Volume 10, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
A Thomason model structure on the category of small $n$–fold categories

Thomas M Fiore and Simona Paoli

Algebraic & Geometric Topology 10 (2010) 1933–2008
Abstract

We construct a cofibrantly generated Quillen model structure on the category of small n–fold categories and prove that it is Quillen equivalent to the standard model structure on the category of simplicial sets. An n–fold functor is a weak equivalence if and only if the diagonal of its n–fold nerve is a weak equivalence of simplicial sets. This is an n–fold analogue to Thomason’s Quillen model structure on Cat. We introduce an n–fold Grothendieck construction for multisimplicial sets, and prove that it is a homotopy inverse to the n–fold nerve. As a consequence, we completely prove that the unit and counit of the adjunction between simplicial sets and n–fold categories are natural weak equivalences.

Keywords
higher category, $n$–fold category, Quillen model category, nerve, $n$–fold nerve, Grothendieck construction, $n$–fold Grothendieck construction, Thomason model structure, subdivision
Mathematical Subject Classification 2000
Primary: 18D05, 18G55
Secondary: 55U10, 55P99
References
Publication
Received: 31 August 2008
Revised: 1 April 2010
Accepted: 17 August 2010
Published: 29 September 2010
Authors
Thomas M Fiore
Department of Mathematics and Statistics
University of Michigan-Dearborn
4901 Evergreen Road
Dearborn, MI 48128
http://www-personal.umd.umich.edu/~tmfiore/
Simona Paoli
Department of Mathematics and Statistics
Penn State Altoona
3000 Ivyside Park
Altoona, PA 16601-3760
http://math.aa.psu.edu/~simona/