Volume 10, issue 4 (2010)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Divergence et parallélisme des rayons d'étirement cylindriques

Guillaume Théret

Algebraic & Geometric Topology 10 (2010) 2451–2468
Abstract

Une ligne d’étirement cylindrique est une ligne d’étirement au sens de Thurston dont la lamination horocyclique est une multicourbe pondérée. Nous montrons ici que deux lignes cylindriques correctement paramétrées sont parallèles si et seulement si ces lignes convergent vers le même point du bord de Thurston de l’espace de Teichmüller.

A cylindrical stretch line is a stretch line, in the sense of Thurston, whose horocyclic lamination is a weighted multicurve. In this paper, we show that two correctly parameterized cylindrical lines are parallel if and only if these lines converge towards the same point in Thurston’s boundary of Teichmüller space.

Keywords
Teichmüller space, hyperbolic surface, hyperbolic structure, geodesic lamination, stretch line, Thurston's boundary, measured foliation
Mathematical Subject Classification 2000
Primary: 30F60, 57M50, 53C22
References
Publication
Received: 24 April 2010
Revised: 30 June 2010
Accepted: 29 July 2010
Published: 19 December 2010
Authors
Guillaume Théret
Max Planck Institut für Mathematik
Vivatsgasse 7
53100 Bonn
Germany