Volume 10, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Closed surface bundles of least volume

John W Aaber and Nathan Dunfield

Algebraic & Geometric Topology 10 (2010) 2315–2342
Bibliography
1 I Agol, The minimal volume orientable hyperbolic $2$–cusped $3$–manifolds, Proc. Amer. Math. Soc. 138 (2010) 3723
2 P J Callahan, M V Hildebrand, J R Weeks, A census of cusped hyperbolic $3$–manifolds, Math. Comp. 68 (1999) 321 MR1620219
3 J H Cho, J Y Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008) 257 MR2455699
4 M Culler, N M Dunfield, J R Weeks, SnapPy, a computer program for studying the geometry and topology of $3$–manifolds
5 B Farb, C Leininger, D Margalit, Small dilatation pseudo-Anosovs and $3$–manifolds arXiv:0905.0219
6 D Fried, Fibrations over $S^1$ with pseudo-Anosov monodromy, from: "Travaux de Thurston sur les surfaces", Séminaire Orsay, Astérisque 66, Soc. Math. France (1979) 251 MR568308
7 D Gabai, R Meyerhoff, P Milley, Mom technology and hyperbolic $3$–manifolds, from: "In the tradition of Ahlfors–Bers. V" (editors M Bonk, J Gilman, H Masur, Y Minsky, M Wolf), Contemp. Math. 510, Amer. Math. Soc. (2010) 84 MR2581832
8 D R Grayson, M E Stillman, Macaulay 2, a software system for research in algebraic geometry
9 T Hall, trains3, an implementation of Bestvina and Handel's algorithm
10 T Hall, S Schleimer, Hyperbolic genus two bundles with monodromy of length ten or less (2002)
11 D Heard, E Pervova, C Petronio, The 191 orientable octahedral manifolds, Experiment. Math. 17 (2008) 473 MR2484431
12 E Hironaka, Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid, to appear in Algebr. Geom. Topol. arXiv:0909.4517
13 A A Karatsuba, Basic analytic number theory, Springer (1993) MR1215269
14 E Kin, S Kojima, M Takasawa, Entropy versus volume for pseudo-Anosovs, Experiment. Math. 18 (2009) 397 MR2583541
15 E Kin, M Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior arXiv:1003.0545
16 E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus, to appear in Ann. Inst. Fourier (Grenoble) arXiv:0905.1302
17 C T McMullen, Polynomial invariants for fibered $3$–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 519 MR1832823
18 C T McMullen, The Alexander polynomial of a $3$–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. $(4)$ 35 (2002) 153 MR1914929
19 W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 MR815482
20 J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996) MR1402300
21 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
22 W P Thurston, Hyperbolic structures on $3$–manifolds, II: Surface groups and $3$–manifolds which fiber over the circle arXiv:math.GT/9801045
23 W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986) MR823443
24 R W Venzke, Braid forcing, hyperbolic geometry, and pseudo-Anosov sequences of low entropy, PhD thesis, Caltech (2008)
25 J R Weeks, SnapPea: A computer program for creating and studying hyperbolic $3$–manifolds