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Closed surface bundles of least volume

JOHN W AABER

NATHAN DUNFIELD

Since the set of volumes of hyperbolic 3–manifolds is well ordered, for each fixed g

there is a genus–g surface bundle over the circle of minimal volume. Here, we
introduce an explicit family of genus–g bundles which we conjecture are the unique
such manifolds of minimal volume. Conditional on a very plausible assumption,
we prove that this is indeed the case when g is large. The proof combines a soft
geometric limit argument with a detailed Neumann–Zagier asymptotic formula for
the volumes of Dehn fillings.

Our examples are all Dehn fillings on the sibling of the Whitehead manifold, and
we also analyze the dilatations of all closed surface bundles obtained in this way,
identifying those with minimal dilatation. This gives new families of pseudo-Anosovs
with low dilatation, including a genus 7 example which minimizes dilatation among
all those with orientable invariant foliations.

57M50; 37E30, 37E40

1 Introduction

1.1 Volumes of bundles

Thurston and Jørgensen proved that the set of volumes of hyperbolic 3–manifolds
is a well-ordered set of type !! . In particular, any topological class of hyperbolic
3–manifolds contains one of least volume. Recent work of Gabai, Meyerhoff and Milley
has provably identified the hyperbolic manifold of least volume, and, for instance, the
smallest orientable manifolds with one and two cusps are also known (see their recent
survey [7] for more).

Here, we focus on closed hyperbolic 3–manifolds which are surface bundles over the
circle. Fix a genus g , and let †g denote the closed surface of that genus. Consider all
hyperbolic 3–manifolds which are †g –bundles over the circle. As discussed, there
is at least one such manifold of least volume, and one goal here is to identify these
manifolds.
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To this end, in Section 3 we define for each g>2 a certain †g –bundle Mg as an explicit
Dehn filling on the Whitehead sibling manifold W . For instance, if g � 0; 1 mod 5,
then Mg D W .g=.2g C 5/;�.2g C 3/=.g C 4//. We conjecture that the Mg are
the minimal volume genus–g bundles for all g > 2. For large g , we prove this
contingent on a very plausible conjecture about closed hyperbolic 3–manifolds with
b1.N /D dim H1.N IQ/� 2. In particular, we show:

1.2 Theorem Assume that any closed hyperbolic 3–manifold N with b1.N /� 2 has
volume at least V8 � 3:663862. Then for all large g , the manifold Mg is the unique
†g –bundle of minimal volume.

We give evidence for the needed assumption in Section 4. Alternatively, our proof of
Theorem 1.2 shows:

1.3 Theorem Either

(1) Mg is the unique †g –bundle of minimal volume for all large g , or

(2) there is a single closed hyperbolic 3–manifold N which is the minimal volume
†g –bundle for infinitely many g . (In particular, b1.N /� 2.)

The proof of Theorem 1.2 has two main parts. The first, Theorem 4.3, is the qualitative
statement that the minimal volume †g –bundles, for large g , must be Dehn fillings
on the Whitehead sibling W . This is proved by combining a soft geometric limit
argument with work of Agol [1] on volumes of cusped manifolds. Then, in Theorem
5.1, we sift through the large number of †g –bundles that arise from W and find the
one with least volume. To do this, in Section 5 we work out the first difficult term of
the Neumann–Zagier asymptotic expansion for volumes of Dehn fillings of W .

1.4 Dilatations of pseudo-Anosovs

We now discuss another minimization problem that turns out to be closely related to
finding the smallest volume surface bundles. A pseudo-Anosov homeomorphism  of
†g has an associated dilatation � > 1, also called the stretch-factor or growth, which
measures how the invariant foliations are distorted. The number � is an algebraic
integer, and log.�/ is the topological entropy of the map  . For each fixed genus,
there is a smallest such dilatation, which we denote ıg . There has been much interest
in determining ıg , in part because log ıg is the length of the shortest geodesic in the
Teichmüller metric on the moduli space of curves.

For a pseudo-Anosov  of †g , its mapping torus M is a hyperbolic 3–manifold.
Conversely, a hyperbolic 3–manifold which is a †g –bundle over the circle must have
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pseudo-Anosov monodromy. It is natural to ask whether there is a connection between
the dilatation of  and the volume of M . Recently, Farb, Leininger and Margalit have
shown that, qualitatively, pseudo-Anosovs with low dilatations come from manifolds
with low volume.

1.5 Theorem [5] For each L> 0, there exist finitely many finite-volume hyperbolic
3–manifolds N1; : : : ;Nn so that the following holds. If  is a pseudo-Anosov homeo-
morphism of a surface † with �.†/ < 0 and log.�. // < .1=j�.†/j/L, the bundle
M is a Dehn filling on one of the Nk . In particular, there is a V D V .L/ so that
Vol.M /� V .

Moreover, they show that the fibration of M comes from a fibration of Nk that
extends over the solid tori added by Dehn filling. Thus, in particular, the bundles
coming from the minimal dilatation pseudo-Anosovs are all obtained by this fibered
Dehn filling from finitely many cusped hyperbolic 3–manifolds. Here, we focus on the
smallest cusped manifold which has fibered Dehn fillings which are †g –bundles with
g arbitrarily large, namely the Whitehead sibling. This is thus a very natural place to
look for pseudo-Anosovs realizing the minimal dilatation ıg .

However, the idea of searching for pseudo-Anosovs with low dilatation among the
monodromies of low-volume manifolds predates [5]. In particular, earlier Kin, Kojima
and Takasawa had asked [14, Question 5.1]:

1.6 Question For a fixed surface †, possibly with punctures, is there a pseudo-
Anosov homeomorphism  of † which simultaneously minimizes �. / and the
volume of the mapping torus M ?

There is good evidence that the answer is yes when † is a punctured sphere [14; 24].
However, by combining our examples here with those of E Hironaka [12], we show
in Theorem 7.5 that the answer is no for large g � 3 mod 5, provided Conjecture 4.1
holds. However, we also show:

1.7 Theorem For large g , the monodromy of Mg minimizes dilatation among all
†g –bundles obtained from filling W .

The proof uses McMullen’s Teichmüller polynomial from [17] to systematically cal-
culate and analyze the dilatation of all fillings of W . Independently, Kin and Taka-
sawa [15] have also analyzed these fillings, obtaining similar results about dilatations
(though not volumes) to those we describe here.

Let �g be the dilatation of the monodromy of Mg from Section 1.1. For g� 3 mod 5,
we show that �g > ıg . However, for g 6� 3 mod 5 and g¤ 4, the dilatations �g seem
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to be the best known and in some cases better than previous examples. See Table 1
for the known examples in low genus. Very intriguingly, the dilatations of both our
examples and those of [12] come from the same family of polynomials introduced by
Lanneau and Thiffeault [16]:

.1:8/ LTa;b.t/D t2a
� taCb

� ta
� ta�b

C 1 with a> b .

Both here and in [12], the parameter a is within 2 of g and b is small.

g �g �g

3 ı1.5061357 ı 1.4012684
4 1.2806382 1.2612310
5 1.1487947 ı1.1762808
6 1.1287609 1.1617044
7 ı 1.1154811 ı1.1369400
8 1.1369400 1.1135007
9 ı 1.0928247 ı1.1054009

10 1.0837668 1.0946555
11 1.0770457 ı1.0837668
12 1.0726646 1.0787378
13 ı1.0776673 ı 1.0726646
14 1.0629875 1.0663959
15 1.0583358 ı1.0629875
16 1.0549983 1.0590666
17 ı 1.0522148 ı1.0549983
18 1.0568996 1.0525403
19 ı 1.0470846 ı1.0497943
20 1.0447582 1.0469430

g �g �g

21 1.0427679 ı1.0450879
22 1.0425372 1.0430555
23 ı1.0428751 ı 1.0409471
24 1.0379320 1.0394979
25 1.0363101 ı1.0379320
26 1.0349894 1.0363101
27 ı 1.0338143 ı1.0351470
28 1.0351470 1.0339030
29 ı 1.0315904 ı1.0326168
30 1.0305456 1.0316628
31 1.0296057 ı1.0306505
32 1.0288091 1.0296057
33 ı1.0296414 ı 1.0288091
34 1.0275530 1.0279692
35 1.0263611 ı1.0271037
36 1.0256581 1.0264286
37 ı 1.0250132 ı1.0257204
38 1.0257204 1.0249917

Table 1: Low-dilatation pseudo-Anosovs. Here �g is the dilatation associated
to the manifold Mg , and �g is the dilatation of the examples in Theorem 1.3
of [12]. The darkened boxes have lower numbers, and ı indicates the invariant
foliations are orientable.

However, asymptotically the �g are no better than the previously known examples. A
basic result of Penner says that log ıg � 1=g [21]. In that context, we show:

1.9 Theorem We have limg!1 �
g
g D .3C

p
5/=2D 1C 
 , where 
 is the golden

ratio.

The same result holds for the examples of [12] and also those of [15, Theorem 1.5].
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1.10 Orientable foliations

A natural subclass of pseudo-Anosovs is the subclass whose invariant foliations are
orientable. Analogously, define ıCg to be the least dilatation among such maps. While ıg
is known only when g�2 by Cho and Ham [3], the work of Lanneau and Thiffeault [16]
and Hironaka [12] combine to determine ıCg when g 2 f2; 3; 4; 5; 8g. We add one
more, showing:

1.11 Theorem The monodromy  7 of the manifold M7 minimizes dilatation among
all pseudo-Anosovs of †7 with orientable invariant foliations. In particular, one has
ıC

7
� 1:11548110945659.

Here the needed lower bound comes directly from [16], and Theorem 1.11 was in-
dependently established by [15]. See Table 2 for some of the known examples with
orientable invariant foliations.

g �Cg �Cg

3 1.5061357 � 1.4012684
5 � 1.1762808 � 1.1762808
7 � 1.1154811 1.1369400
9 1.0928247 1.1054009

11 1.0803146 1.0837668
13 1.0776673 1.0726646
15 1.0597294 1.0629875
17 1.0522148 1.0549983
19 1.0470846 1.0497943
21 1.0433121 1.0450879
23 1.0428751 1.0409471

g �Cg �Cg

25 1.0366424 1.0379320
27 1.0338143 1.0351470
29 1.0315904 1.0326168
31 1.0297856 1.0306505
33 1.0296414 1.0288091
35 1.0264880 1.0271037
37 1.0250132 1.0257204
39 1.0237761 1.0244123
41 1.0227200 1.0231851
43 1.0226556 1.0221591
45 1.0207537 1.0211819

Table 2: Pseudo-Anosovs with orientable invariant foliations. Here �Cg is the
least dilatation of any example with orientable foliations obtained from W ,
and �Cg is that of the examples in Theorem 1.4 of [12]. The manifold W

does not generate orientable examples when g is even; however [12] provides
such whenever g 6� 0 mod 6 . The darkened boxes have lower numbers, and
a � indicates the dilatation is known to be equal to ıCg .
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2 The sibling of the Whitehead link complement

This section gives a detailed picture of the 2–cusped hyperbolic 3–manifold that is
the focus of this paper, namely the sibling of the Whitehead link complement. This
manifold, which we denote by W , is the complement of the .�2; 3; 8/–pretzel link
shown in Figure 3, and is manifold m125 in the SnapPea census [2]. Like the Whitehead
complement, it can be built by gluing the sides of a regular ideal octahedron in H3

(see [1]); thus its volume is

V8 D 4� .Catalan’s constant/D 4

 
1X

kD0

.�1/k

.2kC 1/2

!
� 3:6638623767088:

SnapPea [25; 4] finds that its fundamental group is

�1.W /D hx;y j yxyxYxYXYXyX D 1i where X D x�1 and Y D y�1 .

The defining relator actually comes from a handle decomposition of W , shown in
Figure 1(a).

Notice that the relator is very symmetric in the following sense. Realize the free
group on fx;yg as the fundamental group of a wedge of two circles. Pass to the
universal abelian cover and lift the relator as shown in Figure 2(a). From the picture,
we see that both fx 7! y;y 7! xg and fx 7! x;y 7! Y g induce automorphisms of
�1.W /; together, they generate a subgroup of order 8 in Out.�1.W //, which acts on
�1.W /ab DH1.W IZ/D Z2 as the dihedral group of the square. By Mostow-Prasad
rigidity, these automorphisms come from isometries of W .

2.1 Thurston norm

Recall that the Thurston norm on H 1.W IR/ organizes which cohomology classes
correspond to fibrations over S1 (throughout this subsection – see Thurston [23]
for details). Before describing the norm in this case, we fix some notation. As a
basis for H1.W IZ/, we use the images of the generators fx;yg of �1.W / under
abelianization map, denoted by the same symbols. However, we write the operation
additively, eg x2y�3 7! 2x � 3y . We’ll use the dual basis fx�;y�g for H 1.W IZ/,
and show:
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(a) A handle decomposition of W : think of
the above pattern on the boundary of a 3–
ball B3 , and glue the disks together to form
a genus 2 handlebody. The arcs then form a
single closed curve, along which you attach a
2–handle corresponding to the defining relator
of �1.W / .
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(b) The shaded disk shown is properly embedded
in B3 and has algebraic intersection number 0 with
the attaching curve of the 2–handle. Thus we can
add three bands inside the 2–handle to form an
orientable surface dual to x�Cy� with �D�2 .

Figure 1

x

y

(a) The lifted relator

x

y

(b) The Newton polygon of
�W in H1.W IZ/

x�

y�

(c) The Thurston norm unit
ball BT �H 1.W IZ/

Figure 2

2.2 Lemma The unit ball BT in the Thurston norm of W is the square shown in
Figure 2(c), and all four sides are fibered faces. In particular, every primitive element of
H 1.W IZ/ except for ˙.x�˙y�/ gives rise to a fibration of W .

Proof We will use the Alexander norm introduced by McMullen [18] to compute the
Thurston norm. From Figure 2(a), it is clear the Alexander polynomial of W , which
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lives in the group ring ZŒH1.W IZ/�, is

.2:3/ �W D x�1
CxC 1Cy�1

Cy;

where the operation on H1.W IZ/ is written multiplicatively. The Newton polytope of
�W is shown in Figure 2(b); hence the unit ball BA of the Alexander norm, which
is its dual, is as in Figure 2(c). Since b1.W / > 1, we have that BT � BA [18]. To
complete the proof we need to show that BT D BA and all faces (sides) of BT are
fibered. By the convexity of BT and the symmetries of W noted above, it is enough
to show:

(1) The Thurston norm kx�Cy�k � 2.

(2) The manifold W fibers over the circle.

For (1), we simply exhibit a twice-punctured torus dual to x�C y� in Figure 1(b).
For (2), Figure 3 shows that W fibers over the circle with fiber a 5-punctured disc,
with corresponding monodromy  D �3

1
�2�3�4 .

Figure 3: The manifold W is the exterior of the .�2; 3; 8/–pretzel link,
shown here in a nonstandard projection exhibiting the fibration of W corre-
sponding to 2x�C y� . In terms of the usual homological framing on each
component, we have �1 D .�7; 1/; �1 D .1; 0/ and �2 D .�4; 1/; �2 D

.�3; 1/ , where the unknotted component corresponds to the second cusp. Our
orientation conventions are given by , and match those of SnapPea [25;
4]. That the fibration corresponds to 2x�Cy� follows since the meridian of
the knotted component is �1 D�xC 2y by (2.5).
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2.4 Dehn filling

Think of W as a compact manifold having two torus boundary components @1W

and @2W . On each boundary component, we use the basis .�k ; �k/ of H1.@kW IZ/
defined in Figure 3. The shape of each cusp in the hyperbolic structure on int.W /

with respect to .�k ; �k/ is a Euclidean square. For either component, we have that
the image of H1.@kW IZ/!H1.W IZ/Š Z2 is a sublattice of index 5; explicitly,
SnapPea finds that

.2:5/ .�1; �1/ 7! .2xCy;�xC 2y/ and .�2; �2/ 7! .xC 2y; 2x�y/:

2.6 Remark This may seem like a minor point, but the fact H1.@kW IZ/ is nearly all
of H1.W IZ/ is what distinguishes this case from that of the Whitehead complement,
where the image is merely Z.

Now given any � 2 H 1.W IZ/, there is a unique simple closed curve in the kernel
of �W H1.@kW /! Z. Thus, there is a unique Dehn filling on W yielding a closed
manifold W� so that � extends to a map H1.W�/! Z. Dually, if F� is a surface
dual to � , then W� is the Dehn filling of W where the components of @F bound discs
in the attached solid tori.

We are interested in those primitive �2H 1.W IZ/ corresponding to fibrations. Because
of the symmetries of W noted above, we will restrict to �Dax�Cby� where 0�b<a

and gcd.a; b/D 1. Because H1.@kW IZ/ has index 5 in H1.W IZ/, there are various
small repeating issues throughout this paper, requiring us to define:

�.�/D

(
1 if a2C b2 � 0 mod 5,

0 otherwise.

�1.�/D

(
1 if 2aC b � 0 mod 5,

0 otherwise.
and �2.�/D

(
1 if aC 2b � 0 mod 5,

0 otherwise.

These quantities are related by:

2.7 Lemma Suppose gcd.a; b/D 1. Then �.�/D �1.�/C �2.�/.

Proof First notice that one never has �1.�/D �2.�/D 1, as then a� b � 0 mod 5,
since

�
2 1
1 2

�
is invertible over F5 . The result then follows from the observation that

.2aC b/.aC 2b/� 2.a2C b2/ mod 5.

2.8 Theorem Let � D ax�C by� where 0 � b < a and gcd.a; b/D 1. There is a
unique fibration of W� over the circle, and the genus of the fiber is a� 2�.�/.
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Proof By Lemma 2.2, the Thurston norm ball BT for W is the square pictured
in Figure 2(c). Our � lies over the righthand face of BT where x� D 1=2, and so
k�k D 2a. As all the faces of BT are fibered, the class � gives a fibration of W over
the circle where the fiber F has Euler characteristic �k�k D �2a. Let F� be the
corresponding closed surface in W� . Then �.F�/D �.F /Cd1Cd2 , where dk is the
number of boundary components of F on @kW . An easy calculation using Lemma
2.7 shows that the claim

.2:9/ dk D 1C 4�k.�/

implies that the genus of F� is a� 2�.�/.

To complete the proof, we establish (2.9), focusing on the case when k D 1 as the other
is similar. Using (2.5), we have d1 D gcd .�.�1/; �.�1//D gcd.2aC b;�aC 2b/D

gcd.2aC b;�5b/, which is 5 if 2aC b � 0 mod 5 and 1 otherwise. (Geometrically,
these are the only two possibilities because ŒH1.W IZ/ WH1.@1W IZ/�D 5.) That is,
d1 D 1C 4�1.�/ as needed.

For future reference, we record the precise Dehn filling description of W� .

2.10 Lemma Let � D ax�C by� where 0� b < a and gcd.a; b/D 1. Then W� is
the Dehn filling on W given by W

�
.a� 2b/=.2aC b/; .�2aC b/=.aC 2b/

�
. More

precisely, the filling is along the homology classes


1 D 5��1.�/
�
.a� 2b/�1C .2aC b/�1

�

2 D 5��2.�/

�
.�2aC b/�2C .aC 2b/�2

�
:

Proof The surgery curve 
k is a primitive class killed by �W H1.@kW IZ/ ! Z.
Now one element in the kernel is ��.�k/�k C�.�k/�k , and as noted in the proof of
Theorem 2.8, we have gcd .�.�k/; �.�k//D 1C 4�k.�/D 5�k.�/ . Thus


k D 5��k.�/
�
��.�k/�k C�.�k/�k

�
is a primitive element of H1.@kW IZ/, and expanding using (2.5) gives the claimed
formulae.

3 Examples with a given genus

For a typical fixed genus g , there are many different fillings on W which are †g –
bundles. In this section, we organize these manifolds and define our main examples Mg ,
which have the smallest volume among all †g –bundles arising from W (at least
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when g is large). As in the previous section, by symmetry we consider only those
� 2H 1.W IZ/ of the form � D ax�C by� with 0 � b < a and gcd.a; b/D 1. We
also assume that g > 2, as the manifolds arising for g � 2 are not hyperbolic. By
Theorem 2.8, the � for which W� is a †g –bundle fall into two classes

Ag D
˚
� D gx�C by�

ˇ̌
�.�/D 0; gcd.g; b/D 1

	
Eg D

˚
� D .gC 2/x�C by�

ˇ̌
�.�/D 1; gcd.gC 2; b/D 1

	
:

.3:1/

We show below:

3.2 Proposition For each g > 2, the following holds:

(1) The set Ag is nonempty.

(2) The set Eg is nonempty if and only if g 6� 3 mod 5 and g > 4.

Section 5 shows that manifolds coming from Eg typically have smaller volume than
those coming from Ag , and volume increases as b increases. Hence we define:

3.3 Definition For each g > 2, if Eg is nonempty, we define Mg to be W� where
� 2 Eg is the class where b is smallest. Otherwise, Mg comes from the � 2Ag where
again b is smallest.

For large g , we will show in Theorem 5.1 that Mg indeed minimizes volume among
all †g –bundles arising from W . In the rest of this section, we first prove Proposition
3.2, and then refine it to give the precise Dehn filling description of each Mg .

Proof of Proposition 3.2 We begin with part (1). If g � 0; 1; 4 mod 5, then � D
gx� C y� is an element of Ag . So suppose instead that g � 2; 3 mod 5. Now
A3D f3x�C2y�g, so we can assume that g � 7. Then gx�C5y� 2Ag , completing
the proof of (1).

For part (2), first suppose g � 3 mod 5. If � D .g C 2/x� C by� is in Eg , the
requirement that �.�/ D 1 forces b2 � 0 mod 5. But then g C 2 and b are both
divisible by 5, a contradiction. So Eg is empty in this case. If g � 0; 1 mod 5, then
� D .gC 2/x�Cy� is in Eg , and if g � 2 mod 5, we may simply take b D gC 1.

So we’ve reduced to when g� 4 mod 5. Now E4 is empty, so assume g> 4, in which
case a D gC 2 � 11. If a is coprime to either 2 or 3, we simply use that for b , so
assume aD 2c3dL where c; d � 1 and L is coprime to 6. If LD 1, we take b D 7.
Thus we can assume that L> 1, which forces L� 7 as a is coprime to 5.

When L� 1 mod 3, we will select b from among fLC 4;LC 6;LC 10;LC 12g,
which are all less than a� 6L since L� 7. Each such number is coprime to 2, 3 and L
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(for LC10 this is because 5 − L), and hence to a. As they take on four distinct values
modulo 5, at least one is �2; 3 mod 5 giving the needed b . If instead L�2 mod 3, the
same reasoning shows that we can choose b from among fLC 2;LC6;LC8;LC24g.

A more detailed description is:

3.4 Proposition Let � D ax�C by� be the class defining Mg .

(1) If g � 0; 1 mod 5, then .a; b/D .gC 2; 1/.

(2) If g � 3 mod 5, then
(a) .a; b/D .g; 2/ when g � 3; 13; 23 mod 30.
(b) .a; b/D .g; 3/ when g � 8; 28 mod 30.
(c) .a; b/D .g; 5/ when g � 18 mod 30.

(3) If g � 2; 4 mod 5 with g > 4 then a D gC 2 and b is the smallest number
coprime to gC 2 satisfying b � 2; 3 mod 5.

(4) If g D 4, then .a; b/D .4; 1/.

(5) For any g , the coefficient b is O.log g/ and is either 1 or a prime.

Proof Everything is immediate from Proposition 3.2 with the exception of (2) and (5).
For the first, assume g � 3 mod 5 is the element of Ag for which b is minimal.
Now g is coprime to 5, and so b is at most 5; since we need �.�/ D 0, that is
g2C b2 6� 0 mod 5, this means b 2 f2; 3; 5g. Which of these satisfy gcd.g; b/ D 1

can be determined by the class of b modulo 30, giving the statement above.

The claim (5) is clear in all cases except (3), so assume that g � 2; 4 mod 5 and b is
the smallest number coprime to aD gC 2 satisfying b � 2; 3 mod 5. Note that b is
necessarily prime since, if not, it would have a prime factor which is � 2; 3 mod 5

which would also be coprime to a. The following argument, which we learned from
A J Hildebrand, shows that b is O.log g/.

Call a prime good if it is � 2; 3 mod 5. By minimality of b , every power pk < b of a
good prime must divide a. Thus

a�
Y˚

pk
j p a good prime and k maximal with pk < b

	
:

Taking logs and then applying the prime number theorem for arithmetic progressions,
we get

log.a/�
X

pk<b;
p good

log pD .bI 5; 2/C .bI 5; 3/D
b

2
CO

�
be�c
p

log b
�
D b

�
1

2
Co.1/

�
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where the terms in the center are Chebyshev’s  –function, and c > 0 is an unknown
constant (see eg [13, Corollary 2 on page 138]). Hence b � .2C o.1// log.a/ as
needed.

As in Section 2, let W .p1=q1;p2=q2/ denote the manifold obtained by performing
Dehn filling on W . Combining Proposition 3.4 and Lemma 2.10, we could just as well
have defined Mg for g > 2 via the following:

(1) If g � 0; 1 mod 5, then Mg DW
�
.g/=.2gC 5/;�.2gC 3/=.gC 4/

�
.

(2) If g � 3 mod 5, then
(a) Mg DW

�
.g�4/=.2gC2/; .2�2g/=.gC4/

�
when g� 3; 13; 23 mod 30.

(b) Mg DW
�
.g� 6/=.2gC 3/; .3� 2g/=.gC 6/

�
when g � 8; 28 mod 30.

(c) Mg DW
�
.g� 10/=.2gC 5/; .5� 2g/=.gC 10/

�
when g � 18 mod 30.

(3) If g � 2; 4 mod 5 and g > 4, then Mg D W
�
.�2b C g C 2/=.bC 2gC 4/;

.b� 2.gC 2//=.2bCgC 2/
�
, where b is the smallest number coprime to gC2

satisfying b � 2; 3 mod 5.

(4) M4 DW .2=9;�7=6/.

4 Proof of the basic theorem

Our claim that the Mg are the smallest volume genus–g bundles for large g is
conditional on the following conjecture:

4.1 Conjecture Suppose M is a closed hyperbolic 3–manifold with b1.M / � 2.
Then Vol.M /� V8 � 3:663862.

This conjecture is very plausible for two reasons. First, the smallest example of this
type known has volume � 4:71. (The example is M D 92

4
.0; 1/.0; 1/D v1539.5; 1/D

s941.5; 1/.5; 1/ and has the least volume among all 0–surgeries on homologically split
2–component links with < 15 crossings, as well as the manifolds in (or obtained from)
certain standard censuses [2; 10].) Second, if we broaden the context from closed to
finite-volume, experimentally it seems that the smallest volume hyperbolic manifold
with b1.M /� n always has cusps (see [7, Section 10]), and Conjecture 4.1 is known
for cusped manifolds:

4.2 Theorem Let M be a finite-volume hyperbolic 3–manifold with at least one cusp.
If b1.M / � 2, then Vol.M / � V8 with equality exactly when M is the Whitehead
complement or its sibling.
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Theorem 4.2 is essentially proved in [1], though we give the details below. Under-
standing the volumes of closed manifolds is fundamentally harder than that of cusped
manifolds, so Conjecture 4.1 seems well beyond present technology (see [7] for a
survey). It is worth noting that, by arguments similar to those proving Theorem 4.3,
there are at most finitely many counterexamples to Conjecture 4.1.

Proof of Theorem 4.2 Suppose M has at least two cusps; then the conclusion is
exactly Theorem 3.6 of [1]. So suppose M has one cusp. Since

b1.M /D rank H 1.M IZ/D rank H2.M; @M IZ/� 2;

we must have that H2.M IZ/¤ 0. Let † be a closed incompressible surface repre-
senting a nonzero class in H2.M IZ/. Since it is disjoint from the cusp, Theorem 3.5
of [1] gives that either Vol.M / > V8 or M is obtained by identifying the sides of
a regular ideal octahedron. The latter case gives finitely many possibilities, none of
which have one cusp and b1.M /� 2. One can either check this by hand, or just use
that such manifolds have been independently enumerated in [2] and [11].

We can now prove the basic version of the main result of this paper.

4.3 Theorem If Conjecture 4.1 is true, then for every large g the hyperbolic †g –
bundle of minimal volume is a Dehn filling on the sibling W of the Whitehead
complement.

Proof Suppose to the contrary that there is an infinite sequence .Nn;gn/, where each
Nn is a minimal volume †gn

–bundle which is not a Dehn filling of W . Here gn!1

as n!1 since there are finitely many manifolds of any given volume and hence
finitely many minimal volume †g –bundles for each fixed g . From Section 3, we
know that for each g > 2 there exists a †g –bundle Mg which is a Dehn filling on W .
Since volume strictly decreases under Dehn filling, we have Vol.Mg/ <Vol.W /D V8

for all g , and hence by minimality that Vol.Nn/ < V8 for all n. As their volumes
are bounded, we pass to a subsequence where the Nn have a geometric limit N ; for
ease of notation, we reindex so that Nn now denotes that subsequence. As N is the
geometric limit of the Nn , we have Vol.N /D limn!1Vol.Nn/ and so Vol.N /� V8 .
There are three cases, depending on how many cusps N has.

Case 1 (No cusps) If N is compact, then the sequence is eventually constant, with
Nn ŠN for all large n. As gn!1, the manifold N must fiber in infinitely many
ways, in particular b1.N /� 2. But then Conjecture 4.1 implies that Vol.N /� V8 , a
contradiction since Vol.Nn/ < V8 for all n.
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Case 2 (One cusp) Suppose N has one cusp. For all but one Dehn filling of N ,
the first betti number of the filled manifold is b1.N /� 1. (The exception is the filling
along the kernel of H1.@N IQ/!H1.N IQ/.) Thus since b1.Nn/ � 1 for every n,
we have b1.N /� 2. But then Theorem 4.2 implies that Vol.N / > V8 , a contradiction
to our observation that Vol.N /� V8 .

Case 3 (At least 2 cusps) As noted, we have Vol.N /� V8 . Since N has at least 2
cusps, we know b1.N /�2 and so Theorem 4.2 implies that N is either the complement
of the Whitehead link or its sibling. Our assumption on the Nn means it must be the
former, which we denote W 0 . For each of the two boundary components @iW

0 , there
is a natural meridian-longitude pair .�i ; �i/ in H1.@iW

0IZ/. Here, H1.W
0IZ/ Š

Z2 D h�1; �2i and both �i D 0 in H1.W
0IZ/. Now each H 1.NnIZ/ ¤ 0, and so

gives rise to a nonzero class �n 2H 1.W 0IZ/. The Dehn filling curve on @1W 0 lies in
the kernel of �n , and thus either is �1 or �n D �

�
2

. Since the Nn geometrically limit
on W 0 , the Dehn filling curves must be varying on both cusps, forcing �n D �

�
2

for
all but finitely many n. But the symmetric argument with the other cusp shows that
�n D �

�
1

for all but finitely many n, a contradiction.

In each case we have a contradiction, and thus all but finitely many of the Nn must be
fillings of the Whitehead sibling W .

5 Volumes of Dehn fillings

Since they are Dehn fillings, each W� has smaller volume than W , and most of them
have volumes very close to Vol.W /. In this section, we give very precise estimates on
the volumes of most W� , allowing us to show:

5.1 Theorem For all large g , the manifold Mg minimizes volume among all †g –
bundles which are Dehn fillings on the sibling of the Whitehead complement.

Together with Theorem 4.3, this will prove Theorem 1.2.

Throughout this section, we consider � D ax�C by� 2 H 1.W IZ/ with 0 � b < a

and gcd.a; b/D 1. The key quantity controlling Vol.W�/ turns out to be

n.�/D
5.a2C b2/

1C 25�.�/
:

As a first step, we use work of Neumann and Zagier [19] to prove:

5.2 Lemma

Vol.W�/D Vol.W /�
�2

n.�/
CO

�
1

n.�/2

�
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This lemma suggests that n.�/ > n. / implies Vol.W�/ > Vol.W /, which, if true,
easily implies Theorem 5.1 given the formula for n.�/. However, we will need to
refine the lemma substantially in order to actually prove the theorem.

Proof of Lemma 5.2 For any finite-volume hyperbolic 3–manifold M , Neumann and
Zagier proved the following asymptotic formula for the volumes of large Dehn fillings.
Let Tk be a Euclidean torus associated to the k –th cusp, and let 
k D pk�k C qk�k

be the Dehn filling curve for that cusp. In terms of the quadratic form

Q.
k/DQ.pk ; qk/D .length of 
k /
2
ı
.area of Tk /;

Theorem 1A of [19] states
.5:3/

Vol.M filled along the 
i /D Vol.M /��2
X

k

1

Q.pk ; qk/
CO

 X
k

1

p4
k
C q4

k

!
:

As mentioned in Section 2.4, for W with the bases we’ve chosen, the Tk are both
squares with sides parallel to �k and �k . From Lemma 2.10, one finds Q.
k/ D

51�2�k.�/.a2C b2/. Using Lemma 2.7, we see that the first sum in (5.3) is simply
1=n.�/ as claimed. As for the error term, just observe that because of the square cusp
shape one has p4

k
C q4

k
� .p2

k
C q2

k
/2 DQ.
k/

2 and soX
k

1

p4
k
C q4

k

�

X
k

1

Q.
k/
D

1C 54�

25.a2C b2/2
�

1

n.�/2

and hence we can view the error in (5.3) as O.n.�/�2/.

Lemma 5.2 is enough to distinguish between the two classes of examples introduced
in (3.1).

5.4 Theorem For all large g , if � 2Ag and  2 Eg then Vol.W�/ > Vol.W /.

Proof Notice that

n.�/

n. /
D

.5=2/
�
g2C b2

1

�
.5=26/

�
.gC 2/2C b2

2

� D 13
g2C b2

1

.gC 2/2C b2
2

>
13

2

�
g

gC 2

�2

and thus n.�/� 6n. / for large g . Hence

Vol.W�/�Vol.W /D �
2

�
1

n. /
�

1

n.�/

�
CO

�
1

n.�/2

�
�

5�2

n.�/
CO

�
1

n.�/2

�
which is positive for large n.�/, and hence for large g , as desired.
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Unfortunately, Lemma 5.2 is not enough to identify the minimal volume manifold
among those coming from Ag (or Eg ). As a concrete example, if g � 13 mod 30,
then � D gx�C 2y� and  D gx�C 3y� are both in Ag . However, the difference
in volumes is governed by 1=n. /� 1=n.�/D 2=

�
n.�/n. /

�
, which is comparable

to the error. To distinguish such examples, we use that � and  are very closely
related (in this case, b differs by 1) to show that the error terms in Lemma 5.2 are also
correlated, and this difference is accurate to one higher order than the original estimate
itself. To execute this we need the following refined volume estimate.

5.5 Theorem Consider �Dax�Cby�2H 1.W IZ/ with 0�b<a and gcd.a; b/D1.
If �.�/D 0 then

Vol.W�/D Vol.W /�
2�2

5.a2C b2/
�
�4
�
7a4C 144a2b2C 7b4

�
1875.a2C b2/4

CO

�
1

a6

�
:

If instead �.�/D 1 then Vol.W�/�Vol.W / is given by

�
26�2

5.a2C b2/

C
�4
�
901.a4C b4/C .�1/�1.�/2808.ab3� a3b/� 6336a2b2

�
375.a2C b2/4

CO

�
1

a6

�
:

Proof We will derive a more refined asymptotic expansion for Vol.W�/ using the
method of [19]. For the standard triangulation of W Dm125 with four tetrahedra, the
gluing equations are

.5:6/ z1.1� z2/.1� z3/.1� z4/D�.1� z1/ and .1� z1/z2z4 D z3

where zi 2C is the shape of the i –th tetrahedron. A solution to these equations gives
a (typically incomplete) hyperbolic structure on W , with the induced holonomy h on
the boundary given by
.5:7/

U1D h.�1/D
1

z1.1� z1/z2z4.1� z4/
; V1D h.��1/D�

z2.1� z3/.1� z4/

z4

;

U2D h.�2/D�
.1� z1/z3

.1� z3/.1� z4/
; V2D h.��2/D

z1z2.1� z4/

.1� z1/z4

:

Here, to match the conventions of [19], we are using bases .�k ;��k/ for the homology
of the k –th cusp.

Following [19], we consider uk D log Uk and vk D log Vk . On a neighborhood of
0 2C2 , the pair uD .u1;u2/ parameterize solutions to the gluing equations near the
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complete hyperbolic structure. The vk can be related to the uk via a potential function
ˆ.u/, where in particular

vk D
1

2

@ˆ

@uk

:

Because there is an isometry of W interchanging .�1; �1/ with .�2; �2/, the potential
function has the symmetric form

.5:8/ ˆ.u/D c1.u
2
1Cu2

2/C c2.u
4
1Cu4

2/C c3u2
1u2

2CO.juj6/:

The function ˆ also determines the following refined volume estimate of [19]. If Wu
denotes the hyperbolic structure on W corresponding to u, and ˆk the terms of ˆ of
total degree k , then

.5:9/ Vol.Wu/D Vol.W /C
1

4
� Im

 
2X

kD1

ukxvk �
1

2

1X
kD2

.k � 2/ˆk.u/

!
:

Thus the key is to find the coefficients ck in (5.8); the first one is determined by the
cusp shapes, which are both square, and hence c1 D i .

Using Gröbner bases [8] to eliminate variables from (5.6) and (5.7), we find the
following relationship between V1;U1 and U2 :

.5:10/ U2V 2
1 CU 6

1 U2V 4
1 � 2U1U2V 2

1

�
3�V1CV 2

1

�
� 2U 5

1 U2V 2
1

�
1�V1C 3V 2

1

�
�U 4

1

��
�1CV1

�4
V1CU 2

2

�
�1CV1

�4
V1CU2

�
�1C4V1�15V 2

1 C12V 3
1 �15V 4

1

��
CU 2

1 V1

�
�
�
�1CV1

�4
�U 2

2

�
�1CV1

�4
CU2V1

�
15�12V1C15V 2

1 �4V 3
1 CV 4

1

��
C 2U 3

1 V1

��
� 1CV1

�4
CU 2

2

�
� 1CV1

�4
�U2

�
1C 4V1C 4V 3

1 CV 4
1

��
D 0

If we substitute Uk D euk D 1Cuk Cu2
k
=2Cu3

k
=6CO.juj4/ and

V1 D ev1 D exp
�
iu1C 2c2u3

1C c3u1u2
2CO.juj4/

�
D 1C iu1�

1

2
u2

1C
12c2� i

6
u3

1C c3u1u2
2CO.juj4/

into (5.10), we get

�
�
1C .8� 8i/c3

�
u6

1u2
2�

�
1C 2i

3
C .16� 16i/c2

�
u8

1CO.juj9/D 0

which forces c2 D .�3C i/=96, and c3 D�.1C i/=16. In particular,

v1 D iu1C
�3C i

48
u3

1�
1C i

16
u1u2

2CO.juj4/:
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Now (5.9) becomes

.5:11/ Vol.Wu/D Vol.W /�
1

4

�
u1xu1Cu2xu2

�
�

1

64
Im

 
3C i

3

�
u1xu

3
1Cu2xu

3
2

�
C .1� i/

�
u1xu1xu

2
2C xu

2
1u2xu2

�
�

�
3� i

6

�
u4

1Cu4
2

�
C .1C i/u2

1u2
2

�!
CO.juj6/:

We can now use this formula to estimate Vol.W�/ as follows; here, we do the case
�.�/D 0, and leave the other to the reader. By Lemma 2.10, W� is obtained by filling
along


1 D .a� 2b/�1C .2aC b/�1 and 
2 D .�2aC b/�2C .aC 2b/�2:

Thus if u is the parameter realizing the hyperbolic structure on W� we have, remem-
bering that vk D log

�
h.��k/

�
, the following relationship

.5:12/ .a� 2b/u1� .2aC b/v1 D 2� i and .�2aC b/u2� .aC 2b/v2 D 2� i:

Following [19, Section 6], we introduce quantities

A1 D .a� 2b/� .2aC b/i and A2 D .�2aC b/� .aC 2b/i

and use (5.12) to find that

u1 D
2� i

A1

�
�3.2aC b/i

2A2
1

�
1� i=3

A2
1

C
1C i

A2
2

�
CO

�
1

a5

�
u2 D

2� i

A2

�
�3.aC 2b/i

2A2
2

�
1C i

A2
1

C
1� i=3

A2
2

�
CO

�
1

a5

�
:

.5:13/

Substituting this into (5.11) and expanding gives

Vol.W�/D Vol.W /�
2�2

5.a2C b2/
�
�4.7a4C 144a2b2C 7b4/

1875.a2C b2/4
CO

�
1

a6

�
as claimed.

We now use this last result to prove the following, which immediately gives Theorem
5.1 when combined with Theorem 5.4 and Definition 3.3.

5.14 Theorem For all large g the following is true. Suppose � D ax�C b1y� and
 D ax�C b2y� are both in Ag or both in Eg . If b1 > b2 then Vol.W�/ > Vol.W /.
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Proof First suppose � and  are in Ag . By the part of Theorem 5.5 that followed
directly from Lemma 5.2, we have

Vol.W�/�Vol.W /D
2�2

5

b2
1
� b2

2�
a2C b2

1

� �
a2C b2

2

�CO

�
1

a4

�
�
�2

10

b2
1
� b2

2

a4
CO

�
1

a4

�
:

Suppose the error term above is < C=a4 . As b1 > b2 are integers, b2
1
� b2

2
> 2b2 ,

so if b2 > 10C then Vol.W�/ > Vol.W /. Thus we can assume that b1 and b2 are
uniformly bounded, independent of a.

Now the more refined part of Theorem 5.5 gives that

Vol.W�/�Vol.W /D
2�2

5

b2
1
� b2

2

.a2C b2
1
/.a2C b2

2
/
C

�4P .a; b1; b2/

.a2C b2
1
/4.a2C b2

2
/4
CO

�
1

a6

�
where P 2 ZŒa; b1; b2� has degree 10 in a. Since the bi are uniformly bounded, this
gives

Vol.W�/�Vol.W /D
2�2

5

b2
1
� b2

2

.a2C b2
1
/.a2C b2

2
/
CO

�
1

a6

�
�

�2

10a4
CO

�
1

a6

�
and hence Vol.W�/ > Vol.W / for large g .

If instead � and  are in Eg , the only significant difference is that P has degree 11

in a and thus one gets, when the bi are bounded, that

Vol.W�/�Vol.W /D
26�2

5

b2
1
� b2

2

.a2C b2
1
/.a2C b2

2
/
CO

�
1

a5

�
which still suffices to prove the theorem.

6 The monodromy of W�

In this section, we compute the Teichmüller polynomial for a face of the Thurston
norm ball of W , and use this to calculate the dilatation for each Mg , as well as the
other closed 3–manifolds fibering over the circle which are obtained by filling W . For
background and definitions, see McMullen’s original paper [17]. Specifically, in the
notation of Section 2, we have:

6.1 Theorem Consider �Dax�Cby�2H 1.W IZ/ with 0�b<a and gcd.a; b/D1.
If .a; b/ … f.1; 0/; .2; 1/; .3; 1/; .4; 3/g, then W� is a hyperbolic 3–manifold which is
a †g –bundle, where g D a� 2�.�/. The invariant foliations for the monodromy have
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5�k.�/ singularities with 5��k.�/.2aC .�1/kC1b/ prongs for k D 1; 2. The dilatation
of the monodromy is the largest real root of

ƒa;b.t/D t2a
� taCb

� ta
� ta�b

C 1:

Finally, the invariant foliations are (co)orientable exactly when a is odd and b is even.

Combining this with Proposition 3.4 immediately gives:

6.2 Corollary The dilatation �g of the monodromy of Mg is the largest real root of
ag.t/ where ag.t/ is given by the following:

(1) If g� 0; 1 mod 5; then ag.t/DƒgC2;1.t/D t2gC4� tgC3� tgC2� tgC1C1.

(2) If g � 3 mod 5; then
(a) ag.t/Dƒg;2 D t2g � tgC2� tg � tg�2C 1 when g � 3; 13; 23 mod 30.
(b) ag.t/Dƒg;3 D t2g � tgC3� tg � tg�3C 1 when g � 8; 28 mod 30.
(c) ag.t/Dƒg;5 D t2g � tgC5� tg � tg�5C 1 when g � 18 mod 30.

(3) If g�2; 4 mod 5; then ag.t/DƒgC2;bD t2gC4�tgCbC2�tgC2�tg�bC2C1;

where b is chosen to be the smallest number coprime to gC 2 satisfying b �

2; 3 mod 5:

6.3 The Teichmüller polynomial

Our starting point for Theorem 6.1 is to view W as a mapping torus of the 5–punctured
disk D with monodromy  D �3

1
�2�3�4 (see Figure 3). Using the Bestvina–Handel

algorithm, as implemented by Hall [9], we found the invariant train track � shown in
Figure 4.

The monodromy  permutes the vertices of � via the 5–cycle .1; 3; 5; 4; 2/, and just
permutes the vertex loops in the compatible way. On the other edges,  wraps them
as follows, where “ �” denotes concatenation of paths from left to righthand (as with
the usual conventions for fundamental group):

.6:4/ e6 7! e9 � e5 � e
�1
8 e7 7! e6 � e

�1
4 � e

�1
7 e8 7! e6 e9 7! e�1

8 � e
�1
2 � e7

Following [17], we can compute the Teichmüller polynomial by considering the lift
of  to a certain abelian cover zD!D , and then considering its action on the space
of weights of z� . This is analogous to computing the Burau representation or the
Alexander polynomial, and what follows can be thought of in terms of Fox calculus.
Here, zD comes from the map from �1.D/ to the infinite cyclic group hti which maps
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v1 v2 v3

v4 v5

e1

e2
e3

e4 e5

e6

e7

e8

e9

Figure 4: The invariant train track for  D �3
1
�2�3�4

a clockwise loop about a single puncture to t . Observing how the t –grading shifts
along the image edges in (6.4), we find that in zD :

zv1 7! zv3 zv2 7! t2
zv1 zv3 7! t3

zv5 zv4 7! tzv2 zv5 7! t2
zv4

The action of z on the first five edges is determined by the vertex action, and the
others are

ze6 7! tze5C tze8Cze9 ze7 7! t2.ze4Cze6C t�1
ze7/

ze8 7! t2
ze6 ze9 7! t3.ze2C t�1

ze7Cze8/

Now by [17], to get the Teichmüller polynomial we simply compute

‚.u; t/D
det .uI �PE.t//

det .uI �PV .t//
D�ut5

C t6
�u2t3

Cu4
�u3t;

where u is a certain element of H1.W / which goes once around the bundle. To put this
in our usual basis for H1.W /, first note from Figure 3 that t D x�2y and the element
of H 1.W IZ/ corresponding to this fibration is �D 2x�Cy� . Since �.u/D 1 and ‚
determines the righthand face of the Thurston norm ball given in Figure 2(c), it follows
that uD 2x� 3y and

.6:5/ ‚.x;y/D xCx�1
� 1�y �y�1

D��W .�x;y/:

6.6 Invariant foliations

Consider �Dax�Cby� 2H 1.W IZ/ over the interior of the righthand fibered face F ,
ie a > 0 and jbj < a. Consider the monodromy  W †! † of the corresponding
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fibration of W (here † is a certain surface with boundary). We wish to understand the
topology of the invariant foliations of  so that we can understand the bundle structure
of the Dehn-filled manifold W� , and use (6.5) to compute the stretch factor.

For concreteness, let us focus on the stable foliation F � †. This foliation can be
suspended via  to a 2–dimensional foliation zF of W with a finite number of singular
leaves. Fried showed that zF only depends, up to isotopy, on the fibered face and not
the particular choice of � [6]. Thus from the single case shown in Figure 4, we see
that the singularities of zF occur only at the boundary of W . Moreover, there is only
one singular leaf touching @1W . As noted in Section 2, there is an involution of W

corresponding to x 7! x;y 7! Y . This preserves F hence and zF . Because of (2.5),
the involution interchanges the cusps via .�1$ �2; �1$��2/. Thus zF also has
only one singular leaf touching @2W .

Let ık be the curve in @kW corresponding to the boundary of the singular leaf (in the
lamination context, ık is called the degeneracy slope of zF ). Because of the involution,
we have

ı1 D c�1C d�1 and ı2 D�d�2C c�2 for some c; d 2 Z.

Returning to the foliation F in the fiber surface †, we now know it has no singularities
in the interior. Moreover, if 
k is a boundary component of the fiber surface † lying
on @kW , the number of singular prongs is just the intersection number j
k � ık j. From
the case of � D 2x�C 1 above, using Lemma 2.10 it easily follows that ı1 D �1 and
ı2 D �2 .

For a general � D ax� C by� over F with b � 0, by (2.9) and Lemma 2.10, the
fiber surface has 5�k.�/ boundary components along @kW and the foliation F has
singularities with 5��k.�/.2aC.�1/kC1b/ prongs. We are now ready to prove Theorem
6.1.

Proof of Theorem 6.1 Fix � D ax�C by� with 0 � b < a and gcd.a; b/D 1. By
Theorem 2.8, the filled manifold W� fibers over the circle in a unique way, and the
fiber genus is a� 2�.�/. An easy check shows that if .a; b/ … f.1; 0/; .2; 1/; .3; 1/g,
then the genus is at least 2. Similarly, it is straightforward from the above formulae to
see that for .a; b/ … f.2; 1/; .3; 1/; .4; 3/g, there are always at least two prongs at each
boundary component. Thus when we Dehn fill to get W� , the monodromy  remains
pseudo-Anosov with the same invariant foliations and dilatation factor. By [17], that
dilatation � is the largest real root of

‚
�
x D t�.x/;y D t�.y/

�
D ta
C t�a

� 1� tb
� t�b

or, multiplying through by ta , of ƒ.t/D t2a� taCb � ta� ta�bC 1.
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Next, we need to check when the foliations are orientable. Suppose b is odd. Since
only one of �k.�/¤ 0, it follows from the above formulae that there are singularities
with either 2aC b or 2a� b prongs, and both of these numbers are odd. Thus the
foliation is nonorientable. If a is even, then b is odd and so the foliation is again
nonorientable. In the remaining case where a is odd and b is even, one has by (2.3)
that the Alexander polynomial of W� is related to the polynomial ƒ.t/ defining � by

�W�
D�W .x D ta;y D tb/D t2a

C taCb
C ta
C ta�b

C 1Dƒ.�t/:

Thus in this case, the spectral radius of the action of  on the homology of the fiber is
the same as the dilatation �. Thus the foliation must be orientable (see eg [16, page 5]).

Summarizing, for � … f.1; 0/; .2; 1/; .3; 1/; .4; 3/g, the manifold W� fibers over the
circle with fiber a closed surface of genus at least 2 and pseudo-Anosov monodromy
having the claimed data. By Thurston, the bundle W� is thus hyperbolic, completing
the proof [22; 20].

7 Minimizing dilatation

Having shown earlier which surgeries on W minimize volume, we now turn to deter-
mining which minimize the dilatation of the monodromy, and find:

7.1 Theorem For large g , the monodromy of Mg minimizes dilatation among all
†g –bundles obtained from filling W .

Moreover, the asymptotic behavior of these minimal dilatations is:

7.2 Theorem Let �g denote the dilatation of Mg . Then limg!1 �
g
gD .3C

p
5/=2D

1C 
 , where 
 is the golden ratio.

To understand how the dilatation depends on � 2H 1.W IZ/, we follow [17, Section 5].
In particular, for such � lying over the rightmost face of the Thurston norm ball,
let K.�/ be the dilatation of the monodromy of the corresponding bundle. If we set
Z.�/D 1= log.K.�/, then this extends to a nonnegative continuous function defined on
fax�Cby� 2H 1.W IR/ j a� 0 and jbj � ag. The function Z is homogeneous with
Z.c�/D cZ.�/ and is strictly concave. It vanishes exactly along the rays bD˙a and
is real-analytic away from them. Thus Z is completely determined by zW Œ�1; 1�!R
given by z.t/ D Z.x� C ty�/. As noted in Section 2, there is an involution of W

which acts on H 1.W IR/ by flipping across the x�–axis. This involution preserves K

and hence Z ; it follows that z is even and, since it is strictly concave, has a unique
maximum at 0.
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Proof of Theorem 7.1 Fix a genus g , and recall from Section 3 that the �Dax�Cby�

giving †g –bundles fall into two classes, namely Ag where a D g and Eg where
aD gC 2. We seek to minimize K.�/, or correspondingly maximize Z.�/. From
the discussion above, among � within just one of Ag or Eg , it is clear that Z.�/ is
maximized when b is least.

If g� 3 mod 5, then Eg is empty and Mg comes from the � 2Ag with least b . Thus
Z.�/ is maximized for Mg and we’re done with this case.

Otherwise, let �g D .gC 2/x�C by� denote the element of Eg with smallest b so
that Mg DW�g

. We will show that for large g one has

.7:3/ Z.gx�/ <Z.�g/:

This suffices since we know Z.�/ <Z.gx�/ for any � 2Ag . By the homogeneity
of Z , the claim (7.3) is equivalent to

.7:4/ gz.0/ < .gC 2/z

�
b

gC 2

�
or

g

gC 2
<

z .b=.gC 2//

z.0/
:

Now z is real-analytic and z0.0/D 0 as it has a max at 0. Expanding z in a power
series about 0, and applying the bound on b from Proposition 3.4(5), we get for large g

that
z .b=.gC 2//

z.0/
> 1�C1

�
b

.gC 2/

�2

> 1�C2

log2 g

.gC 2/2
:

Comparing this with g=.gC 2/D 1� 2=gCO.g�2/ gives the claim (7.4) for large
g , proving the theorem.

Proof of Theorem 7.2 Let �g be the class giving Mg . The properties of Z mentioned
above mean that K also extends to a continuous function with K.c�/ D K.�/1=c .
Thus

�g
g DK.�g/

g
DK

�
.1=g/�g

�
:

By Proposition 3.4(5), we know that if �gDax�Cby� then b is O.log g/. Thus we see
that .1=g/�g converges to x� as g!1. Hence by continuity limg!1 �

g
g DK.x�/.

The latter is the largest root of

‚.x D t;y D 1/D t2
� 3t C 1

which is .3C
p

5/=2D 1C 
 as claimed.

We now turn to our partial answer to Question 1.6.
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7.5 Theorem Assume Conjecture 4.1. Let ıg be the smallest dilatation of any
pseudo-Anosov of †g . Then for all large g � 3 mod 5, no pseudo-Anosov  g with
dilatation ıg gives a hyperbolic †g –bundle of least volume.

Proof Assuming Conjecture 4.1 gives by Theorem 1.2 that we know there is a unique
†g –bundle of least volume when g is large, namely Mg . Let �g be the corresponding
dilatation. We compare this to the pseudo-Anosov of †g constructed by Hironaka in
[12, Theorem 1.4], whose dilatation we denote by �g . In particular, we just need to
show that �g < �g .

Following the notation of [12], let �.b;a/ be the largest root of the polynomial in
Theorem 6.1. Then the dilatation �g is either �.1;gC1/ or �.3;gC1/ . As g � 3 mod 5,
Corollary 6.2 gives that �g D �.b;g/ where b 2 f2; 3; 5g. By Propositions 4.1 and 4.2
of [12], one has

�g � �.3;gC1/ � �.1;g/ < �g

as needed.

Finally, we identify the minimal dilatation ıCg of any pseudo-Anosov of †7 with
orientable invariant foliations.

Proof of Theorem 1.11 Consider the monodromy  of the bundle M7 , which corre-
sponds to �D 9x�C2y� . By Theorem 6.1, the invariant foliations of  are orientable,
and the dilatation �7 � 1:11548110945659 is the largest root of

t18
� t11

� t9
� t7
C 1D .t4

� t3
C t2
� t C 1/

� .t14
C t13

� t9
� t8
� t7
� t6
� t5
C t C 1/:

Now �7 is a root of the second irreducible factor above, which is exactly the polynomial
used in [16] to give a lower bound on ıC

7
. Thus ıC

7
D �7 , as claimed.
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