those elements z with x � z � y and it is denoted by
P .x;y/ or Pxy . If every interval in P has a rank, then P is graded. Let x be an
element in a graded poset P . When P is bounded below, the rank of x is the rank
of the interval P0x and when P is bounded above, the corank of x is the rank of the
interval Px1 . In general, if every interval in a poset P has a particular property, we
say P locally has that property.

Note that a poset is bounded and graded if and only if it has rank n for some n, and
that the rank of an element x in a bounded graded poset is the same as the subscript x
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receives when it is viewed as an element of a maximal chain from 0 to 1 whose
elements are labelled as described above.

Definition 1.3 (Lattice) Let x and y be elements in a poset P . An upper bound for
x and y is any element z such that x � z and y � z . The minimal elements among
the collection of upper bounds for x and y are called minimal upper bounds of x

and y . When there is an upper bound z of x and y that is smaller than every other
upper bound of x and y then z is the join of x and x and y and denoted x _y . In
graded posets every upper bound is above a minimal upper bound so the existence of a
join is equivalent to the existence of a unique minimal upper bound. The definitions
of lower bounds and maximal lower bounds of x and y are similar. When there is a
lower bound z of x and y that is larger than any other lower bound of x and y then
z is then z is the meet of x and y and denoted x ^ y . A poset in which x _ y and
x ^y always exist is called a lattice.

For later use we define a particular configuration that is present in every bounded
graded poset that is not a lattice.

Definition 1.4 (Bowtie) We say that a poset P contains a bowtie if there exist distinct
elements a, b , c and d such that a and c are minimal upper bounds for b and d

and b and d are maximal lower bounds for a and c . In particular, there is a zigzag
path from a down to b up to c down to d and back up to a. An example is shown in
Figure 1.

a

b

c

d

0

1

Figure 1: A bounded graded poset that is not a lattice

Proposition 1.5 (Lattice or bowtie) A bounded graded poset P is a lattice if and
only if P contains no bowties.

Proof If P contains a bowtie, then b and d have no join and P is not a lattice. In
the other direction, suppose P is not a lattice because x and y have no join. An upper
bound exists because P is bounded, and a minimal upper bound exists because P is
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graded. Thus x and y must have more than one minimal upper bound. Let a and c be
two such minimal upper bounds and note that x and y are lower bounds for a and c .
If b is a maximal lower bound of a and c satisfying b � x and d is a maximal lower
bound of a and c satisfying d � y , then a, b , c , d form a bowtie. We know that a

and c are minimal upper bounds of b and d and that b and d are distinct since either
failure would create an upper bound of x and y that contradicts the minimality of a

and c . When x and y have no meet, the proof is analogous.

Posets can be used to construct simplicial complexes.

Definition 1.6 (Order complex) The order complex of a poset P is a simplicial
complex jP j constructed as follows. There is a vertex vx in jP j for every x 2 P , an
edge exy for all x < y and more generally there is a k –simplex in jP j with vertex
set fvx0

; vx1
; : : : ; vxk

g for every finite chain x0 < x1 < � � � < xk in P . When P is
bounded, v0 and v1 are the endpoints of jP j, and the edge e01 connecting them is its
diagonal.

The order complex of the poset shown in Figure 1 has 6 vertices, 13 edges, 12 triangles
and 4 tetrahedra. Since every maximal chain contains 0 and 1, all four tetrahedra
contain the diagonal e01 .

Proposition 1.7 (Contractible) If a poset is bounded below or bounded above, then
its order complex is contractible.

Proof If x is an extremum of P , then jP j is a topological cone over the complex
jP n fxgj with vx as the apex of the cone.

2 Complexes

Next we review the theory of piecewise Euclidean and piecewise spherical cell com-
plexes built out of Euclidean or spherical polytopes, respectively. For further background
on polytopes see Ziegler [19], for polytopal complexes see Bridson and Haefliger [11]
and for regular (ie combinatorial) cell complexes see Abramenko and Brown [1, Ap-
pendix A.2].

Definition 2.1 (Euclidean polytope) A Euclidean polytope is a bounded intersection
of a finite collection of closed half-spaces of a Euclidean space, or, equivalently, it is
the convex hull of a finite set of points. A proper face is a proper nonempty subset that
lies in the boundary of a closed half-space containing the entire polytope. Every proper
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face of a polytope is itself a polytope. In addition there are two trivial faces: the empty
face ∅ and the polytope itself. The interior of a face is the collection of its points
that do not belong to a proper subface, and every polytope is a disjoint union of the
interiors of its faces. The dimension of a face is the dimension of the smallest affine
subspace that containing it. A 0–dimensional face is a vertex and a 1–dimensional
face is an edge.

Definition 2.2 (PE complex) A piecewise Euclidean complex (or PE complex) is
the cell complex that results when a disjoint union of Euclidean polytopes are glued
together via isometric identifications of their faces. For simplicity we usually insist
that every polytope involved in the construction embeds into the quotient and that the
intersection of any two polytopes be a face of each. If there are only finitely many
isometry types of polytopes used in the construction, we say it is a complex with finite
shapes.

A basic result due to Bridson is that a PE complex with finite shapes is a geodesic
metric space, ie the distance between two points in the quotient is well-defined and
achieved by a path of that length connecting them. This was a key result from Bridson’s
thesis [10] and is the main theorem of Chapter I.7 in [11]. The PE complexes built out
of cubes deserve special attention.

Example 2.3 (Cube complexes) A cube complex is a PE complex K in which every
cell used in its construction is isometric to a metric cube of some dimension and every
edge of K has the same length.

In the same way that every poset has an associated cell complex, every combinatorial
cell complex has an associated poset.

Definition 2.4 (Face posets) Every combinatorial cell complex K , such as a PE
complex, has an associated face poset P with one element x� for each cell � in K

ordered by inclusion, that is x� � x� if and only if � � � in K . As is well-known,
the operations of taking the face poset of a cell complex and constructing the order
complex of a poset are nearly but not quite inverses of each other. More specifically,
the order complex of the face poset of a combinatorial cell complex is a topological
space homeomorphic to original cell complex but with a different cell structure. The
new cells are obtained by barycentrically subdividing the old cells.

Definition 2.5 (Euclidean product) Let K and L be PE complexes. The metric
on the product complex K �L is defined in the natural way: if the distance in K
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between x and x0 is dK and the distance in L between y and y0 is dL , then the
distance between .x;y/ and .x0;y0/ is

p
.dK /2C .dL/2 . It is itself a PE complex

built out of products of polytopes. More precisely, if � is a nonempty cell in K and �
is a nonempty cell in L, then there is a polytope � � � in K �L. Conversely, every
nonempty cell in K �L is a polytope of this form.

Euclidean polytopes and PE complexes have spherical analogs.

Definition 2.6 (Spherical polytope) A spherical polytope is an intersection of a finite
collection of closed hemispheres in Sn , or, equivalently, the convex hull of a finite set
of points in Sn . In both cases there is an additional requirement that the intersection or
convex hull be contained in some open hemisphere of Sn . This avoids antipodal points
and the nonuniqueness of the geodesics connecting them. With closed hemispheres
replacing closed half-spaces and lower dimensional unit subspheres replacing affine
subspaces, the other definitions are unchanged.

Definition 2.7 (PS complex) A piecewise spherical complex (or PS complex) is the
combinatorial cell complex that results when a disjoint union of spherical polytopes are
glued together via isometric identifications of their faces. As above we usually insist
that each polytope embeds into the quotient and that they intersect along faces. As
above, so long as the complex has finite shapes, the result is a geodesic metric space.

Definition 2.8 (Vertex links) Let v be a vertex of a Euclidean polytope � . The link
of v in � is the set of directions that remain in � . More precisely, the vertex link
lk.v; �/ is the spherical polytope of unit vectors u such that vC �u is in � for some
� > 0. More generally, let v be a vertex of a PE complex K . The link of v in K ,
denoted lk.v;K/ is obtained by gluing together the spherical polytopes lk.v; �/ where
� is a Euclidean polytope in K with v as a vertex. The intuition is that lk.v;K/ is a
rescaled version of the boundary of an �–neighborhood of v in K .

A vertex link of a Euclidean polytope is a spherical polytope, a vertex link of a PE
complex is a PS complex, and a vertex link of a cube complex is a simplicial complex.
The converse is also true in the sense that every spherical polytope is a vertex link of
some Euclidean polytope, every PS complex is a vertex link of some PE complex, and
every simplicial complex is a vertex link of some cube complex.

Definition 2.9 (Spherical joins) Given PS complexes K and L, we define a new
PS complex K �L that is the spherical analog of Euclidean product. As remarked
above, there is a PE complex K0 with a vertex v such that K D lk.v;K0/ and a PE
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complex L0 with a vertex w such that L D lk.w;L0/. We define K �L to be the
link of .v; w/ in K0 �L0 . The cell structure of K �L as a PS complex is built from
spherical joins of cells of K with L. In particular, each spherical polytope in K �L

is � � � where � is a cell of K and � is a cell of L. One difference in the spherical
context is that the empty face plays an important role. There are cells in K �L of
the form � �∅ and ∅ � � that fit together to form a copy of K and a copy of L,
respectively. What is going on is that the link of .v; w/ in K0�fwgDK0 is K�∅DK

and the link of .v; w/ in fvg �L0 DL0 is ∅�LDL. The spherical join K �L can
alternatively be defined as the smallest PS complex containing a copy of K and a copy
of L such that every point of K is distance �=2 from every point of L [11, page 63].
Spherical join is a commutative and associative operation on PS complexes with the
empty complex ∅ as its identity.

Next we extend the notion of a vertex link to the link of a face of a polytope and the
link of a cell in a PE complex.

Definition 2.10 (Face links) Let x be a point in an n–dimensional Euclidean poly-
tope � , let � be the unique face of � that contains x in its interior, let k be the dimension
of � , and define lk.x; �/ as in Definition 2.8. If x is not a vertex, then lk.x; �/ is
not a spherical polytope. In fact, lk.x; �/� lk.x; �/D Sk�1 which contains antipodal
points since k > 0. To remedy this situation we note that lk.x; �/D lk.x; �/� lk.�; �/
where the latter is a spherical polytope defined as follows. The link of � in � is the set
of directions perpendicular to � that remain in � . More precisely, the face link lk.�; �/
is the spherical polytope of unit vectors u perpendicular to the affine hull of � such that
for any x in the interior of � , xC �u is in � for some � > 0. More generally, let � be
a cell of a PE complex K . The link of � in K , denoted lk.�;K/, is obtained by gluing
together the spherical polytopes lk.�; �/ where � is a Euclidean polytope in K with �
as a face. As an illustration, if x is a point in an edge � of a tetrahedron � , then lk.�; �/
is a spherical arc whose length is the size of the dihedral angle between the triangles
containing � , whereas lk.x; �/D S0 and lk.x; �/D lk.x; �/� lk.�; �/D S0� lk.�; �/
is a lune of the 2–sphere. More generally, if x is a point in a PE complex K , � is
the unique cell of K containing x in its interior, and k is the dimension of � , then,
viewing lk.x;K/ as a rescaling of the boundary of an �–neighborhood of x in K , we
have that lk.x;K/D lk.x; �/� lk.�;K/D Sk�1 � lk.�;K/.

Definition 2.11 (Links in PS complexes) Let � be a cell in a PS complex K . To
define lk.�;K/ we find a PE complex K0 with vertex v such that K D lk.v;K0/ and
then identify the unique cell � 0 in K0 such that � D lk.v; � 0/. We then define the PS
complex lk.�;K/ as the PS complex lk.� 0;K0/.
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We conclude by recording some elementary properties of links and joins.

Proposition 2.12 (Links of links) If � � � 0 are cells in a PE or PS complex K then
there is a cell � in LD lk.�;K/ such that lk.�;L/D lk.� 0;K/. Moreover, the link of
every cell � in lk.�;K/ arises in this way. In other words, a link of a cell in the link of
a cell is a link of a larger cell in the original complex.

Proposition 2.13 (Links of joins) Let K and L be PS complexes with cells � and �
respectively. If K0 D lk.�;K/ and L0 D lk.�;L/, then K0 �L, K �L0 and K0 �L0

are links of cells in K �L. Moreover, every link of a cell in K �L is of one of these
three types.

3 Curvature

As a final bit of background, we review curvature conditions such as CAT.0/ and
CAT.1/. In general these terms are defined by requiring that certain geodesic triangles
be “thinner” than comparison triangles in R2 or S2 , but because we are just reviewing
CAT.0/ PE complexes and CAT.1/ PS complexes, alternate definitions are available
that only involve the existence of short geodesic loops in links of cells.

Definition 3.1 (Geodesics and geodesic loops) A geodesic in a metric space is an
isometric embedding of a metric interval and a geodesic loop is an isometric embedding
of a metric circle. A local geodesic and local geodesic loop are weaker notions that
only require the image curves be locally length minimizing. For example, a path more
than halfway along the equator of a 2–sphere is a local geodesic but not a geodesic and
a loop that travels around the equator twice is a local geodesic loop but not a geodesic
loop. A loop in a PS complex of length less than 2� is called short and a PS complex
that contains no short local geodesic loops is called large.

Definition 3.2 (Curvature conditions) If K is a PE complex with finite shapes and
the link of every cell in K is large, then K is nonpositively curved or locally CAT.0/.
If, in addition, K is connected and simply connected, then K is CAT.0/. If K is a
PS complex and the link of every cell in K is large, then K is locally CAT.1/. If, in
addition, K itself is large, then K is CAT.1/.

It is well-known that CAT.0/ spaces are contractible. It follows from the definitions
and Proposition 2.12 that a PE complex is nonpositively curved if and only if its vertex
links are CAT.1/. Moreover, in the same way that every PS complex is a vertex link of
a PE complex, every CAT.1/ PS complex is the vertex link of a CAT.0/ PE complex.
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A standard example where the CAT.0/ condition is easy to check is in a cube complex.
The link of a cell in a cube complex is a PS simplicial complex built out of all-right
spherical simplices, ie spherical simplices in which every edge has length �=2. To
check whether a cube complex is locally CAT.0/ it is sufficient to check whether its
vertex links satisfy the purely combinatorial condition of being flag complexes.

Definition 3.3 (Flag complexes) A simplicial complex contains an empty triangle if
there are three vertices pairwise joined by edges but no triangle with these three vertices
as its corners. More generally, a simplicial complex K contains an empty simplex if
for some n> 1, K contains the boundary of an n–simplex but no n–simplex with the
same vertex set. A flag complex is a simplicial complex with no empty simplices.

Proposition 3.4 (Locally CAT.0/ cube complexes) A cube complex K is locally
CAT.0/ if and only if lk.v;K/ is a flag complex for every vertex v which is true if and
only if lk.�;K/ has no empty triangles for every cell � .

If a PS complex K is locally CAT.1/ but not CAT.1/ (ie the links of K are large,
but K itself is not large) then we say K is not quite CAT.1/. In [5] Brian Bowditch
characterized not quite CAT.1/ spaces using the notion of a shrinkable loop.

Definition 3.5 (Shrinkable loop) Let  be a rectifiable loop in a metric space. We
say that  is shrinkable if there exists a continuous deformation from  to a loop  0

that proceeds through rectifiable curves of finite length in such a way that the lengths
of the intermediate curves are nonincreasing and the length of  0 is strictly less than
the length of  . If  is not shrinkable, it is unshrinkable.

The following is a special case of the general results proved in [5].

Lemma 3.6 (Not CAT.1/) If K is a locally CAT.1/ PS complex with finite shapes,
then the following are equivalent:

(1) K is not CAT.1/.

(2) K contains a short geodesic loop.

(3) K contains a short local geodesic loop.

(4) K contains a short unshrinkable loop.

This is an extremely useful lemma since it is sometimes easier to establish that every loop
in a space is shrinkable than it is to show that it does not contain a short local geodesic.
Sometimes, for example, a single homotopy shrinks every curve simultaneously.
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Definition 3.7 (Monotonic contraction) Let X be a metric space and let H W X �

Œ0; 1�!X be a homotopy contracting X to a point (ie H0 is the identity map and H1

is a constant map). We say H is a monotonic contraction if H simultaneously and
monotonically shrinks every rectifiable curve in X to a point.

An example of a monotonic contraction is straightline homotopy from the identity map
on Rn to a constant map. A spherical version of monotonic contraction is needed in
Section 4.

Definition 3.8 (Hemispheric contraction) Let u be a point in Sn and let X be a
hemisphere of Sn with u as its pole, ie the ball of radius �=2 around u. Every point v
in X lies on a unique geodesic connecting v to u and we can define a homotopy that
moves v to u at a constant speed so that at time t it has traveled t of the distance
along this geodesic. This hemispheric contraction to u is a monotonic contraction in
the sense defined above.

Although Lemma 3.6 only applies to locally CAT.1/ PS complexes, such contexts can
always be found when curvature conditions fail.

Proposition 3.9 (Curvature and links) Let K be a connected and simply connected
PE complex with finite shapes. If K is not CAT.0/ then there is a cell � in K such
that lk.�;K/ is not quite CAT.1/. Similarly, if K is a PS complex that is not CAT.1/
then either K itself is not quite CAT.1/ or there is a cell � such that lk.�;K/ is not
quite CAT.1/.

Proof Let S be the set of the cells � in K such that lk.�;K/ is not CAT.1/ and order
them by inclusion. Unless K itself is a not quite CAT.1/ PS complex, the set S is not
empty. Moreover, because K has finite shapes, K is finite dimensional, and S has
maximal elements. If � is such a maximal element, then maximality combined with
Proposition 2.12 shows that lk.�;K/ is locally CAT.1/. Since � is in S , lk.�;K/ is
not CAT.1/. Thus lk.�;K/ is not quite CAT.1/.

To show that a PE or PS complex is not CAT.0/ or CAT.1/ it is convenient to be able
to construct and detect local geodesic loops. We do this using piecewise geodesics.

Definition 3.10 (Piecewise geodesics) Let K be a PE or PS complex and take a
sequence .x0;x1; : : : ;xn/ of points in K such that for each i , xi�1 and xi belong
to a unique minimal common cell of K and x0 D xn . The piecewise geodesic loop
defined by this list is the concatenation of the unique geodesics from xi�1 to xi in the
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(unique) minimal common cell containing them. The points xi are its transition points.
Piecewise geodesics are local geodesics if and only if they are locally geodesic at its
transition points. This can be determined by examining two transition vectors: the unit
tangent vector at xi for the geodesic connecting xi to xiC1 and the unit tangent vector
at xi for the geodesic from xi to xi�1 (traversed in reverse). These correspond to
two points in lk.xi ;K/. We say that the transition points are far apart if the distance
between them is at least � inside lk.xi ;K/. Finally, a piecewise geodesic loop  in a
PS or PE complex K is a local geodesic if and only if at every transition point x , the
transition vectors are far apart in lk.x;K/.

We conclude by relating curvature, links and spherical joins.

Proposition 3.11 (CAT.1/ and joins) Let K and L be PS complexes.

(1) K �L is CAT.1/ if and only if K and L are CAT.1/.

(2) If K �L is locally CAT.1/ then K and L are locally CAT.1/.

(3) If K �L is not quite CAT.1/ then K or L is not quite CAT.1/.

Similar assertions hold for spherical joins of the form K1 �K2 � � � � �Kn .

Proof The first part is Corollary II.3.15 in [11]. For the second assertion suppose
K �L is locally CAT.1/ and let K0 be a link of K . Since K0 �L is a link of K �L

(Proposition 2.13), it is CAT.1/ by assumption. But then K0 is CAT.1/ by the first part
and K is locally CAT.1/. The third part merely combines the first two and extending
to multiple joins is an easy induction.

4 Orthoschemes

In this section we introduce the shapes that H S M Coxeter called “orthoschemes” [13]
and our main goal is to establish that face links in orthoschemes decompose into simple
shapes (Corollary 4.7). Roughly speaking an orthoscheme is the convex hull of a
piecewise linear path that proceeds along mutually orthogonal lines.

Definition 4.1 (Orthoschemes) Let .v0; v1; : : : ; vn/ be an ordered list of nC1 points
in some Euclidean space and for each i 2 Œn� let ui be the vector from vi�1 to vi .
If the vectors fuig are pairwise orthogonal then the convex hull of the points fvig is
a metric n–simplex called an n–orthoscheme that we denote Ortho.v0; : : : ; vn/. If
the vectors fuig form an orthonormal set of vectors, then it is a unit n–orthoscheme.
It follows easily from the definition that every face of an orthoscheme (formed by
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selecting a subset of its vertices) is itself an orthoscheme, although not all faces of a unit
orthoscheme are themselves unit orthoschemes. Faces defined by consecutive vertices
are of particular interest and we use O.i; j / to denote the face Ortho.vi ; : : : ; vj / of
O D Ortho.v0; : : : ; vn/. The points vi are the vertices of the orthoscheme, v0 and vn

are its endpoints and the edge connecting v0 and vn is its diagonal. A 3–orthoscheme
is shown in Figure 2.

v0 v1

v2

v3

Figure 2: A 3–dimensional orthoscheme

For later use we define a contraction of an endpoint link of an orthoscheme.

Proposition 4.2 (Endpoint contraction) If v is an endpoint of an orthoscheme O and
u is the unit vector pointing from v along its diagonal, then hemispheric contraction
to u monotonically contracts lk.v;O/.

Proof Let ODOrtho.v0; : : : ; vn/ and let vDv0 . Without loss of generality arrange O

in Rn so that v0 is the origin and each vector vi � vi�1 is a positive scalar multiple
of a standard basis vector. In this coordinate system all of O lies in the nonnegative
orthant and the coordinates of vn are strictly positive. In particular the convex spherical
polytope lk.v;O/ is contained in an open hemisphere of Sn�1 with u as its pole,
where u is the unit vector pointing towards vn . This is because an all positive vector
such as u and any nonzero nonnegative vector have a positive dot product, making
the angle between them acute. Finally, hemispheric contraction to u monotonically
contracts lk.v;O/ because lk.v;O/ is a convex set containing u.

The orthogonality embedded in the definition of an orthoscheme causes its face links to
decompose into spherical joins. As a warm-up for the general statement, we consider
links of vertices and edges in orthoschemes.

Algebraic & Geometric Topology, Volume 10 (2010)



Braids, posets and orthoschemes 2289

Example 4.3 (Vertex links in orthoschemes) Let O D Ortho.v0; v1; : : : ; vn/ be an
orthoscheme, let v D vk be a vertex with 0< k < n, and consider suborthoschemes
K D O.0; k/ and L D O.k; n/. The affine subspaces containing K and L are
orthogonal to each other and the original orthoscheme is the convex hull of these two
faces. Thus lk.v;O/D lk.v;K/� lk.v;L/. In fact, this formula remains valid when
k D 0 (or k D n) since then K (or L) has only a single point, its link is empty and
this factor drops out of the spherical join since ∅ is the identity of the spherical join
operation. Finally, note that the factors are endpoint links of the suborthoschemes K

and L.

Example 4.4 (Edge links in orthoschemes) For each k < ` consider the link of the
edge ek` connecting vk and v` in O D Ortho.v0; v1; : : : ; vn/. If we define K D

O.0; k/, LDO.k; `/ and M DO.`; n/ then we claim that lk.ek`;O/D lk.vk ;K/�

lk.ek`;L/ � lk.v`;M /. To see this note that the linear subspaces corresponding to
the affine spans of K , L and M form an orthogonal decomposition of Rn and, as a
consequence, any vector can be uniquely decomposed into three orthogonal components.
It is then straightforward to see that a vector perpendicular to ek` points into O if
and only if its components live in the specified links. The first and last factors are
local endpoint links and the middle factor is a local diagonal link. As above, the first
factors drops out when k D 0, the last factor drops out when `D n, but also note that
the middle factor drops out when k and ` are consecutive since the diagonal link of
O.k; kC 1/ is empty.

We are now ready for the precise general statement.

Proposition 4.5 (Links in orthoschemes) Let O D Ortho.v0; v1; : : : ; vn/ and let �
be a k –dimensional face with vertices fvx0

; vx1
; : : : ; vxk

g where 0� x0 < x1 < � � �<

xk � n. The link of � in O is a spherical join of two endpoint links and k diagonal
links of suborthoschemes. More specifically,

lk.�;O/DK0 �L0 �L1 � � � � �Lk �K1

where K0 D lk.vx0
;O.0;x0// and K1 D lk.vxk

;O.xk ; 1// are local endpoint links,
and each Li D lk.exi�1xi

;O.xi�1;xi// is a local diagonal link.

Proof The full proof is basically the same as the one given above for edge links.
Orthogonally decompose Rn into linear subspaces corresponding to the affine hulls
of O.0;x0/, O.xk ; 1/ and O.xi�1;xi/ for each i 2 Œk�, then check that a vector
perpendicular to � points into O if and only if its components live in the listed links.
In an orthogonal basis compatible with the orthogonal decomposition that contains the
local diagonal directions along each exi�1xi

this conclusion is immediate.
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Coxeter’s interest in these shapes is related to the observation that the barycentric
subdivision of a regular polytope decomposes it into isometric orthoschemes. These or-
thoschemes are fundamental domains for the action of its isometry group and correspond
to the chambers of its Coxeter complex. For example, a barycentric subdivision of the
3–cube of side length 2 partitions it into 48 unit 3–orthoschemes and the barycentric
subdivision of an n–cube of side length 2 produces n! � 2n unit n–orthoschemes (see
Figure 3). These cube decompositions also make it easy to identify the shape of the
endpoint link and the diagonal link in a unit orthoscheme.

Figure 3: Barycentric subdivision of a 3–cube of side length 2 into 48 unit 3–orthoschemes

Definition 4.6 (Coxeter shapes) Let O D Ortho.v0; v1; : : : ; vn/ be a unit n–ortho-
scheme. The links lk.v0;O/ and lk.vn;O/, are isometric to each other and we call
this common shape ˇn because it is a spherical simplex known as the Coxeter shape
of type Bn . The type Bn Coxeter group is the isometry group of the n–cube and the
barycentric subdivision of the n–cube mentioned above shows that ˇn is its Coxeter
shape, ie a fundamental domain for the action of this group on the sphere. In low
dimensions, ˇ0 D∅, ˇ1 is a point, ˇ2 is an arc of length �=4 and ˇ3 is a spherical
triangle with angles �=2, �=3, and �=4. Similarly, the link of the diagonal connect-
ing v0 and vn in O is a shape that we call ˛n�1 because it is the spherical simplex
known as the Coxeter shape of type An�1 . The An�1 Coxeter group is the symmetric
group Symn , the isometry group of the regular .n�1/–simplex and also the stabilizer
of a vertex inside the isometry group of the n–cube. In low dimensions, ˛0 D∅, ˛1

is a point, ˛2 is an arc of length �=3 and ˛3 is a spherical triangle with angles �=2,
�=3 and �=3.
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The following corollary of Proposition 4.5 is now immediate.

Corollary 4.7 (Links in unit orthoschemes) The link of a face of a unit orthoscheme
is a spherical join of spherical simplices each of type A or type B . More specifically,
in the notation of Proposition 4.5, K0 has shape ˇx0

, K1 has shape ˇn�xn
and Li has

shape j̨ with j D xiC1�xi � 1.

As an illustration, the link of the tetrahedron with corners v3 , v6 , v7 and v12 in a
unit 12–orthoscheme is isometric to ˇ3 � ˛2 � ˛0 � ˛4 � ˇ0 D ˇ3 � ˛2 � ˛4 . Finally
we record a few results about lengths and angles in orthoscheme links that are needed
later in the article.

Proposition 4.8 (Edge lengths) The link of the diagonal of a unit n–orthoscheme
ODOrtho.v0; : : : ; vn/ is a spherical simplex of shape ˛n�1 whose vertices correspond
to the vi with 0< i<n. Moreover, if i , j , and k are positive integers with iCjCkDn

and � is the length of the edge connecting the vertex of rank i and the vertex of corank k

in ˛n�1 , then

0< � < �=2 and cos.�/D

s
i

i C j
�

k

j C k
:

Proof Consider the triangle with vertices v0 , vi and vn�k D viCj . If we project
this triangle onto the hyperplane perpendicular to the edge e0n , then the angle at v0

in the projected triangle is the length of the corresponding edge in ˛n�1 . Let u be
the projection of e0i and let v be the projection of e0.n�k/ (with both multiplied
by n to clear the denominators). In coordinates u D ..j C k/i ; .�i/jCk/ and v D
.kiCj ; .�i � j /k/. Here we are using Conway’s exponent notation to simplify vector
expressions. In words the first i coordinates of u are j C k and the remaining j C k

coordinates are �i . The dot products simplify as follows: u � v D i : k : n while
u �uD i : .j C k/ : n and v � v D .i C j / : k : n. Thus

cos2.�/D
.u � v/.u � v/

.u �u/.v � v/
D

.i : k : n/.i : k : n/

.i : .j C k/ : n/..i C j / : k : n/
D

i

i C j
�

k

j C k
:

Corollary 4.9 (Spherical triangles) Let Ortho.v0; : : : ; vn/ be a unit n–orthoscheme.
The diagonal link of the suborthoscheme Ortho.v0; vx; vy ; vz; vn/ for each 0 < x <

y < z < n is a spherical triangle with acute angles at vx and vz and a right angle at vy .

Proof From Proposition 4.8 the lengths of the edges of the spherical triangle are known
explicitly and the angle assertions follow from the standard spherical trigonometry. For
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example, if we select positive integers i C j C kC l D n such that vx has rank i , vy

has rank i C j and vz has rank i C j C k , then

cosjexy j D

s
i

i C j
�

kC l

j C kC l
; cosjeyzj D

s
i C j

i C j C k
�

l

kC l
;

cosjexzj D

s
i

i C j C k
�

l

j C kC l
:

From the equality cosjexy j � cosjeyzj D cosjexzj and the spherical law of cosines we
infer that the angle at vy is a right angle. The acute angle conclusion involves a similar
but messier computation.

5 Orthoscheme complexes

In this section we use orthoschemes to turn order complexes into PE complexes.
Although every simplicial complex can be turned into a PE complex by making simplices
regular and every edge length 1, the curvature properties of the result tend to be hard
to evaluate. For order complexes of graded posets orthoschemes are a better option.

Definition 5.1 (Orthoscheme complex) The orthoscheme complex of a graded poset P

is a metric version of its order complex jP j that assigns every top dimensional simplex
in jP j (ie those corresponding to maximal chains x0 < x1 < � � �< xn ) the metric of a
unit orthoscheme with vxi

corresponding to vi . As a result, for all elements x < y

in P , the length of the edge connecting vx and vy in jP j is
p

k where k is the rank
of Pxy . When jP j is turned into a PE complex in this way we say that jP j is endowed
with the orthoscheme metric. Unless otherwise specified, from now on jP j indicates
an orthoscheme complex, ie an order complex with the orthoscheme metric.

One reason for using this particular metric on the order complex of a poset is that it
turns standard examples of posets into metrically interesting PE complexes.

Example 5.2 (Boolean lattices) The rank n boolean lattice is the poset of all subsets
of Œn� WD f1; 2; : : : ; ng ordered by inclusion. The orthoscheme complex of a boolean
lattice is a subdivided unit n–cube (or one orthant of the barycentric subdivision of
the n–cube of side length 2 described earlier), its endpoint link is the barycentric
subdivision of an all-right spherical simplex tiled by simplices of shape ˇn and its
diagonal link is a subdivided sphere tiled by simplices of shape ˛n�1 . See Figure 4.

That the orthoscheme complex of a boolean lattice is a cube can be explained by a
more general fact about products.
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a b c

ab ac bc

abc

∅
a

b
c

ab ac
bc

abc

∅

Figure 4: The rank 3 boolean lattice and its unit 3–cube orthoscheme com-
plex. The orthoscheme from the chain ∅� fbg � fb; cg � fa; b; cg is shaded.

Remark 5.3 (Products) A product of posets produces an orthoscheme complex that
is a product of metric spaces. In particular, if P and Q are bounded graded posets,
then jP �Qj and jP j � jQj are isometric. The product on the left is a product of
posets and the product on the right is a product of metric spaces. Since finite boolean
lattices are poset products of two element chains, their orthoscheme complexes are, up
to isometry, products of unit intervals, ie cubes.

Cube complexes produce a second family of examples.

Example 5.4 (Cube complexes) Let K be a cube complex scaled so that every edge
has length 2. The face poset of K is a graded poset P whose intervals are boolean
lattices. The orthoscheme complex jP j is isometric to the cube complex K . In other
words, the metric barycentric subdivision of an arbitrary cube complex is identical to
the orthoscheme complex of its face poset.

A third family of examples shows that there are interesting CAT.0/ orthoscheme
complexes unrelated to cubes and cube complexes.

Example 5.5 (Linear subspace posets) The n–dimensional linear subspace poset
over a field F is the poset Ln.F/ of all linear subspaces of the n–dimensional vector
space Fn ordered by inclusion. It’s basic properties are explored in Chapter 3 of [18].
The poset Ln.F/ is bounded above by Fn and below by the trivial subspace and it is
graded by the dimension of the subspace an element of Ln.F/ represents. It turns out
that the orthoscheme complex of Ln.F/ is a CAT.0/ space and its diagonal link is a
standard example of a thick spherical building of type An�1 . The smallest nontrivial
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example, with F DZ2 and nD 3, is illustrated in Figure 5 along with its diagonal link.
The middle levels of L3.Z2/ correspond to the 7 points and 7 lines of the projective
plane of order 2 and its diagonal link is better known as the Heawood graph, or as the
incidence graph of the Fano plane.

Figure 5: The poset L3.Z2/ and its diagonal link. In the PS complex on the
right, every edge in the graph should be viewed as a spherical arc of
length �=3 .

With these examples in mind, we now turn to the question of when the orthoscheme
complex of a bounded graded poset P is a CAT.0/ PE complex. The first step is to
examine some of its more elementary links.

Definition 5.6 (Elementary links) Let P be a bounded graded poset of rank n. Three
links in the orthoscheme complex jP j are of particular interest. The PS complexes
lk.v0; jP j/ and lk.v1; jP j/ are the endpoint links of jP j and lk.e01; jP j/ is its diagonal
link. The endpoint links are PS complex built out of copies of ˇn and the diagonal
link is a PS complex built out of copies of ˛n�1 . In fact, lk.v0; jP j/ is the simplicial
complex jP n f0gj with a PS ˇn metric applied to each maximal simplex. Similarly,
lk.e01; jP j/ is jP nf0; 1gj with an ˛n�1 metric on each maximal simplex. Collectively
these three links are the elementary links of the orthoscheme complex jP j. Note that
endpoint links are empty when P has rank 0, and the diagonal links are empty when
P has rank 1. This corresponds to the fact that ˇ0 D ˛0 D∅.

In order to determine whether an orthoscheme complex is CAT.0/, we need to under-
stand the structure of the link of an arbitrary simplex. We do this by showing that the
link of an arbitrary simplex decomposes as a spherical join of local elementary links.
This decomposition is based on the decomposition described in Corollary 4.7 and is
only possible because of the orthogonality built into the definition of an orthoscheme.
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Proposition 5.7 (Links in orthoscheme complexes) Let P be a bounded graded
poset. If x0 < x1 < � � �< xk is a chain in P and � is the corresponding simplex in its
orthoscheme complex, then lk.�; jP j/ is a spherical join of two local endpoint links
and k local diagonal links. More specifically,

lk.�; jP j/DK0 �L0 �L1 � � � � �Lk �K1

where K0D lk.vx0
; jP .0;x0/j/ and K1D lk.vxk

; jP .xk ; 1/j/ are local endpoint links,
and each Li D lk.exi�1xi

; jP .xi�1;xi/j/ is a local diagonal link.

Proof Let P have rank n. Since every chain is contained in a maximal chain of
length n, every simplex containing � is contained in a unit n–orthoscheme of jP j.
In particular, the link of � in jP j is a PS complex obtained by gluing together the
link of � in each n–orthoscheme that contains it. By Corollary 4.7, each such link
decomposes as spherical joins of Coxeter shapes. Moreover, these decompositions are
compatible from one n–orthoscheme to the next, reflecting the fact that every maximal
chain extending x0 < x1 < � � � < xk is formed by selecting a maximal chain from
P .0;x0/, a maximal chain from P .xk ; 1/ and a maximal chain from P .xi�1;xi/ for
each i 2 Œk� and these choices can be made independently of one another. When the
links of � in each n–orthoscheme are pieced together, the result is the one listed in the
statement.

Understanding links thus reduces to understanding elementary links.

Lemma 5.8 (Endpoint links) An endpoint link of a bounded graded poset P is a
monotonically contractible PS complex and thus contains no unshrinkable loops. In
particular, endpoint links cannot be not quite CAT.1/.

Proof Let v be an endpoint of jP j, let K D lk.v; jP j/, and let u 2 K be the unit
vector at v pointing along the common diagonal of all the orthoschemes of jP j. The
contractions defined in Proposition 4.2 are compatible on their overlaps and jointly
define a monotonic contraction from K to u. In particular, all loops in K monotonically
shrink under this homotopy.

Lemma 5.9 (Diagonal links) Let P be a bounded graded poset. For every x < y in
P there is a simplex � in jP j such that lk.�; jP j/ and lk.exy ; jPxy j/ are isometric.

Proof Pick a maximal chain extending x<y and remove the elements strictly between
x and y . If � is the simplex of jP j that corresponds to this subchain then by Proposition
5.7 the link of � is a spherical join of lk.exy ; jPxy j/ with other elementary links, all
of which are empty in this context. As a consequence lk.�; jP j/ and lk.exy ; jPxy j/

are isometric.

Algebraic & Geometric Topology, Volume 10 (2010)



2296 Tom Brady and Jon McCammond

Recall that a PS complex is large if it has no short local geodesic loops. Using the
results above, we now show that the curvature of an orthoscheme complex only depends
on whether or not its local diagonal links are large.

Theorem 5.10 (Orthoscheme link condition) If P is a bounded graded poset then its
orthoscheme complex jP j is not CAT.0/ if and only if there is a local diagonal link
of P that is not quite CAT.1/. As a result, jP j is CAT.0/ if and only if every local
diagonal link of P is large.

Proof For each interval Pxy there is a simplex � in jP j so that lk.�; jP j/ and
lk.exy ; jPxy j/ are isometric (Lemma 5.9). If jP j is CAT.0/, then lk.�; jP j/ D
lk.exy ; jPxy j/ is CAT.1/. Conversely, suppose the complex jP j is not CAT.0/ and
recall that it is contractible (Proposition 1.7). It contains a simplex with a not quite
CAT.1/ link (Proposition 3.9) that factors as a spherical join of local elementary links
(Proposition 5.7). Moreover, there is a not quite CAT.1/ factor (Proposition 3.11)
which must be a diagonal link of an interval since by Lemma 5.8 endpoint links cannot
be not quite CAT.1/.

6 Spindles

In this section we introduce combinatorial configurations we call spindles and we relate
the existence of spindles in a bounded graded poset P to the existence of certain local
geodesic loops in a local diagonal link of P . When defining spindles, we use the notion
of complementary elements.

Definition 6.1 (Complements) Two elements x and y in a bounded poset P are
complements or complementary when x_y D 1 and x^y D 0. In particular 1 is their
only upper bound and 0 is their only lower bound. A pair of elements in a boolean
lattice representing complementary subsets are complementary in this sense. Note that
if z is any maximal lower bound of x and y and w is any minimal upper bound of x

and y then x and y are complements in the interval Pzw .

Definition 6.2 (Spindles) For some k � 2 let .x1;x2; : : : ;x2k/ be a sequence of
2k distinct elements in a bounded graded poset P where the subscripts are viewed
mod 2k and note that the parity of a subscript is well-defined in this context. Such a
sequence forms a global spindle of girth 2k if for every i with one parity, xi�1 and
xiC1 are complements in P0xi

and for every i with the other parity, xi�1 and xiC1

are complements in Pxi 1 . See Figure 6. The elements 0 and 1 are called the endpoints
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Figure 6: Two views of a spindle of girth 14 . The 3–dimensional version,
which looks like an antiprism capped off by two pyramids is the reason for
the name.

of the global spindle and the sequence of elements .x1;x2; : : : ;x2k/ describes a zigzag
path in P but with additional restrictions. There is also a local version. A (local)
spindle, with or without the adjective, is a global spindle inside some interval Pzw

with endpoints z and w .

Definition 6.3 (Short spindles) The length of a global spindle is the length of the
corresponding loop in the 1–skeleton of the diagonal link of P (endowed with the
metric induced by the orthoscheme metric). A global spindle is short if its length is
less than 2� . The lengths of the individual edges in the diagonal link can be calculated
using Proposition 4.8 and the reader should note that every edge in a diagonal link has
length less than �=2. Thus every spindle of girth 4 is short.

A spindle is a generalization of a bowtie in the following sense.

Proposition 6.4 (Spindles, bowties and lattices) A bounded graded poset P contains
a bowtie if and only if it contains a spindle of girth 4. In particular, P is a lattice if and
only if P does not contains a spindle of girth 4 and every bounded graded poset with
no short spindles is a lattice.

Proof If P contains a spindle of girth 4 in the interval Pzw , then x1 , x2 , x3

and x4 form a bowtie since the bowtie conditions follow from the complementarity
requirements. For example, x2 is a maximal lower bound for x1 and x3 because x1

and x3 are complements in the interval Px2w . In the other direction suppose a, b , c

and d form a bowtie, let z be any maximal lower bound for b and d and let w be any
minimal upper bound for a and c . It is then easy to check that .a; b; c; d/ is a global
spindle of girth 4 in the interval Pzw . The final assertion follows from Proposition 1.5
and the fact that every spindle of girth 4 is short.
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The next step is to relate spindles and local geodesics in diagonal links. Let P be a
bounded graded poset and let K be its orthoscheme complex. By Theorem 5.10 we
know that determining whether or not K is CAT.0/ reduces to determining whether
or not an interval of P has a diagonal link containing a short local geodesic. Since
generic local geodesics are hard to describe and hard to detect, we shift our focus to the
simplest local geodesics, ie those that remain in the 1–skeleton of the local diagonal
link. We now show that such paths are described by spindles. Figure 7 summarizes the
relationships among these three classes of loops just described.

8<:
Local geodesics

in a local
diagonal link

9=; �

8<:
Local geodesics
that remain in
its 1–skeleton

9=; �

8<:
Loops that
correspond
to spindles

9=;
Figure 7: The three types of loops discussed in this section

Proposition 6.5 (Transitions and complements) Let P be a bounded graded poset
and let exy and eyz be distinct edges in the diagonal link of P . If the piecewise
geodesic path from vx to vy to vz in the diagonal link of P is locally geodesic at vy

then either x and z are complements in the interval P0y or x and z are complements
in the interval Py1 . As a consequence, every local geodesic loop in the diagonal link
of P that remains in its 1–skeleton corresponds to a global spindle of P .

Proof First note that because the edges exy and eyz exist, x and y are comparable
in P and y and z are comparable in P . If x and z are comparable as well then the
path through vy is not locally geodesic because x , y and z form a chain, vx , vy

and vz are the corners of a convex spherical triangle in lk.e01; jP j/ and the nonobtuse
angle at vy (Corollary 4.9) shows that the path through vy is not locally geodesic
because the transition vectors are not far apart. In the remaining cases both x and z

are below y or both x and z are above y . Assume that both are in P0y ; the other
case is analogous and omitted. If there is a w in P0y that is an upper bound of x and
z other than y or a lower bound of x and z other than 0 then there is a spherical
triangle in lk.e01; jP j/ with vertices vw , vy and vx and a second triangle with vertices
vw , vy and vz . As both triangles have acute angles at vy (Corollary 4.9), the path
through vy is not locally geodesic because the transition vectors are not far apart. For
the final assertion suppose that .x1; : : : ;xk/ are the vertices of a local geodesic loop
that remains in the 1–skeleton of the diagonal link of P . The local result proved above
means that adjacent triples satisfy the required conditions and it forces the orderings
(xi < xiC1 or xi > xiC1 ) to alternate, making k even.
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It is important to note that the implication established above is in one direction only: a
locally geodesic loop in the 1–skeleton of a diagonal link must come from a spindle
but not every spindle necessarily produces a locally geodesic loop. The problem is that
just because x and z are complements in P0y does not necessarily mean that vx and
vz are far apart in lk.vy ; jP j/ even though we conjecture that this is often the case.

Conjecture 6.6 (Complements are far apart) Let P be a bounded graded poset and
let K be its diagonal link. If x and y are complements in P and K is CAT.1/ then
vx and vy are far apart in K .

We know that Conjecture 6.6 is true for the rank n boolean lattice P because the only
elements that are complements in P correspond to complementary subsets A and B ,
these correspond to opposite corners of the n–cube jP j and to antipodal points in the
n� 1 sphere that is the diagonal link of P . In particular, they represent points that are
distance � from each other in lk.e01; jP j/. In fact, for boolean lattices, more is true.

Proposition 6.7 (Boolean spindles) If P is a boolean lattice of rank n then every
spindle in P has girth 6, length 2� and describes an equator of the .n�1/–sphere that
is the diagonal link of P . In particular, P has no short spindles.

Proof Let .x1;x2; : : : ;x2k/ be a spindle in P . Since intervals in boolean lattices are
themselves boolean lattices, we may assume without loss of generality that this is a
global spindle. Suppose x1 < x2 and let A and B be the uniquely determined disjoint
subsets of Œn� such that x1 represents the set A and x2 represents the subset A[B .
Finally let C be the complement of A[B in Œn�. Since x3 is a complement of x1

in P0x2
and complements in boolean lattices are unique, x3 corresponds to the set B .

Similarly, x4 is a complement of x2 in Px31 and thus must correspond to the set
B [C . Continuing in this way, x5 , x6 , x7 and x8 correspond to the sets C , A[C ,
A and A[B respectively. Since the elements in a spindle are distinct, xi D xiC6 for
all i and the spindle has girth 6. To see that its length is at least 2� , note that the fact
that complements are far apart in boolean lattices means that both paths from x1 to x4

are at least � . In fact, the diagonal link of P is a unit sphere and the girth 6 spindles
just described correspond to equatorial loops of length exactly 2� .

We conclude this section by extending this result to modular lattices.

Definition 6.8 (Modular lattices) A modular lattice is a graded lattice with the
property that if x and y are complements in an interval Pzw and x has rank i and
corank j in this interval, then y has corank i and rank j in this interval. It should
be clear from this definition that finite rank boolean lattices are examples of modular
lattices as are the linear subspace posets described in Example 5.5.
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Figure 8: A portion of a global spindle in a modular lattice that describes a
local geodesic edge path of length � in its diagonal link

Proposition 6.9 (Modular spindles) If P is a bounded graded modular lattice then
every spindle in P has girth at least 6 and describes a loop of length at least 2� . In
particular, P has no short spindles.

Proof Since P is a lattice, by Proposition 6.4 there are no spindles of length 4. Thus
every spindle has girth at least 6. Next, since intervals in modular lattices are modular
lattices we only need to consider global spindles. Let .x1;x2; : : : ;x2k/ be a global
spindle with x1 < x2 and let i , j and k be positive integers such that x1 has rank i ,
x2 has corank k and i C j C k D n where n is the rank of P . The complementarity
conditions and the definition of modularity imply that x3 has rank j and x4 has
corank i . See Figure 8. The key observation is that these are the same ranks and
coranks and one of the geodesic paths between complementary subsets in a boolean
lattice. In particular, the sum of the lengths of these edges in the diagonal link of P is
exactly � . Since the girth of the spindle is at least 6, its length is at least 2� . This
completes the proof.

Since bounded graded modular lattices have no short spindles, the poset curvature
conjecture leads us to conjecture the following.

Conjecture 6.10 (Modular lattices and CAT.0/) Every bounded graded modular
lattice has a CAT.0/ orthoscheme complex.

7 Low rank

In this section we shift our attention from bounded posets of arbitrary rank to those
of rank at most 4. Our goal is to prove the poset curvature conjecture in this context,
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thus establishing Theorem A. The proof depends on two basic results. The first is that
complementary elements in a low rank poset correspond to vertices that are always far
apart in its diagonal link.

Lemma 7.1 (Low rank complements) If x and y are complements in a poset P of
rank at most 3 then vx and vy are far apart in its diagonal link.

Proof If P has rank less than 3 then its diagonal link has no edges and vx and vy

are trivially far apart. Thus we may assume that the rank of P is 3. In this case, the
diagonal link is a bipartite metric graph where every edge has length �=3 and connects
an element of rank 1 to an element of rank 2. As a consequence vx and vy are not far
apart if and only if their combinatorial distance is less than 3. Distance 1 means x < y

or x > y and distance 2 means x and y are both rank 1 with a common rank 2 upper
bound or both rank 2 with a common rank 1 lower bound. All of these situations are
excluded by the hypothesis that x and y are complements.

This result has consequences for piecewise geodesic paths in the 1–skeleton of the
diagonal link.

Lemma 7.2 (Low rank transitions) Let P be a bounded graded poset of rank at
most 4. If x , y and z are distinct elements of P such that x and z are complements
in P0y or complements in Py1 , then the edge path from vx to vy to vz in the diagonal
link of P is locally geodesic.

Proof Suppose x and z are complements in P0y ; the other case is analogous. By
Lemma 7.1 vx and vz are far apart in lk.e0y ; jP0y j/ since P0y is a poset of rank
at most 3. Recall that the link of vy in the diagonal link of P is the spherical join
lk.e0y ; jP0y j/�lk.ey1; jPy1j/. The fact that vx and vz are far apart in one factor means
that vx and vz are far apart in the spherical join. As a consequence, the path from vx

to vy to vz in the diagonal link of P is locally geodesic.

Lemma 7.2 quickly implies one half of Theorem A.

Theorem 7.3 (Low rank spindles) If P is a bounded graded poset of rank at most 4,
then global spindles in P describe local geodesic loops in its diagonal link. As a
consequence, if P contains a short spindle, global or local, then the orthoscheme
complex of P is not CAT.0/.

Proof The first assertion follows immediately from Lemma 7.2. To see the second,
suppose P contains a short spindle and restrict to the interval where it is global. Since
the spindle describes a short local geodesic loop in this local diagonal link, it is not
CAT.1/ and by Theorem 5.10 the orthoscheme complex of P is not CAT.0/.

Algebraic & Geometric Topology, Volume 10 (2010)



2302 Tom Brady and Jon McCammond

Having established that the existence of short spindles in low rank posets prevent its
orthoscheme complex from being CAT.0/, we pause for a moment to clarify exactly
which spindles in low rank posets are short. First note that every spindle of girth 4 is
short (since edges in the diagonal link have length less than �=2) and they occur if
and only if the poset is not a lattice (Proposition 6.4). Thus we only need to consider
spindles in lattices.

Proposition 7.4 (Short spindles) If a bounded graded lattice P of rank at most 4

contains a short spindle, then P has rank 4, the spindle is a global spindle of girth 6

and its elements alternate between two adjacent ranks.

Proof After replacing P by one its intervals if necessary we may assume that the
spindle under consideration is a global spindle in P and, since P is a lattice, it must
have girth at least 6. If P has rank 3 (lower ranks are too small to contain spindles) then
all edges in the diagonal link of P have length �=3 and the spindle is not short. Thus
P has rank 4. In rank 4 there are two possible edge lengths: the shorter edges connect
adjacent ranks and have length arccos.

p
1=3/Š :304� and the longer edges connect

ranks 1 and 3 and have length arccos.1=3/ Š :392� . (Exact values are calculated
using Proposition 4.8.) Since both lengths are more than �=4, spindles of girth 8 or
more are not short. Finally, since one long and two short edges have total length exactly
� and spindles in this setting have to have an even number of longer edges, the only
short spindles are those involving six short edges creating a zigzag path between two
adjacent ranks as shown in Figure 9.
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4

Figure 9: Short spindles in rank 4 lattices

We should note that these low rank short spindles are reminiscent of the empty triangles
that arise when testing the curvature of cube complexes. Bowties cannot occur in the
face poset of a cube complex and the empty triangles that prevent cube complexes
from being CAT.0/ correspond to the short spindle of girth 6 on the left hand side of
Figure 9 (but without the global upper bound).
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Remark 7.5 (Short spindles and empty triangles) Let K be a cube complex that is
not CAT.0/ and let � be a cell in K whose link contains an empty triangle (Proposition
3.4). The zigzag path shown on the lefthand side of Figure 9 corresponds to a portion
of the face poset of the link of � in K . The three elements in rank 1 and the three
elements in rank 2 correspond to the three vertices and edges respectively of a triangle
in the link of � and the absence of an element of rank 3 which caps off this zigzag
path corresponds to the fact that the triangle is empty.

We now return to the proof of Theorem A. The second basic result we need is that
whenever the diagonal link of a low rank poset contains a short local geodesic, that local
geodesic can be homotoped into the 1–skeleton of the diagonal link without increasing
its length. For posets of rank strictly less than 4 there is nothing to prove and for rank 4

posets we appeal to earlier work by Murray Elder and the second author [14]. The key
concept we need is that of a gallery.

Definition 7.6 (Galleries) Given a local geodesic loop  in a PS complex K one can
construct a new PS complex L called a gallery such that the map  from a metric circle
to K factors through an embedding of the circle into L and a cellular immersion of L

into K . The rough idea is to glue together copies of the cells through which  passes
in K . More specifically, every point in the path  is contained in a uniquely defined
open simplex. For this well-defined linear or cyclic sequence of open simplices, take a
copy of the corresponding closed simplices and glue them together in the minimal way
possible so that the result is a PS complex that maps to K and the curve  lifts though
this map. See [14] for additional detail.

Definition 7.7 (Types of galleries) So long as the lengths of edges in K are less than
�=2, the gallery L will be homotopy equivalent to a circle and the image of the circle
in L will have winding number 1. Moreover, if K is 2–dimensional and the loop 
does not pass through a vertex of K then L will be a 2–manifold with boundary called
either an annular gallery or a Möbius gallery depending on its topology. If  does
pass through a vertex of K then L is called a necklace gallery and it can be broken up
into segments called beads corresponding to a portion of  starting at a vertex, ending
at a vertex and not passing through a vertex in between.

In [14] a computer program was used to systematically enumerate the finite list of
possible galleries determined by a short local geodesic in the vertex link of a PE complex
built out of zA3 Coxeter shapes. (An zAn Coxeter shape is a Euclidean simplex whose
vertex links are Coxeter shapes of type An . One general definition of these shapes
is given in Definition 8.2.) The results of this enumeration are listed in Figures 10,
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11, and 12 according to the following conventions. The triangles shown should be
viewed as representing spherical triangles: the angles that look like �=2 angles are in
fact �=2 angles, while the �=4 angles are meant to represent �=3 angles. Thus, in
the third figure of Figure 12 both sides connecting the specified end cells are actually
geodesics as can be seen in a more suggestive representation of the same configuration
shown on the righthand side of Figure 13. The heavily shaded leftmost and rightmost
edges in the configurations shown in Figure 10 should be identified to produce annuli
and the heavily shaded leftmost and rightmost edges in the configurations shown in
Figure 11 should be identified with a half-twist to produce Möbius strips. The three
configurations shown in Figure 12 are three of the beads from which necklace galleries
are formed. They are labeled C , D and E since A and B are used to denote the short
and long edges, respectively, thought of as beads. The following result was proved
in [14].

Figure 10: Two annular galleries

Figure 11: Four Möbius galleries

C D E

Figure 12: Three nontrivial beads

Proposition 7.8 (Short A3 geodesics) Let K be a vertex link of a PE complex built
out of zA3 Coxeter shapes. If this PS complex built out of A3 Coxeter shapes is not
quite CAT.1/ then it contains a short local geodesic loop  that determines a gallery L

that is either one of the two annular galleries listed in Figure 10, one of the four Möbius
galleries listed in Figure 11, or a necklace gallery formed by stringing together the short
edge A, the long edge B , and the three nontrivial beads shown in Figure 12 in one of
26 particular ways. In particular, the 26 necklace galleries that contain a short geodesic
loop are described by the following sequences of beads: A2 , A4 , A6 , A2B , A2B2 ,
A2B3 , ABAC , A2C , A2C 2 , A2D , A2E , A4B , CA4 , B , B2 , B3 , B4 , B5 , BE ,
B2E , C , C 2 , C 3 , CD , D and E .
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The relevance of Proposition 7.8 in the current setting is that the diagonal link of a
bounded graded rank 4 poset is a complex built out of A3 spherical simplices in a way
that could have arisen as a vertex link of a PE complex built out of zA3 shapes. We will
comment more on this connection in Section 8. In particular, if the diagonal link of a
bounded graded rank 4 poset is not quite CAT.1/ then it contains a short unshrinkable
local geodesic loop that determines one of the 32 specific galleries listed above.

Lemma 7.9 (Loops and vertices) Let K be the diagonal link of a bounded graded
rank 4 poset P . If K is not quite CAT.1/ and  is a short unshrinkable locally
geodesic loop in K , then  passes through a vertex of K .

Proof By Proposition 7.8 we only need to exclude the two annular galleries and the
four Möbius galleries listed in the figures. Let L be the gallery associated to  . In fact,
after [14] appeared, we discovered that geodesics inside annular galleries are always
shrinkable [15, Lemma 4.7] via the analog of homotoping an equator through lines of
latitude, contradicting our hypothesis. More specifically, if every point of  is moved
orthogonal to  in the same direction and at a constant speed, then this immediately
results is a new curve that is of strictly shorter length. This is because the local situation
is isometric to that of a neighborhood of a point on the equator of a sphere and the
altered curve locally traverses a different line of latitude. See [15] for further details. If
L is a Möbius gallery, then it is one of the four listed in Figure 11. Since L immerses
into the order complex K of the diagonal link of a rank 4 poset we should be able to
label each vertex of L by the rank of the element of P that corresponds to its image
in K . In particular, the three vertices of a triangle should receive three distinct numbers
from the list f1; 2; 3g. Once one triangle in L is labeled, the remaining labels are
forced and in each instance, the Möbius strip cannot be consistently labelled. As a
result L cannot be a Möbius gallery. The only remaining possibility is that L is a
necklace gallery and  passes through a vertex of K .
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Figure 13: A poset configuration and the corresponding PS configuration
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Figure 14: A poset configuration and the corresponding PS configuration

Theorem 7.10 (Restricting to the 1–skeleton) Let P be a bounded graded poset of
rank at most 4. If a local diagonal link of P is not quite CAT.1/ then it contains a short
local geodesic loop that remains in its 1–skeleton. In particular, when the orthoscheme
complex of P is not CAT.0/, P contains a short spindle.

Proof Since the diagonal link of an interval is of dimension 1 or less when P has
rank less than 4, the first assertion is trivial in that case. Thus assume that P has rank 4

and that we are considering the diagonal link KD lk.e01; jP j/. Because K is not quite
CAT.1/, it is locally CAT.1/ but contains a short locally geodesic loop  . By Lemma
3.6 and Lemma 7.9 we may also assume that  is both unshrinkable and that it is
associated with a necklace gallery L. The necklace L is a string of beads of type A, B ,
C , D and E . The bead of type E is a lune, the portion of the geodesic it contains is
of length � , and there is a length-preserving endpoint-preserving homotopy that moves
this portion of  into the boundary of E . Note that after bending, the new piecewise
geodesic remains a local geodesic because  is assumed to be unshrinkable. This has
the effect of replacing E with a sequence of edges (AAB or BAA). See Figure 13.
Similarly, if L contains a bead of type D , then P contains a configuration that produces
the lune shown in Figure 14. The portion of the geodesic it contains is of length � ,
and there is a length-preserving endpoint-preserving homotopy that moves this portion
of  into the boundary of the lune. This has the effect of replacing D with a sequence
of edges ABA. Thus we may assume that L contains no beads of type D or E .

Finally, suppose L contains a bead of type C and consider the bead immediately after
it. It cannot be of type B since C ends at a vertex of rank 2 so it is either type A or
another bead of type C . If type A then we have all but one element of the configuration
shown on the lefthand side of Figure 13 and there is an additional triangle in K that
gives us a way to shorten  , contradicting its unshrinkability. On the other hand, if
the next bead has type C (and there are no obvious shortenings) then we have the
configuration shown on the lefthand side of Figure 14. Thus there are triangles present
in K that enable us to perform a length-preserving endpoint preserving homotopy
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of this portion of  through beads of type C C to a path in the 1–skeleton passing
through edges of type ABA. In short, whenever  leaves the 1–skeleton, there is
a way to locally modify the path so that its length never increases and the new path
passes through fewer 2–cells. Iterating this process proves the first assertion and the
second assertion follows from Proposition 6.5.

Combining Theorem 7.3 and Theorem 7.10 establishes the following.

Theorem A The orthoscheme complex of a bounded graded poset P of rank at most 4

is CAT.0/ if and only if P is a lattice with no short spindles.

As a quick application note that Theorem A implies that every modular poset of rank at
most 4 has a CAT.0/ orthoscheme complex with a CAT.1/ diagonal link. In particular,
the theorem shows that the linear subspace poset L4.F/ has a CAT.0/ orthoscheme
complex for every field F and its diagonal link, which is a thick spherical building
of type A3 , is CAT.1/. That the link is CAT.1/ is well-known. See, for example,
Abramenko and Brown [1] or Lytchak [16].

8 Artin groups

In this final section we first apply Theorem A to a poset closely associated with the
5–string braid group and then, at the end of the section, we extend the discussion to
the other four-generator Artin groups of finite-type. For the braid group, the relevant
poset is the lattice of noncrossing partitions.

Definition 8.1 (Partitions and noncrossing partitions) Recall that a partition of a set
is a pairwise disjoint collection of subsets (called blocks) whose union is the entire
set. These partitions are naturally ordered by refinement, ie one partition is less than
another is each block of the first is contained in some block of the second. The resulting
bounded graded lattice is called the partition lattice. Its maximal element has only one
block, its minimal element has singleton blocks and the rank of an element is determined
by the number of blocks it contains. When the underlying set is Œn�D f1; 2; : : : ; ng the
partition lattice is denoted …n and it has rank n� 1. The rank 3 poset …4 is shown
in Figure 15. A noncrossing partition is a partition of the vertices of a regular n–gon
(consecutively labeled by the set Œn�) so that the convex hulls of its blocks are pairwise
disjoint. Figure 16 shows the noncrossing partition ff1; 4; 5g; f2; 3g; f6; 8g; f7gg. A
partition such as ff1; 4; 6g; f2; 3g; f5; 8g; f7gg would be crossing. The induced subposet
of …n consisting of only the noncrossing partitions is a bounded graded rank .n� 1/

lattice usually denoted NCn . For nD 4, the only difference between …4 and NC4 is
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1 2

34

Figure 15: The figure shows the partition lattice …4 with the blocks indicated
by their convex hulls. If the portion surrounded by a dashed line is removed,
the result is the noncrossing partition lattice NC4 .

the partition ff1; 3g; f2; 4gg which is not noncrossing. In addition, NCn is self-dual in
the sense that there exists an order-reversing bijection from NCn to itself [7; 17].
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Figure 16: A noncrossing partition of the set Œ8�

The close connection between the braid groups and the noncrossing partition lattice
can briefly be described as follows. There is a way of pairwise identifying faces
of the orthoscheme complex of NCn by isometries so that the result is a one-vertex
complex X with a contractible universal cover and the n–string braid group as its
fundamental group. See [7] for details. Moreover, under the orthoscheme metric, the
metric space X metrically splits as a direct product of a compact PE complex Y and
a circle of length

p
n. We should note, however, that this split is not visible in the

cell structure of X . The splitting into a direct product is easiest to see in the universal
cover zX Š zY �R where the unit n–orthoschemes naturally fit together into columns.

Definition 8.2 (Columns) Fix n 2N and consider the following collection of points
in Rn . For each integer m write mD qnC r where q and r are the unique integers
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with 0 � r < n and let vm denote the point ..q C 1/r ; qn�r / 2 Rn using the same
shorthand notation as in the proof of Proposition 4.8. To illustrate, when m D �22

and nD 8 then q D�3, r D 2 and v�22 D .�22;�36/. Note that the vector from vm

to vmC1 is a unit basis vector and that the particular unit basis vector is specified by
the value of r . In particular, any nC 1 consecutive vertices of the bi-infinite sequence
.: : : ; v�2; v�1; v0; v1; v2; : : :/ are the vertices of a unit n–orthoscheme. It is easy to
check that the unit n–orthoscheme Ortho.v0; v1; : : : ; vn/ is defined by the inequalities
1� x1 � x2 � � � � � xn � 0 and that the union of the orthoschemes defined by nC 1

consecutive vertices of this sequence is a convex shape defined by the inequalities
x1 � x2 � � � � � xn � x1 � 1. We call this configuration of orthoschemes a column.
Because these equalities are invariant under the addition of multiples of the vector .1n/,
the result is metrically a direct product of a .n�1/–dimensional shape with the real line.
It turns out that the cross-section perpendicular to the direction .1n/ is a Euclidean
polytope known as the Coxeter simplex of type zAn�1 and that every vertex of this
polytope has a link isometric to the diagonal link of the unit n–orthoscheme, namely,
the convex spherical polytope of type An�1 that we called ˛n�1 . To illustrate, when
nD 3 the column just defined is a direct product of an zA2 Euclidean polytope with R
and the diagonal link of a 3–orthoscheme is the spherical polytope of type A2 . The
PE shape zA2 is an equilateral triangle and the PS shape A2 is an arc of length �=3.

Returning to the Eilenberg–Mac Lane space X for the n–string braid group, the
column structure of the complex zX arises from the following fact. For each unit n–
orthoscheme � in zX with vertices .v0; v1; : : : ; vn/, there are unique vertices v�1 and
vnC1 such that the vertices .v�1; v0; : : : ; vn�1/ and the vertices .v1; v2; : : : ; vnC1/

are also the vertices of unit n–orthoschemes (in this order) in zX . In particular, each
unit n–orthoscheme can be iteratively extended in both directions to find a unique copy
of a column inside zX to which is belongs. For orientation, note that the length

p
n

edge along the long diagonal of each orthoscheme points in the “�R” direction. As
remarked above, columns are isometric to zAn�1 Coxeter shapes cross the reals and
it turns out that these columns inside zX overlap along faces of zAn�1 cross the reals.
Thus one can piece them together and view zX as a product zY �R where zY is a
complex constructed from zAn�1 Coxeter shapes. More concretely, there is a map from
X to a metric circle of length

p
n=n so that each n–orthoscheme factors through the

orthogonal projection onto its long diagonal. An edge in X of length
p

k wraps k

times around the circle under this projection. The preimage of (the image of) the unique
vertex of X is a topological subspace Y whose universal cover is zY .

Recall that a group is called a CAT.0/ group if it acts properly discontinuously cocom-
pactly by isometries on a complete CAT.0/ space. For our purposes, the only fact we
need is that the fundamental group of any compact locally CAT.0/ PE complex is a
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CAT.0/ group since its action on the universal cover by deck transformations has all
of the necessary properties. If X is the Eilenberg–Mac Lane space for the n–string
braid group built from the orthoscheme complex of the noncrossing partition lattice
NCn , then as a metric space zX is a direct product of R and a PE complex zY built
out of zAn�1 shapes. Moreover, since X has only one vertex, the braid group acts
transitively on the vertices of zX . As a consequence, the links of the long diagonals
in zX are isometric to each other, they are also isometric to the link of each vertex
in zY and to the long diagonal link of NCn . Thus, if the orthoscheme complex of
the noncrossing partition lattice NCn is CAT.0/, then Y is locally CAT.0/, X is
locally CAT.0/ and the n–string braid group is a CAT.0/ group. In short we have the
following implication.

Proposition 8.3 (Partitions and braids) If the orthoscheme complex of the noncross-
ing partition lattice NCn is CAT.0/, then the n–string braid group is a CAT.0/ group.

Since we (firmly) believe that the orthoscheme complex of NCn is indeed CAT.0/ for
every n, we formalize this assertion as a conjecture.

Conjecture 8.4 (Curvature of NCn ) For every n, the orthoscheme complex of the
noncrossing partition lattice NCn is CAT.0/ and as a consequence, the braid groups
are CAT.0/ groups.

One reason we believe that Conjecture 8.4 is true has to do with the close connection
between noncrossing partitions, partitions and linear subspaces.

Remark 8.5 (Partitions and linear subspaces) If F is a field and Fn is a vector space
with a fixed coordinate system then there is a natural injective map from …n to Ln.F/
that sends each partition to the subspace of vectors where the sum of the coordinates
whose indices all belong to the same block sum to 0. For example, the partition
ff1; 3; 4g; f2; 5g; f6g; f7gg is sent to the 3–dimensional subspace of F7 satisfying the
equations x1C x3C x4 D 0, x2C x5 D 0, x6 D 0, and x7 D 0. The partition with
one singleton blocks is sent to the 0–dimensional subspace and the partition with
one block is sent to the .n�1/–dimensional subspace where all coordinates sum to 0.
Thus the map from …n to Ln.F/ can be restricted to a map from …n to Ln�1.F/
but at the cost of being harder to describe. The relationship between the noncrossing
partition lattice, the partition lattice and the lattice of linear subspaces is therefore
NCn �…n ,!Ln�1.F/.

As we remarked earlier, the diagonal link of Ln�1.F/ is a CAT.1/ complex known as
a thick spherical building. Thus, the inclusion just established means that the diagonal
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link of NCn is a subcomplex of a thick spherical building. For those familiar with the
structure of buildings, we note that a much stronger statement is true.

Proposition 8.6 (Partitions and apartments) Every chain in NCn belongs to a boolean
subposet. As a consequence, for every field F , the diagonal link of NCn is a union of
apartments in the thick spherical building constructed as the diagonal link of Ln�1.F/.

Proof sketch Since Proposition 8.6 is not needed below, we shall not give a complete
proof, but the rough idea goes as follows. Every chain of noncrossing partitions
can be extended to a maximal chain, and given any maximal chain, it is possible to
systematically extract a planar spanning tree of the regular n–gon with edges labeled 1

through n� 1 such that the connected components of the graph containing only edges
1 through i are the blocks of the rank i noncrossing partition in the chain. Once such
a labeled spanning tree has been found, the noncrossing partitions that arise from the
connected components of the graph with an arbitrary subset of these edges form a
boolean subposet of NCn . The second assertion follows since boolean subposets give
rise to spheres in the diagonal link that are the apartments of the spherical building.

The fact that the diagonal link of NCn is a union of apartments inside a thick spherical
building is circumstantial evidence that the diagonal link is CAT.1/, the orthoscheme
complex of NCn is CAT.0/ and that the corresponding Eilenberg–Mac Lane space
for the n–string braid group is CAT.0/. By Theorem A, these conjectures are true for
nD 5.

Proposition 8.7 (Curvature of NC5 ) The orthoscheme complex of NC5 is CAT.0/
and, as a consequence, the 5–string braid group is a CAT.0/ group.

Proof Since the rank 4 poset NC5 is known to be a lattice, by Theorem A and
Proposition 7.4 we only need to check that NC5 does not contain a global spindle of
girth 6 whose elements alternate between adjacent ranks. Moreover, because NC5 is
self-dual, it is sufficient to rule out the configuration on the lefthand side of Figure 9.
Finally, if there were such a configuration, the three rank 1 elements would correspond
to noncrossing partitions each containing a single edge and the fact that they pairwise
have rank 2 joins indicates that these edges are pairwise noncrossing. But under these
conditions, the join of all three elements will have rank 3 contrary to the desired
configuration. Thus NC5 has no short spindles, its orthoscheme complex is CAT.0/
and the 5–string braid group is a CAT.0/ group.

We should note that we originally proved that the 5–string braid group is a CAT.0/
group in a more direct fashion (unpublished) shortly after the first author introduced his
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new Eilenberg–Mac Lane spaces for the braid groups [7], a direct computation carried
out independently and contemporaneously by Daan Krammer (also unpublished). And
finally, we indicate how the above analysis of the 5–string braid group can be extended
to cover the other four-generator Artin groups of finite-type. The posets and complexes
defined via the symmetric group in [7] were extended to the other finite Coxeter groups
in [9; 3]. The first author’s work with Colum Watt produces bounded graded lattices
with a uniform definition that can be used to construct Eilenberg–Mac Lane spaces
for groups called Artin groups of finite-type. We begin by roughly describing these
additional posets.

Definition 8.8 (W–noncrossing partitions) Let W be a finite Coxeter group with
standard minimal generating set S and let T be the closure of S under conjugacy. The
set S is called a simple system and T is the set of all reflections. A Coxeter element in
W is an element ı that is a product of the elements in S in some order. For the finite
Coxeter groups, the order chosen is irrelevant since the result is well-defined up to
conjugacy. The poset of W–noncrossing partitions NCW is the poset derived from the
minimum length factorizations of ı into elements of T or equivalently, it represents
an interval in the Cayley graph of W with respect to T that starts at the identity and
ends at ı . The name alludes to the fact that when W is the symmetric group Symn ,
a Coxeter element is an n–cycle and the poset NCW is isomorphic to the lattice of
noncrossing partitions previously defined.

For each finite Coxeter group W , the poset NCW is a finite bounded graded lattice
whose rank n is the size of the standard minimal generating set S for W . As was the
case with the braid groups, there is a one-vertex complex X constructed by identifying
faces of the orthoscheme complex of NCW . This complex splits as a metric direct
product of a complex Y constructed from zAn�1 shapes and a circle of length

p
n, and

the universal cover zX decomposes into columns as before. In particular, zX is isometric
with zY �R, the link of the unique vertex of Y is isometric to the diagonal link of
the orthoscheme complex of NCW , and we have the following result that generalizes
Proposition 8.3.

Proposition 8.9 (Partitions and Artin groups) Let W be a finite Coxeter group and
let NCW be its lattice of noncrossing partitions. If the orthoscheme complex of NCW

is CAT.0/ then the finite-type Artin group corresponding to W is a CAT.0/ group.

When W has a standard minimal generating set of size 4, the poset NCW has rank 4

and Theorem A can be applied as above. Each of the five possible posets (corresponding
to the finite Coxeter groups of type A4 , B4 , D4 , F4 and H4 ) is known to be a lattice
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and thus by Proposition 7.4 we only need to check whether or not NCW contain a
global spindle of girth 6 whose elements alternate between adjacent ranks. Moreover,
because NCW is self-dual [17], it is sufficient to search for the configuration on the
lefthand side of Figure 9. The second author wrote a short program in GAP to construct
these posets and to search for this particular configuration. The noncrossing posets of
type A4 and B4 contain no such configurations but the noncrossing posets of type D4 ,
F4 and H4 do contain such configurations. By Theorem A and Proposition 8.9, this
establishes the following.

Theorem B (Artin groups) Let K be the Eilenberg–Mac Lane space for a four-gen-
erator Artin group of finite type built from the corresponding poset of W–noncrossing
partitions and endowed with the orthoscheme metric. When the group is of type A4 or
B4 , the complex K is CAT.0/ and the group is a CAT.0/ group. When the group is of
type D4 , F4 or H4 , the complex K is not CAT.0/.

For the Artin groups of type D4 , F4 and H4 , it is natural to wonder whether these cell
complexes support different Euclidean metrics under which they are CAT.0/. Woonjung
Choi, in her dissertation [12], showed that no such metric exists. In particular, allowing
orthoschemes other than unit orthoschemes does not help rectify the situation. For
these groups, different complexes are needed.
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