Volume 10, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
A Thomason model structure on the category of small $n$–fold categories

Thomas M Fiore and Simona Paoli

Algebraic & Geometric Topology 10 (2010) 1933–2008
Bibliography
1 J Adámek, J Rosický, Locally presentable and accessible categories, London Math. Society Lecture Note Series 189, Cambridge Univ. Press (1994) MR1294136
2 A Bastiani, C Ehresmann, Multiple functors. I. Limits relative to double categories, Cahiers Topologie Géom. Différentielle 15 (1974) 215 MR0379626
3 C Berger, A cellular nerve for higher categories, Adv. Math. 169 (2002) 118 MR1916373
4 J E Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043 MR2276611
5 J E Bergner, Three models for the homotopy theory of homotopy theories, Topology 46 (2007) 397 MR2321038
6 J E Bergner, A survey of $(\infty,1)$–categories, from: "Towards higher categories" (editors J Baez, J P May), IMA Vol. Math. Appl. 152, Springer (2010) 69 MR2664620
7 R Brown, P J Higgins, The equivalence of $\infty $–groupoids and crossed complexes, Cahiers Topologie Géom. Différentielle 22 (1981) 371 MR639048
8 R Brown, P J Higgins, The equivalence of $\omega $–groupoids and cubical $T$–complexes, Cahiers Topologie Géom. Différentielle 22 (1981) 349 MR639047
9 R Brown, P J Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21 (1981) 233 MR617135
10 R Brown, P J Higgins, Tensor products and homotopies for $\omega$–groupoids and crossed complexes, J. Pure Appl. Algebra 47 (1987) 1 MR906402
11 R Brown, G H Mosa, Double categories, $2$–categories, thin structures and connections, Theory Appl. Categ. 5 (1999) 163 MR1694653
12 D C Cisinski, La classe des morphismes de Dwyer n'est pas stable par retractes, Cahiers Topologie Géom. Différentielle Catég. 40 (1999) 227 MR1716777
13 D C Cisinski, Les préfaisceaux comme modèles des types d'homotopie, Astérisque (2006) MR2294028
14 R J M Dawson, R Paré, What is a free double category like?, J. Pure Appl. Algebra 168 (2002) 19 MR1879928
15 R J M Dawson, R Paré, D A Pronk, Paths in double categories, Theory Appl. Categ. 16 (2006) 460 MR2259260
16 J W Duskin, Simplicial matrices and the nerves of weak $n$–categories. II. Bicategory morphisms and simplicial maps, Preprint (2001)
17 J W Duskin, Simplicial matrices and the nerves of weak $n$–categories. I. Nerves of bicategories, Theory Appl. Categ. 9 (2001/02) 198 MR1897816
18 A Ehresmann, C Ehresmann, Multiple functors. II. The monoidal closed category of multiple categories, Cahiers Topologie Géom. Différentielle 19 (1978) 295 MR546074
19 A Ehresmann, C Ehresmann, Multiple functors. III. The Cartesian closed category $\mathrm{Cat}_{n}$, Cahiers Topologie Géom. Différentielle 19 (1978) 387 MR515164
20 A Ehresmann, C Ehresmann, Multiple functors. IV. Monoidal closed structures on $\mathrm{Cat}_{n}$, Cahiers Topologie Géom. Différentielle 20 (1979) 59 MR544529
21 C Ehresmann, Catégories structurées, Ann. Sci. École Norm. Sup. $(3)$ 80 (1963) 349 MR0197529
22 C Ehresmann, Catégories et structures, Dunod (1965) MR0213410
23 T M Fiore, Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory, Mem. Amer. Math. Soc. 182 (2006) MR2229946
24 T M Fiore, Pseudo algebras and pseudo double categories, J. Homotopy Relat. Struct. 2 (2007) 119 MR2369164
25 T M Fiore, S Paoli, D Pronk, Model structures on the category of small double categories, Algebr. Geom. Topol. 8 (2008) 1855 MR2449004
26 R Fritsch, D M Latch, Homotopy inverses for nerve, Bull. Amer. Math. Soc. $($N.S.$)$ 1 (1979) 258 MR513754
27 R Fritsch, D M Latch, Homotopy inverses for nerve, Math. Z. 177 (1981) 147 MR612870
28 P Gabriel, F Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math. 221, Springer (1971) MR0327863
29 P Gabriel, M Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Math. und ihrer Grenzgebiete 35, Springer (1967) MR0210125
30 P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag (1999) MR1711612
31 M Golasiński, Homotopies of small categories, Fund. Math. 114 (1981) 209 MR644406
32 M Golasiński, Closed models on the procategory of small categories and simplicial schemes, Russian Math. Surveys 39 (1984) 275 MR764018
33 M Golasiński, Closed models on the procategory of small categories and simplicial schemes, Uspekhi Mat. Nauk 39 (1984) 239 MR764018
34 M Grandis, Higher cospans and weak cubical categories (cospans in algebraic topology. I), Theory Appl. Categ. 18 (2007) 321 MR2326435
35 M Grandis, Cubical cospans and higher cobordisms (cospans in algebraic topology. III), J. Homotopy Relat. Struct. 3 (2008) 273 MR2426182
36 M Grandis, R Paré, Limits in double categories, Cahiers Topologie Géom. Différentielle Catég. 40 (1999) 162 MR1716779
37 M Grandis, R Paré, Adjoint for double categories. Addenda to: “Limits in double categories” [Cah. Topol. Géom. Différ. Catég. \bf40 (1999), no. 3, 162–220; MR1716779], Cah. Topol. Géom. Différ. Catég. 45 (2004) 193 MR2090335
38 M Grandis, R Paré, Lax Kan extensions for double categories (on weak double categories. IV), Cah. Topol. Géom. Différ. Catég. 48 (2007) 163 MR2351267
39 M Grandis, R Paré, Kan extensions in double categories (on weak double categories. III), Theory Appl. Categ. 20 (2008) 152 MR2395245
40 M Heggie, Homotopy cofibrations in $\mathrm{CAT}$, Cahiers Topologie Géom. Différentielle Catég. 33 (1992) 291 MR1197427
41 M Heggie, The left derived tensor product of $\mathrm{CAT}$–valued diagrams, Cahiers Topologie Géom. Différentielle Catég. 33 (1992) 33 MR1163426
42 M Heggie, Homotopy colimits in presheaf categories, Cahiers Topologie Géom. Différentielle Catég. 34 (1993) 13 MR1213295
43 P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003) MR1944041
44 M Hovey, Model categories, Math. Surveys and Monogr. 63, Amer. Math. Soc. (1999) MR1650134
45 M L del Hoyo, On the subdivision of small categories, Topology Appl. 155 (2008) 1189 MR2421828
46 L Illusie, Complexe cotangent et déformations. II, Lecture Notes in Math. 283, Springer (1972) MR0491681
47 J F Jardine, Cubical homotopy theory: a beginning, Preprint (2002)
48 J F Jardine, Categorical homotopy theory, Homology, Homotopy Appl. 8 (2006) 71 MR2205215
49 A Joyal, Theory of quasi-categories, Vol. I, Preprint
50 A Joyal, Theory of quasi-categories, Vol. II, Preprint
51 A Joyal, The theory of quasi-categories and its applications, Quadern 45, Vol. II (2008)
52 A Joyal, M Tierney, Elements of simplicial homotopy theory, in progress, Chapters 1–4 available as Quadern 47, Centre de Recerca Mat. Barcelona (2008)
53 A Joyal, M Tierney, Strong stacks and classifying spaces, from: "Category theory (Como, 1990)" (editors A Carboni, M C Pedicchio, G Rosolini), Lecture Notes in Math. 1488, Springer (1991) 213 MR1173014
54 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
55 D M Kan, On c. s. s. complexes, Amer. J. Math. 79 (1957) 449 MR0090047
56 G M Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005) MR2177301
57 J Kock, Polynomial functors and trees, Internat. Math. Res. Not. (2010)
58 S Lack, A Quillen model structure for $2$–categories, $K$–Theory 26 (2002) 171 MR1931220
59 S Lack, A Quillen model structure for bicategories, $K$–Theory 33 (2004) 185 MR2138540
60 S Lack, S Paoli, $2$–nerves for bicategories, $K$–Theory 38 (2008) 153 MR2366560
61 D M Latch, The uniqueness of homology for the category of small categories, J. Pure Appl. Algebra 9 (1977) 221 MR0460421
62 M J Lee, Homotopy for functors, Proc. Amer. Math. Soc. 36 (1972) 571, 648 MR0334212
63 T Leinster, A survey of definitions of $n$–category, Theory Appl. Categ. 10 (2002) 1 MR1883478
64 T Leinster, Nerves of algebras, Lecture notes from CT04 (2004)
65 T Leinster, M Weber, et al, How I learned to love the nerve construction, The n–Category Café, A group blog on math, physics and philosophy (2008)
66 J L Loday, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra 24 (1982) 179 MR651845
67 J Lurie, Derived algebraic geometry I: Stable $\infty$–categories arXiv:math/0608228
68 J Lurie, Higher topos theory, Annals of Math. Studies 170, Princeton Univ. Press (2009) MR2522659
69 S Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1998) MR1712872
70 J P May, J Sigurdsson, Parametrized homotopy theory, Math. Surveys and Monogr. 132, Amer. Math. Soc. (2006) MR2271789
71 I Moerdijk, J A Svensson, A Shapiro lemma for diagrams of spaces with applications to equivariant topology, Compositio Math. 96 (1995) 249 MR1327146
72 J C Morton, Double bicategories and double cospans, J. Homotopy Relat. Struct. 4 (2009) 389 MR2591970
73 S Paoli, Internal categorical structures in homotopical algebra, from: "Towards higher categories" (editors J Baez, J P May), IMA Vol. Math. Appl. 152, Springer (2010) 85 MR2664621
74 R Pellissier, Weak enriched categories – Categories enrichies faibles arXiv:math/0308246
75 D Quillen, Higher algebraic $K$–theory. I, from: "Algebraic $K$–theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 MR0338129
76 C Rezk, A model category for categories, Preprint (2000)
77 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
78 M Shulman, Comparing composites of left and right derived functors arXiv:0706.2868
79 M Shulman, Framed bicategories and monoidal fibrations, Theory Appl. Categ. 20 (2008) 650 MR2534210
80 C Simpson, A closed model structure for $n$–categories, internal ${H}om$, $n$–stacks and generalized Seifert–Van Kampen arXiv:9704.5006
81 C Simpson, Homotopy theory of higher categories arXiv:1001.4071
82 R Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283 MR920944
83 Z Tamsamani, Sur des notions de $n$–catégorie et $n$-groupoïde non strictes via des ensembles multi-simpliciaux, $K$–Theory 16 (1999) 51 MR1673923
84 R W Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91 MR510404
85 R W Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle 21 (1980) 305 MR591388
86 B Toën, Vers une axiomatisation de la théorie des catégories supérieures, $K$–Theory 34 (2005) 233 MR2182378
87 F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, NJ, 1983)" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 MR802796
88 M Weber, Familial $2$–functors and parametric right adjoints, Theory Appl. Categ. 18 (2007) 665 MR2369114
89 K Worytkiewicz, K Hess, P E Parent, A Tonks, A model structure à la Thomason on \bf$2$–Cat, J. Pure Appl. Algebra 208 (2007) 205 MR2269840