Volume 10, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The beta elements $\beta_{tp^2/r}$ in the homotopy of spheres

Katsumi Shimomura

Algebraic & Geometric Topology 10 (2010) 2079–2090
Abstract

In In [Ann. Math. (2) 106 (1977) 469–516], Miller, Ravenel and Wilson defined generalized beta elements in the E2–term of the Adams–Novikov spectral sequence converging to the stable homotopy groups of spheres, and in [Hiroshima Math. J. 7 (1977) 427–447], Oka showed that the beta elements of the form βtp2r for positive integers t and r survive to the homotopy of spheres at a prime p > 3, when r 2p 2 and r 2p if t > 1. In this paper, for p > 5, we expand the condition so that βtp2r for t 1 and r p2 2 survives to the stable homotopy groups.

Keywords
homotopy of spheres, beta family, Adams–Novikov spectral sequence
Mathematical Subject Classification 2000
Primary: 55Q45
Secondary: 55Q10
References
Publication
Received: 21 August 2009
Revised: 26 March 2010
Accepted: 2 September 2010
Published: 16 October 2010
Authors
Katsumi Shimomura
Department of Mathematics
Faculty of Science
Kochi University
2-5-1
Akebono
Kochi 780-8520
Japan