
Algebraic & Geometric Topology 11 (2011) 107–143 107

Uniqueness of A1–structures and Hochschild cohomology

CONSTANZE ROITZHEIM

SARAH WHITEHOUSE

Working over a commutative ground ring, we establish a Hochschild cohomology
criterion for uniqueness of derived A1–algebra structures in the sense of Sagave.
We deduce a Hochschild cohomology criterion for intrinsic formality of a differential
graded algebra. This generalizes a classical result of Kadeishvili for the case of a
graded algebra over a field.

16E45; 16E40, 55S30

Introduction

A1–Structures were introduced by Stasheff [17] in the early 1960s in the study of
topological spaces with products. They are now known to arise widely in algebra,
geometry and mathematical physics, as well as topology.

We are interested in questions of formality and intrinsic formality for differential graded
algebras. Thus we would like to establish conditions under which two differential
graded algebras with the same homology are quasi-isomorphic. This has been studied
by Keller and others in the case where the ground ring k is a field. It is related to the
existence of different A1–structures on a minimal model of the differential graded
algebra.

An important structural result of Kadeishvili [8] proves the existence of minimal
models of differential graded algebras over a field while another classical theorem
by Kadeishvili [9] gives a criterion for uniqueness of certain minimal models using
Hochschild cohomology.

For the applications we have in mind, which are related to rigidity of the model category
structures arising in stable homotopy theory, we will be interested in working over
local rings rather than fields. When working with a commutative ground ring rather
than a field, one has to work with derived A1–algebras as in the world of “classical”
A1–algebras, a differential graded algebra might not have a minimal model if its
homology is not projective. The theory of derived A1–algebras was developed by
Sagave in [16]. He describes the notion of a minimal model for a differential graded
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algebra A over a commutative ground ring by giving a projective resolution of the
homology of A that is compatible with the existing A1–structure on A.

Our main result is Theorem 3.7 which extends Kadeishvili’s uniqueness theorem to de-
rived A1–algebras. For this we develop a new notion of Hochschild cohomology. After
further work, in Theorem 4.4 we obtain a Hochschild cohomology criterion for intrinsic
formality of a differential graded algebra over a commutative ring rather than a field.

In the subsequent sections we return to classical A1–algebras and derive some further
generalizations of Kadeishvili’s uniqueness criterion. The first of these is Theorem 5.3
which studies uniqueness of an A1–structure on a fixed differential graded algebra.
The other, Theorem 6.3, discusses differential graded algebras with fixed Massey
products on their homology.

An alternative approach is developed by Dugger and Shipley. In [3, Section 3] they
consider the classification of quasi-isomorphism types of differential graded algebras
with given homology. They do this by building differential graded algebras up degree-
wise via a theory of Postnikov sections and k –invariants. To do so requires working
with bounded below differential graded algebras, a restriction which does not apply
to our methods. The k –invariants live in derived Hochschild cohomology groups of
the Postnikov sections with coefficients in the next homology group of the differential
graded algebra being built. Their work does not consider A1–structures and although
also formulated in terms of Hochschild cohomology, there does not seem to be a very
direct relationship between their methods and ours. However, we are going to put some
of their examples in context throughout our paper.

This paper is organized as follows. In Section 1 we recall basic definitions relating
to A1–algebras and Hochschild cohomology. In Section 2 we recall Sagave’s con-
struction of derived A1–algebras and his results about minimal models. This section
also introduces the Lie algebra structure which leads to the definition of Hochschild
cohomology of a certain class of derived A1–algebras in Section 3. At the end of
Section 3 we show that the vanishing of certain Hochschild cohomology groups gives
a sufficient condition for the existence of a unique derived A1–structure on a fixed
underlying object. In Section 4 we deduce the criterion for intrinsic formality of
differential graded algebras over a commutative ground ring. Finally, in Section 5 and
Section 6 we discuss the previously mentioned analogues of these results for classical
A1–structures. A short appendix is devoted to sign issues.
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1 A quick review of A1–algebras

We assume that the reader is familiar with the basic definitions regarding A1–algebras
and Hochschild cohomology, but we are going to recall some of them in this section to
establish notation and assumptions. We are going to be very brief with this; the explicit
formulas and definitions regarding derived A1–algebras given in the later Sections 2
and 3 specialize to the case of “classical” A1–algebras. For greater detail we refer to
Keller’s introductory paper [10].

The notion of an A1–algebra arose with the study of loop spaces in topology and has
since become an increasingly important and powerful subject in algebraic topology and
homological algebra. Roughly speaking, A1–algebras are not necessarily associative
algebras with given maps for “multiplying” n elements for each n, unlike in the case
of associative algebras where one knows how to multiply n elements from knowing
how to multiply two elements.

1.1 Basic definitions

In Section 1 and Section 6 of this paper, k will denote a field of characteristic not equal
to 2. In Sections 2 to 5 we will allow k to be a commutative ring rather than a field.
Note that in fact Section 1 and Section 6 do not require a ground field as long as all
k –modules in question are projective.

All unadorned tensor products are over k . All graded objects will be Z–graded unless
stated otherwise. Our convention for the degree of a map f is as follows: a map
of graded k –vector spaces f W A! B of degree i consists of a sequence of maps
f nW An! BnCi . (Later this will be called the internal degree and there will also be a
notion of cohomological or external degree.) We often abbreviate “differential graded
algebra” to dga.

Definition 1.1 Let AD
L

n2Z An be a graded k –vector space. An A1–structure
on A is a sequence of k –linear maps

mj W A
˝j
�!A for j � 1

of degree 2� j satisfying the equationX
nDrCsCt

.�1/rsCtm1CrCt .1
˝r
˝ms˝ 1˝t /D 0

for each n � 1. An A1–algebra is a graded k –vector space A together with an
A1–structure on A.
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Further all A1–algebras are assumed to be strictly unital; cf Definition 2.1. We are
using the sign convention of Sagave [16, (2.6)] and of Lefèvre-Hasegawa [11, 1.2.1.2]
rather than of Keller [10].

Note that we are applying the Koszul sign rule when applying such formulas to elements:

.f ˝g/.x˝y/D .�1/jgjjxjf .x/˝g.y/:

In particular, this definition gives us

m1m1 D 0;

ie m1 is a differential on A. It also yields the following special cases: if mk D 0 for
all k ¤ 2, then A is simply a graded associative algebra. If mk D 0 for k � 3, then A

is a differential graded algebra.

There are also notions of morphism and quasi-isomorphism of A1–algebras; these are
special cases of Definitions 2.3 and 2.4.

Notation We sometimes write an A1–structure as a formal infinite sum, ie

mDm1Cm2C � � � :

Note that all infinite sums in this paper are finite in every degree.

1.2 Hochschild cohomology and Lie structure

Hochschild cohomology is a very powerful tool in many areas around algebra and
topology, from relations to the geometry of loop spaces to deformation theory of algebras
and realizability questions in topology. The definition of Hochschild cohomology of
associative graded algebras can be extended to a definition of Hochschild cohomology
of A1–algebras. A convenient way of doing this is using a Lie algebra structure on
the bigraded k –vector space

C n;m.A;A/D Homm
k .A

˝n;A/D
Y

i

Homk..A
˝n/i ;AiCm/;

where n 2N;m 2 Z and A is a graded k –vector space.

Explicitly, for f 2 C n;k.A;A/ and g 2 C m;l.A;A/ the Lie bracket is given by

Œf;g�D

n�1X
iD0

.�1/.n�1/.m�1/C.n�1/lCi.m�1/f .1˝i
˝g˝ 1˝n�i�1/

� .�1/.nCk�1/.mCl�1/
m�1X
iD0

.�1/.m�1/.n�1/C.m�1/kCi.n�1/g.1˝i
˝f ˝ 1˝m�i�1/
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which lies in C nCm�1;lCk.A;A/. This gives C �;�.A;A/ the structure of a graded
Lie algebra, where the grading is by total degree shifted by 1; see eg Fialowski
and Penkava [5, Section 2], Getzler [7, Section 1], Gerstenhaber [6] or Penkava and
Schwarz [13]. Note that the formula given in some of the references has signs arising
from the Koszul rule because it is given evaluated on elements rather than as a formula
of morphisms. For details on how this formula arises, see Section 2.2 and the Appendix.

Lemma 1.2 Let m 2C �;�.A;A/ of total degree 2. Then m is an A1–structure on A

if and only if Œm;m�D 0. Further, for such m,

D WD Œm;��W C �;�.A;A/ �! C �;�.A;A/

is a differential on C �;�.A;A/, ie D raises total degree by 1 and satisfies D ıD D 0.

Proof The first claim follows immediately from the bracket formula and the fact that
2 is invertible. The fact that D ıD D 0 is an immediate consequence of the graded
Jacobi identity, while the total degree of D can be computed directly.

Definition 1.3 Let A be an A1–algebra with A1–structure m. Then the Hochschild
cohomology of the A1–algebra A is defined as

HH�.A;A/DH�
�Y

i

C i;��i.A;A/; Œm;��

�
:

For this, see, for example, Penkava and Schwarz [13, Section 5]. If A is an associative
algebra (ie m D m2 ), a direct computation using the above definitions shows this
recovers the usual definition of the Hochschild cohomology of associative algebras, ie
for f 2 C n;k.A;A/,

Œm2; f �D .�1/k
�

m2.1˝f /

C

n�1X
iD0

.�1/iC1f .1˝i
˝m2˝ 1˝n�1�i/C .�1/nC1m2.f ˝ 1/

�
:

The grading in Definition 1.3 refers to the total degree. In the case of an associative
algebra the differential

Œm2;��W C
�;�.A;A/ �! C �C1;�.A;A/

preserves internal degree so we can split the total degree of the Hochschild cohomol-
ogy into the cohomological degree and the internal degree. We denote the bigraded
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Hochschild cohomology in this special case by HH�;�alg .A;A/. For a general A1–
algebra, we do not have a bigrading, but we can introduce a filtration; see Definition 5.2.

For A a dga, the definition can be interpreted in terms of bicomplexes. The dga A has
differential m1 and multiplication m2 . The bigraded module C �;�.A;A/ becomes a
bicomplex by taking

dv WD Œm1;��W C
�;�
�! C �;�C1

to be the vertical differential and

dh
WD Œm2;��W C

�;�
�! C �C1;�

to be the horizontal differential. The condition

Œm1Cm2;m1Cm2�D 0

translates into .dv/2 D 0, .dh/2 D 0 and dvdhC dhdv D 0, which are exactly the
conditions for C �;�.A;A/ to be a bicomplex [18, 1.2.4].

1.3 Minimal models and uniqueness

We now recall a definition and theorem about minimal models of A1–algebras. It
relates differential graded algebras to A1–structures on their homology.

Definition 1.4 An A1–algebra is called minimal if m1 D 0.

Over a field, one can replace any A1–algebra by a quasi-isomorphic minimal one which
gives a very convenient way to describe a quasi-isomorphism class of an A1–algebra.
We are particularly interested in the special case of differential graded algebras.

Theorem 1.5 (Kadeishvili) Let A be a differential graded algebra over a field k , and
let H�.A/ be its homology module. Then H�.A/ has an A1–structure such that

� m1 D 0 and the multiplication m2 is induced by the multiplication on A,

� there is a morphism of A1–algebras f W H�.A/ �!A such that f1 is a quasi-
isomorphism.

This A1–algebra H�.A/ is called the minimal model of A.

For more details, see Kadeishvili [8]. Note that the theorem states in particular that the
minimal model H�.A/ is quasi-isomorphic to A as an A1–algebra.

This is useful in combination with a uniqueness result in Kadeishvili [9].
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Definition 1.6 We say that an A1–structure m is trivial if mn D 0 for n� 3.

Theorem 1.7 (Kadeishvili) Let C be a graded k –algebra with multiplication �. If

HHn;2�n
alg .C;C /D 0 for n� 3;

then every A1–structure on C with m1 D 0 and m2 D � is quasi-isomorphic to the
trivial one.

We can reformulate this in terms of formality of dgas. We recall the following standard
definitions.
Definition 1.8 (1) A dga A is formal if it is quasi-isomorphic to its homology

H�.A/ regarded as a dga with trivial differential.
(2) A dga A is intrinsically formal if any other dga A0 such that H�.A/ŠH�.A0/

as associative algebras is quasi-isomorphic to A.

If a dga is intrinsically formal then it is formal, but the converse need not hold. For
example, in [3, Example 3.15], it is shown that there are two quasi-isomorphism types
of dgas with homology an exterior algebra over Fp on an even degree generator. The
trivial one is therefore formal but not intrinsically formal.

Using Theorem 1.7 for the case C DH�.A/ yields the following.

Corollary 1.9 Let A be a dga and H�.A/ its homology algebra. Suppose that

HHn;2�n
alg .H�.A/;H�.A//D 0 for n� 3:

Then A is intrinsically formal.

In Section 5, we will recover these results as special cases of our derived versions.

2 Derived A1–algebras

To work with Kadeishvili’s minimal models and to establish the uniqueness theorems,
one has to assume all dgas as well as their homology algebras to be degreewise
projective, hence the assumption of a ground field. However, there are important
examples arising from homotopy theory where projectivity cannot be guaranteed. In
2008, Sagave introduced the notion of derived A1–algebras, providing a framework
for not necessarily projective modules over an arbitrary commutative ground ring [16].

First of all, we recall some definitions and results about derived A1–algebras; we
refer to Sagave’s paper for the finer technical details.

The basic idea is to introduce degreewise projective resolutions for an A1–algebra that
are compatible with the A1–structure. This will introduce another internal grading.
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2.1 Definitions, conventions and known results

All definitions and results in this subsection have been developed by Sagave in [16]
and we refer to his paper for technical details.

Let k be a commutative ring and let A be an .N ,Z/–bigraded k –module, ie

AD
M

i2N;j2Z

A
j
i :

A morphism of bigraded k –modules f W A �! B of bidegree .s; t/ is a sequence of
maps of k –modules f W Aj

i �! B
jCt
i�s for all i 2 N and j 2 Z. Again, we follow

the Koszul sign convention: for g a morphism of bidegree .s; t/ and x an element of
bidegree .i; j /, we have

.f ˝g/.x˝y/D .�1/isCjtf .x/˝g.y/:

The homological (subscript) bidegree is called the horizontal bidegree and the cohomo-
logical (superscript) bidegree is called the vertical bidegree.

Throughout the rest of the paper we also assume that all bigraded modules have no
2–torsion.

Definition 2.1 [16, Definition 2.1] A derived A1–structure (or dA1–structure for
short) on an .N ,Z/–bigraded k –module A consists of k –linear maps

mij W A
˝j
�!A

of bidegree .i; 2� .i C j // for each j � 1, i � 0, satisfying the equation

(1)
X

uDiCp;vDjCq�1
jD1CrCt

.�1/rqCtCpj mij .1
˝r
˝mpq˝ 1˝t /D 0

for all u � 0 and v � 1. A dA1–algebra is a bigraded k –module together with a
dA1–structure.

A dA1–algebra A is called strictly unital if there is a unit map �W k �!A such that

� m01.�/D 0,

� m02.�˝ 1/D 1Dm02.1˝ �/,

� mij .1
˝r�1˝ �˝ 1˝j�r /D 0 for i C j � 3, 1� r � j .

From now on, all dA1–algebras are assumed to be strictly unital.
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Remark A dA1–algebra concentrated in horizontal degree 0 (and hence with mijD0

for all i ¤ 0) is the same as an A1–algebra.

A dA1–algebra with mij D0 except m01 and m11 is just a bicomplex (with a different
sign convention to that encountered earlier) with horizontal differential m11 and vertical
differential m01 as the definition in this case forces m11m11 D 0, m01m01 D 0 and
m01m11�m11m01 D 0.

Definition 2.2 A bidga is a monoid in the category of bicomplexes; equivalently, a
bidga is a dA1–algebra with mij D 0 for i C j � 3. (See [16, Definition 2.10 and
Remark 2.11].)

Definition 2.3 [16, Definition 2.5] Let A and B be dA1–algebras with dA1–
structures m and xm, respectively. A morphism of dA1–algebras f W A�!B consists
of a family of k –module maps

fst W A
˝t
�! B

of bidegree .s; 1� .sC t// satisfying

(2)
X

uDiCp;vDjCq�1
jD1CrCt

.�1/rqCtCpjfij .1
˝r
˝mpq˝ 1˝t /

D

X
uDiCp1C���Cpj

vDq1C���Cqj

.�1/� xmij .fp1q1
˝ � � �˝fpj qj

/

for all u� 0 and v � 1. Here,

� D uC

j�1X
wD1

 
jpwCw.qj�w �pw/C qj�w

� jX
sDj�wC1

psC qs

�!
:

For strictly unital dA1–algebras, morphisms are required to satisfy the unit conditions
f01�D x� and fij .1

˝r�1˝ �˝ 1˝j�r /D 0 for i C j � 2 and 1� r � j .

Recall that a quasi-isomorphism of A1–algebras is a morphism of A1–algebras
that induces a quasi-isomorphism of complexes with respect to m1 . In the case of
dA1–algebras, the role of the quasi-isomorphisms is played by the so-called E2 –
equivalences. These are the morphisms that induce an isomorphism of E2 –terms of
the spectral sequence computing the homology of the total complex of a bicomplex;
see McCleary [12, 2.12].
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Notation The equations defining a dA1–structure include m01m01D0. For a dA1–
algebra A let H�ver denote its homology with respect to the vertical differential m01 .
The map m01 is called the vertical differential because it raises the vertical degree.

Since the equations defining a dA1–structure also include

m21m01�m11m11Cm01m21 D 0;

it follows that the map m11 becomes a differential in horizontal direction on the
bigraded module H�ver.A/, so we can form H�hor.H

�
ver.A//DH�.H�ver.A/;m11/:

Definition 2.4 A morphism f W A �! B of dA1–algebras is called an E2 –equiva-
lence if

H�hor.H
�
ver.f01//

is an isomorphism of k –modules; cf [16, Definition 2.19].

We would like to extend some applications of A1–algebras to differential graded
algebras that are not necessarily projective over the ground ring k or whose homology
is not projective. The problem we encounter is that not all differential graded algebras
possess a minimal model as an A1–algebra. However, Sagave showed that dgas have
reasonable minimal models in the world of dA1–algebras. For this, one has to apply
a special projective resolution.

Definition 2.5 [16, Definition 3.1] Let A be a graded algebra. A termwise k –
projective resolution of A is a termwise k –projective bidga P with m01 D 0 together
with an E2 –equivalence P �!A.

Definition 2.6 [16, Definition 3.2] Let A be a dga. A k –projective E1 –resolution
of A is a bidga B together with an E2 –equivalence B �! A such that H st

ver.B/ is
projective for each bidegree. Further, the map k �! H 00

ver.B/ induced by the unit
k �! B is required to split as a k –module map.

Thus a k –projective E1 –resolution of a dga A induces a termwise k –projective
resolution of the graded homology algebra of A.

Sagave then proceeds to show that a k –projective E1 –resolution is unique up to
E2 –equivalence.

Theorem 2.7 [16, Theorem 3.4] Every dga A over k admits a k –projective E1 –
resolution. Two such resolutions can be related by a zigzag of E2 –equivalences
between k –projective E1 –resolutions.

Definition 2.8 A dA1–algebra is called minimal if m01 D 0.
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Theorem 2.9 [16, Theorem 1.1] Let A be a dga over k . Then there is a degreewise
k –projective dA1–algebra E together with an E2 –equivalence E �!A such that

� E is minimal,

� E is well-defined up to E2 –equivalence,

� together with the differential m11 and the multiplication m02 , E is a termwise
k –projective resolution of the graded algebra H�.A/.

To prove this, Sagave starts with a k –projective E1 –resolution E �! A. He then
shows that the vertical homology H�ver.E/ admits a dA1–structure satisfying the
claims of the theorem.

However, not every termwise projective resolution of H�.A/ admits such a structure
[16, Remark 4.14.]. For example, consider the dga over Z

AD ZŒe�
ı
.e4/; @.e/D p; jej D �1;

also examined by Dugger and Shipley in [3, Example 3.13]. The bidga

C D Z ha; bi
ı
.a2; b2; ab� ba/; jaj D .1; 0/; jbj D .0;�2/; m11.b/D p

is a termwise projective resolution of H�.A/ D ƒZ=p.Œe
2�/, but there is no dA1–

structure on C admitting an E2 –equivalence C �!A. (For example, Equation (2) for
.u; v/D .2; 2/ forces m22.b˝b/�˙1 mod p whereas Equation (1) for .u; v/D .2; 3/
forces m22.b˝ b/� 0 mod p .)

Definition 2.10 Let A and E be as in Theorem 2.9. Such an E is called a minimal
model of A.

Remark Note that in the context of Theorem 2.9, the underlying k –module of the
minimal model E together with the differentials m01 and m11 and the multiplication
m02 form a bidga.

2.2 Lie algebra structure on C
�;�
� .A; A/

We would like to establish a reasonable notion of Hochschild cohomology for dA1–
algebras. In order to give a simple description, it is our goal to describe the Hochschild
cohomology in terms of a graded Lie algebra structure.

Let A be a .N;Z/–bigraded module without 2–torsion over a commutative ring.
Define

C
n;i
k
.A;A/D

Y
u;v

Hom..A˝n/vu;A
vCi
u�k

/:
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We are going to define a Lie algebra structure on C
�;�
� .A;A/ generalizing Section 1.2.

First of all, we define a bracket operation that is not a Lie bracket. Then we are going
to introduce a shift operation on elements of C

�;�
� .A;A/ and then define the actual

Lie bracket using this shift and the previously defined bracket operation.

For f 2 C
n;i
k
.A;A/ and g 2 C

m;j

l
.A;A/ we now define

ŒŒf;g��D

n�1X
vD0

f .1˝v˝g˝ 1˝n�v�1/� .�1/ijCkl
m�1X
vD0

g.1˝v˝f ˝ 1˝m�v�1/

2 C
nCm�1;iCj

kCl
.A;A/:

This is not the actual Lie bracket but the first step in our construction. For degree and
sign reasons we have to introduce a shift map.

Let S.A/ be the bigraded module with S.A/vu D AvC1
u , and so the suspension map

S W A!S.A/ given by the identity map in each bidegree has internal bidegree .0;�1/.
Given f 2 C

n;i
k
.A;A/, then

�.f /D .�1/nCiCk�1S ıf ı .S�1/˝n
2 C

n;iCn�1
k

.S.A/;S.A//:

Conversely, for F 2 C
m;j

l
.S.A/;S.A//, we define

��1.F /D .�1/jClC.m
2 /S�1

ıF ıS˝m
2 C

m;jC1�m

l
.A;A/;

so ��1.�.f //D f .

Particularly, for mij 2 C
j ;2�.iCj/
i .A;A/, we have �.mij / 2 C

j ;1�i
i .S.A/;S.A//:

Note that the notation �.f / does not mean applying a shift functor to f .

We now define

Œf;g� WD ��1ŒŒ�.f /; �.g/��

D

n�1X
vD0

.�1/.n�1/.m�1/Cv.m�1/Cj.n�1/f .1˝v˝g˝ 1˝n�v�1/

� .�1/hf;gi
m�1X
vD0

.�1/.m�1/.n�1/Cv.n�1/Ci.m�1/g.1˝v˝f ˝ 1˝m�v�1/

2 C
nCm�1;iCj

kCl
.A;A/

for f 2C
n;i
k
.A;A/ and g 2C

m;j

l
.A;A/. Here, hf;gi WD .nC i�1/.mCj �1/Ckl .

(See the Appendix for this computation.) It is easy to see that in the case of bigraded
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modules concentrated in horizontal degree 0 this specializes to the Lie algebra structure
given in Section 1.2.

As earlier, we use formal infinite sums of morphisms. These are now bigraded and any
such sum is actually finite in any given bidegree.

Remark It is also possible to work with a different definition of the shift � on
morphisms. Instead of our convention

�.f /D .�1/kCnCi�1S ıf ı .S�1/˝n;

it is also possible to work with

x�.f /D .�1/kCnCi�1S ıf ı .S˝n/�1

as in [10, 3.6] which differs from the above � by the sign .�1/p , where p D
�
n
2

�
.

Working with x� would recover Keller’s sign convention in the definition of A1–
algebras and their morphisms, whereas our choice of � recovers the signs of Lefèvre-
Hasegawa and Sagave.

It is convenient to describe the above bracket in terms of a composition product as
in [6].

Definition 2.11 For f 2 C
n;i
k
.A;A/ and g 2 C

m;j

l
.A;A/ we define the composition

product ı by

f ıg D

n�1X
vD0

��1
�
.�.f /.1˝v˝ �.g/˝ 1˝n�v�1/

�

D

n�1X
vD0

.�1/.m�1/.n�1/Cv.m�1/Cj.n�1/f .1˝v˝g˝ 1˝n�v�1/

2 C
nCm�1;iCj

kCl
.A;A/:

Hence, we have that
Œf;g�D f ıg� .�1/hf;gig ıf:

We will show that with this bracket C
�;�
� .A;A/ can be regarded as a bigraded Lie

algebra in the sense of the following definition.

Definition 2.12 A bigraded k –module X D
L

X
j
i is a bigraded Lie algebra if there

is a bracket operation Œ�;��W X ˝X !X satisfying
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� Œg; f �D�.�1/abCkl Œf;g�,

� .�1/acCkmŒŒf;g�; h�C .�1/abCkl ŒŒg; h�; f �C .�1/bcClmŒŒh; f �;g�D 0,

for f 2X a
k

, g 2X b
l

, h 2X c
m .

Proposition 2.13 The above bracket gives C
�;�
� .A;A/ the structure of a bigraded Lie

algebra for the bigrading where f 2 C
n;i
k

is given bidegree .k; nC i � 1/; ie for all
f;g; h 2 C

�;�
� .A;A/,

� Œg; f �D�.�1/hf;giŒf;g�,

� .�1/hf;hiŒŒf;g�; h�C .�1/hg;f iŒŒg; h�; f �C .�1/hh;giŒŒh; f �;g�D 0.

Proof The first point is immediate. For the graded Jacobi identity we will show that
the composition product ı makes C

�;�
� .A;A/ a bigraded pre-Lie ring in the sense that

for f 2 C
n;i
k
.A;A/, g 2 C

m;j

l
.A;A/ and h 2 C

u;v
w .A;A/, we have

(3) .h ıf / ıg� .�1/hf;gi.h ıg/ ıf D h ı .f ıg/� .�1/hf;gih ı .g ıf /:

We can then apply a direct computation analogous to the proof of Theorem 1 of [6]
which proves the claim. (For this, we note that hf ıg; hi D hf; hiC hg; hi.)

To prove the Equation (3), we note that

f ıg D ��1.�.f /ˇ �.g//

F ˇG WD

n�1X
rD1

F.1˝r
˝G˝ 1˝n�r�1/:with

This is going to simplify the signs in (3) considerably since this equation is equivalent to

(4) .HˇF /ˇG�.�1/hf;gi.HˇG/ˇF DHˇ.FˇG/�.�1/hf;giHˇ.GˇF /

for F D �.f /, G D �.g/ and H D �.h/. We have

.H ˇF /ˇG D

� u�1X
rD0

H.1˝r
˝F ˝ 1˝u�r�1/

�
ˇG
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D .�1/hf;gi
u�1X
rD0

X
aCbDr�1

H.1˝a
˝G˝ 1˝b

˝F ˝ 1˝u�r�1/

C

u�1X
rD0

n�1X
sD0

H
�
1˝r
˝F.1˝s

˝G˝ 1˝n�s�1/˝ 1˝u�r�1
�

C

u�1X
rD0

X
aCbDu�r�2

H.1˝r
˝F ˝ 1˝a

˝G˝ 1˝b/:

Note that the sign .�1/hf;gi in the first summand arises from the Koszul sign rule for
interchanging F and G . Using this, we can read off the Equation (4), from which (3)
follows.

Now we would like to describe derived A1–structures in terms of this Lie algebra
structure, but first we have to introduce another operation which alters signs.

Definition 2.14 For f 2 C
n;i
k
.A;A/ define f # D .�1/kf 2 C

n;i
k
.A;A/.

This operation satisfies

� .f #/# D f ,

� .f ıg/# D f # ıg# ,

� Œf;g�# D Œf #;g#�.

Proposition 2.15 Let A be a bigraded k –module without 2–torsion with given map
�W k!A. Let

mD
X

i�0; j�1

mij

with mij 2 C
j ;2�.iCj/
i .A;A/ satisfying the unit conditions of Definition 2.1.

Then the following are equivalent:

� m is a derived A1–structure on A.

� m ım# D 0.

� Œm;m#�D 0.

Proof The equivalence of the first two points follows immediately from the definitions.
For the equivalence of the last two points let us consider the part Œm;m#�u of Œm;m#�
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that lies in horizontal degree u. We have

Œm;m#�u D
X

uDiCp

�
mij ım#

pq � .�1/ipC.i�1/.p�1/m#
ij ımpq

�
D

X
uDiCp

�
.�1/pmij ımpq � .�1/uC1Cimij ımpq

�
:

We are going to distinguish between the cases u even and u odd. For even uD i Cp ,
the sum splits into the cases where either both i and p are even or both i and p are
odd. In either case, we can read off that

Œm;m#�u D 2.m ım#/u:

The case of u odd follows similarly.

3 Hochschild cohomology and uniqueness of derived A1–
algebras

3.1 Hochschild cohomology of dA1–algebras

We would like to define a notion of Hochschild cohomology for dA1–algebras that
extends the classical, nonderived case. However, this is not as straightforward as before.
In the classical case of an A1–algebra A with A1–structure m, we could define a
differential on C �;�.A;A/ via D D Œm;��. This satisfies D ıD D Œm; Œm;��� D 0

since Œm;m�D 0. But in the derived case the signs are slightly more complicated which
means we can only guarantee Œm;m#�D 0. We can still define Hochschild cohomology
for a certain class of dA1–algebra which includes the cases we are interested in.

Definition 3.1 Let m D
P

i�0;j�1 mij be a dA1–structure. Then we denote the
horizontal even degree part by meven and the horizontal odd degree part by modd , ie,

meven D
X
i even

mij and modd D
X
i odd

mij :

Remark Since m is a dA1–structure, by Proposition 2.15 we have .mevenCmodd/ı

.meven�modd/D 0; which splits as

meven ımeven Dmodd ımodd and meven ımodd Dmodd ımeven:

Definition 3.2 We call a derived A1–structure m orthogonal if

meven ımeven D 0 or, equivalently, modd ımodd D 0:

Example Bidgas are orthogonal since they have modd Dm11 and m11 ım11 D 0.
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Lemma 3.3 Let A be a bigraded k –module without 2–torsion and let mD
P

i;j mij

be an orthogonal derived A1–structure on A. Define

DW C
�;�
� .A;A/ �! C

�;�
� .A;A/

D.f /D Œmeven; f
#�C Œmodd; f �D .�1/k Œmeven; f �C Œmodd; f � for f 2 C

n;i
k
.A;A/:

via

Then D satisfies D ıDD 0. Also, D raises the total degree by 1, so D is a differential
on C

�;�
� .A;A/.

Proof The map D raises degree by 1 since m has total degree 2. Let us look at
D.D.f //. Assume that f has horizontal internal degree k . Then for even p the
horizontal degree of Œmpq; f � has the same parity as k whereas for odd p the horizontal
degree of Œmpq; f � has the parity of kC 1. This means that

Œmeven; f �
#
D .�1/k Œmeven; f � and Œmodd; f �

#
D .�1/kC1Œmodd; f �:

Thus, we obtain

D..�1/k Œmeven; f �/D .�1/k
�
.�1/k Œmeven; Œmeven; f ��C Œmodd; Œmeven; f ��

�
D.Œmodd; f �/D .�1/kC1Œmeven; Œmodd; f ��C Œmodd; Œmodd; f ��and

which together give us

(5) D.D.f //D Œmeven; Œmeven; f ��C .�1/k Œmodd; Œmeven; f ��

C .�1/kC1Œmeven; Œmodd; f ��C Œmodd; Œmodd; f ��:

Since m is assumed to be orthogonal, we can directly compute that

Œmeven; Œmeven; f ��D 0D Œmodd; Œmodd; f ��:

From the graded Jacobi identity established in Proposition 2.13 we conclude that

Œmodd; Œmeven; f ��D Œmeven; Œmodd; f ��:

Putting this together, we can read off the desired equation D ıD D 0.

Definition 3.4 Let A be an orthogonal dA1–algebra with orthogonal dA1–structure
m. Then the Hochschild cohomology of A as a dA1–algebra is defined as

HH�.A;A/ WDH�
�Y

i;j

C
i;��i�j

j .A;A/;D

�
:

The grading in the above definition of Hochschild cohomology denotes the total degree.
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Remark If A has dA1–structure mDm11Cm02 (ie A is a bidga with trivial vertical
differential), then this definition specializes to Sagave’s definition [16, Section 5] of
Hochschild cohomology of bidgas with trivial vertical differential.

In this very special case of a bidga with trivial vertical differential, one grading is
preserved by both m11 and m02 so that we have bigraded Hochschild cohomology
groups:

HHt .A;A/D
Y
s�0

HHs;t�s.A;A/;

where HHs;r .A;A/DH s.
Q

n C
n;r
��n.A;A/;D/. We denote the Hochschild cohomol-

ogy in this special case by HH�;�bidga.A;A/.

3.2 Uniqueness of derived A1–algebras

The overall goal of this section is to establish a uniqueness result analogous to
Kadeishvili’s (Theorem 1.7) for the possibility of extending an existing dA1–structure
on a minimal model. A minimal model of a differential graded algebra has an underlying
bidga with zero vertical differential. Let � D m02 denote the multiplication of this
bidga and @Dm11 the horizontal differential.

The first step is to look into how to perturb an existing dA1–structure by certain
elements b of total degree 1.

Definition 3.5 Let A be a bidga with multiplication m02 D �, horizontal differential
m11 D @ and vertical differential m01 D 0. Then

aD
X

i�0; j�1

aij ; aij 2 C
j ;2�.iCj/
i .A;A/; i C j � 3;

is a twisting cochain if @C�C a is a dA1–structure.

Remark Note that by Proposition 2.15 a is a twisting cochain if and only if we have

Œ@C�C a; @#
C�#

C a#�D 0:

Letting D be the differential corresponding to the orthogonal dA1–structure mD

@C�, this is equivalent to the derived Maurer–Cartan formula

(6) 2D.a/D�Œa; a#�C 4Œ@; aodd�;

as can be verified quickly by splitting a into even and odd horizontal degree parts and

Algebraic & Geometric Topology, Volume 11 (2011)



Uniqueness of A1–structures and Hochschild cohomology 125

using that Œ@C�; @C��D 0. Hence, an element

aD
X
i;j

aij ; aij 2 C
j ;2�.iCj/
i .A;A/; i C j � 3;

is a twisting cochain if and only if a satisfies the above derived Maurer–Cartan formula.

Lemma 3.6 Let A be a bidga with multiplication m02 D �, horizontal differential
m11 D @ and vertical differential m01 D 0. Let

aD
X
i;j

aij ; aij 2 C
j ;2�.iCj/
i .A;A/; i C j � 3;

be a twisting cochain. Let either

(A) b 2 C
n�1;2�.nCk/

k
.A;A/, for kC n� 3, with Œ@; b�D 0, or

(B) b 2 C
n;2�.nCk/

k�1
.A;A/, for kC n� 3, with Œ�; b�D 0.

Then there is a twisting cochain xa satisfying

� the dA1–structures @C�C a and xmD @C�Cxa are E2 –equivalent,

� xauv D auv for u < k or v < n� 1 or .u; v/ D .k; n� 1/ in case (A) and for
u< k � 1 or v < n or .u; v/D .k � 1; n/ in case (B),

� xakn D akn� Œ�; b� in case (A),

� xakn D akn� Œ@; b� in case (B).

Proof This is a lengthy but direct computation using the definition of a morphism
of dA1–algebras. The twisting cochain xa is going to be determined by @C�C a

being E2 –equivalent to @C�Cxa via the equivalence idC b . We will only do case
(A) explicitly since the other case can be read off the proof of this one.

Let f WD idC b . We consider what it means for there to be a dA1–structure xmD
@C�Cxa on A such that f W .A;m/ �! .A; xm/ is a morphism of dA1–structures,
ie the Equation (2) in Definition 2.3 is satisfied. Using f01 D id, fk;n�1 D b and
fij D 0 in all other degrees as well as mD �Ca and xmD �Cxa, we write down (2).
The left-hand side of (2) is only nonzero for .i; j / D .0; 1/ and .i; j / D .k; n� 1/.
Thus, we obtain

.�1/umuvC

n�2X
rD0

.�1/r.v�n/C.n�r/C.u�k/.n�1/b.1˝r
˝mu�k;vC2�n˝ 1˝n�2�r /:
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The sum can only be nonzero if u� k and v � n� 1 and .u; v/¤ .k; n� 1/. In the
special case .u; v/D .k; n/ we get

.�1/kaknC

n�2X
rD0

.�1/n�r b.1˝r
˝�˝ 1˝n�2�r /:

For .u; v/D .kC 1; n� 1/, the result is

.�1/kC1akC1;n�1�

n�2X
rD0

b.1˝r
˝ @˝ 1˝n�2�r /:

On the right-hand side of (2) we have

(7) .�1/u xmuvC

X
uDiCp1C���Cpj

vDq1C���Cqj

.�1/� xmij .fp1q1
˝ � � �˝fpj qj

/

where at least one of the fpr qr
in the sum has to be fk;n�1D b and � is as in Definition

2.3. The following four special cases are to be considered. First, we note that, since we
have xm01 D 0, the sum is zero for .u; v/D .k; n� 1/. For .u; v/D .k; n/, we obtain

.�1/kxaknC .�1/n�.1˝ b/C�.b˝ 1/;

for .u; v/D .kC 1; n� 1/ we have

.�1/kC1
xakC1;n�1C .�1/kC1@.b/

and for .u; v/D .2k; 2n� 2/ the result is

xa2k;2n�2C .�1/nk�.b˝ b/C

n�1X
rD0

.�1/�xak;n.1
r
˝ b˝ 1n�1�r /:

In all other cases each summand appearing in the sum in (7) has i C j � 3. Further,
the sum in (7) can only be nonzero for u� i C k and v � .n� 1/C .j � 1/.

Now recall that

Œ@; b�D @.b/� .�1/k
n�2X
rD0

b.1˝r
˝ @˝ 1˝n�2�r /;

Œ�; b�D .�1/nCk

�
�.1˝b/C.�1/n�.b˝1/C

n�2X
rD0

.�1/rC1b.1˝r
˝�˝1˝n�2�r /

�
:

Further, note that we have assumed that Œ@; b�D 0.
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Putting all this together, we can read off that for .u; v/ with either u< k or v < n� 1

and for .u; v/D .k; n� 1/, we have

xauv D auv:

For .u; v/=.k; n/, we get

xakn D akn� .�1/k
�
�.b˝ 1/C .�1/n�.1˝ b/

C.�1/n�1
n�2X
rD0

.�1/r b.1˝r
˝�˝ 1˝n�2�r /

�
D akn� Œ�; b�:

For .u; v/D .kC 1; n� 1/ we have

xakC1;n�1 D akC1;n�1C .�1/k
n�2X
rD0

b.1˝r
˝ @˝ 1˝n�2�r /� @.b/

D akC1;n�1� Œ@; b�D akC1;n�1:

For .u; v/D .2k; 2n� 2/ we have

xa2k;2n�2 D a2k;2n�2

C

n�2X
rD0

.�1/mCn�rCk.n�1/b.1˝r
˝ akn˝ 1˝n�2�r /� .�1/nk�.b˝ b/

C

n�1X
rD0

.�1/�xakn.1
˝r
˝ b˝ 1˝n�1�r /:

Finally for .u; v/¤ .k; n/; .kC 1; n� 1/ or .2k; 2n� 2/ with u � k and v � n� 1,
we have

xauv D auvC.�1/u
n�2X
rD0

.�1/r.v�n/C.n�r/C.u�k/.n�1/b.1˝r
˝mu�k;vC2�n˝1˝n�2�r /

�.�1/u
X

uDiCp1C���Cpj

vDq1C���Cqj

at least one qj ¤ 1

.�1/�xaij .fp1q1
˝� � �˝fpj qj

/:

Note that the second sum in the last equation can only be nonzero if i C j � 3,
u� kC i and v � .n� 1/C .j � 1/. Also, for fixed .u; v/, the right-hand side of the
last equation only uses xapq with p < u and q < v . The same thing happens in the
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case .u; v/D .2k; 2n� 2/. This proves that the xa in the statement of our lemma can
be constructed inductively.

One can then check degreewise that xm D @C �C xa defines a dA1–structure by
showing that Œ xm; xm#�D 0. The morphism f is an E2 –equivalence since f01 D id.

Remark Note that in the situation of the above lemma, in both cases we have in
particular that xauv D auv whenever uC v < kC n.

We can now formulate a derived version of Kadeishvili’s uniqueness theorem.

Theorem 3.7 Let A be a bidga with multiplication m02 D �, horizontal differential
m11 D @ and vertical differential m01 D 0. If HHr;2�r

bidga .A;A/ D 0 for r � 3, then
every dA1–structure on A with m02 D �, m11 D @ and m01 D 0 is E2 –equivalent
to the trivial one, ie the one with m02 D �, m11 D @ and mij D 0 for .i; j /¤ .0; 2/
or .1; 1/.

Proof Let mD @C�C a be a dA1–structure on A with

aD
X

kCn�3

akn; akn 2 C
n;2�.kCn/

k
.A;A/:

We want to show that m is E2 –equivalent to the dA1–structure @C�.

We now fix t � 3 and show that m is equivalent to a dA1–structure with aknD 0 for
kCnD t . We show this by induction on k . Assuming that aij D 0 for iC j D t and
i < k , we will show that m is equivalent to a dA1–structure with xm D @C�Cxa
with xakn D 0 and xaij D aij D 0 for i C j D t , i < k and i C j < t .

Because m is a dA1–structure, by Lemma 3.3 we have Œ@C�C a; @#C�#C a#�=0.
Since A is also a bidga, we have Œ@C�; @#C�#�D 0. Hence, a is a twisting cochain
satisfying the Maurer–Cartan formula

2D.a/D�Œa; a#�C 4Œ@; aodd�

as explained in (6). Further, we have

D.�/D Œ�; .�/#�C Œ@;��

Œ�; .�/#�W C
�;�
� .A;A/ �! C

�C1;�
� .A;A/with

Œ@;��W C
�;�
� .A;A/ �! C

�;�
�C1

.A;A/;and

so Œ�; a#
kn
� lives in the tridegree .nC1; k; 2�.kCn//–part of D.a/ and Œ@; akn� lives

in tridegree .n; k C 1; 2� .k C n//. However, on the other side of (6) the tridegree
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.nC 1; k; 2� .k C n//–part as well as the .n; k C 1; 2� .k C n//–part of Œa; a#� is
zero since Œa; a#� can only be nonzero in degrees .u; v; w/ with uC v � 5 whereas
nC 1C k D 4. Here we are adopting the convention for tridegrees that an element in
C

n;i
k
.A;A/ has tridegree .n; k; i/.

Thus according to the Maurer–Cartan formula, D.akn/ lives in 2Œ@; aodd�. This infor-
mation splits into the equations

Œ�; a#
kn�D �12Œ@; ak�1;nC1�; �1 2 f0; 1g

Œ@; akn�D �22Œ@; akn�; �2 2 f0; 1gand

where �2 D 0 for k even by definition since the right hand side is supposed to be
a summand of 2Œ@; aodd�. Thus, we can also conclude that Œ�; a#

kn
� D 0 since our

induction assumption gives ak�1;nC1 D 0.

For k odd, we are left with Œ@; akn� D �22Œ@; akn�; �2 2 f0; 1g, from which we can
immediately read off that Œ@; akn�D 0.

Hence, in any case D.akn/D 0 and akn is a cocycle in C
n;2�.nCk/

k
.A;A/, so

Œakn� 2 HHkCn;2�k�n
bidga .A;A/:

However, HHkCn;2�k�n
bidga .A;A/ is zero by assumption, so there must be a b in total

degree 1 with D.b/D akn .

So, analogously to the proof of Theorem 5.3, there is a b1 2 C
n�1;2�.kCn/

k
.A;A/

with Œ@; b1�D 0 and Œ�; b1�D akn and b2 2 C
n;2�.kCn/

k�1
.A;A/ with Œ�; b2�D 0 and

Œ@; b2�D akn .

Applying Lemma 3.6 to b1 , there is a dA1–structure xmD @C�Cxaij with xaij 2

C
j ;2�.iCj/
i .A;A/, iCj �3 such that xm is E2 –equivalent to m, xaknDakn�Œ�; b1�D

0 and xaij D aij for i C j < t and i C j D t , i < k , which proves our claim.

Example In [4, Proposition 4.2], Dugger and Shipley consider the dga

AD Z he;x;yi
ı
.e2
D 0; exCxe D x2; xy D yx D 1/;

@.e/D p; @.x/D 0; @.y/D 0; jej D jxj D 1; jyj D �1:

This is a dga over Z which has homology Hn.A/D Z=p in every degree n. (Note
that Dugger and Shipley use homological grading.) They then prove in Theorem 4.5
that A is not formal.

In [15] Sagave gives a projective E1 –resolution B of A. He then constructs the first
degrees of a minimal model structure on the induced termwise projective resolution
P DH�ver.B/ and shows that this gives a nontrivial class in HH3;�1

bidga.P;P /.

Algebraic & Geometric Topology, Volume 11 (2011)



130 Constanze Roitzheim and Sarah Whitehouse

Theorem 3.7 will be used in the next section to give a sufficient criterion for the existence
of a unique dga realising a fixed homology algebra over a ground ring rather than a
ground field. To prove this derived analogue of Corollary 1.9, we first have to investigate
the behaviour of Hochschild cohomology of degreewise projective resolutions under
E2 –equivalence.

4 Invariance under E2–equivalence and intrinsic formality

In order to establish our uniqueness criterion we need an invariance result for Hochschild
cohomology under E2 –equivalence. To prove this we will need to define Hochschild
cohomology with coefficients. We will carry this out here only for the special case we
need. In future work we hope to study the general case, but this would take us too far
afield here.

Thus we will concentrate on the case of relevance to us, namely bidgas with m01 D 0.
Invariance under E2 –equivalence in this situation is also discussed in [16, Section 5].
We begin by spelling out concretely what a bidga with m01 D 0 is.

A bidga with m01 D 0 is a bigraded module A
j
i equipped with maps

m11W A
j
i !A

j
i�1

m02W .A˝A/
j
i !A

j
iand

with relations which specify that m02 is associative, m11 is a differential and m11 is
a derivation with respect to m02 . These relations come from the cases .uD 0; v D 3/,
.u D 2; v D 1/ and .u D 1; v D 2/ respectively of the defining relations; all other
relations are trivial. Notice that this is just a dga with an extra grading.

It is straightforward to see what a module over such a thing should be; it is just a dg
module with an extra grading.

Definition 4.1 Let A be a bidga with m01 D 0. A left A–module M is a bigraded
module fM j

i g over the ground ring equipped with a horizontal differential

xm11W M
j
i !M

j
i�1

and an associative action xml
02
W .A˝M /

j
i !M

j
i such that the following diagram

commutes:

A˝M
xml

02
//

m11˝1C1˝xm11

��

M

xm11

��

A˝M
xml

02
// M
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A right A–module is defined in the obvious way, with a right action map

xmr
02W M ˝A!M:

And an A–bimodule is simultaneously a left and right A–module with the obvious
compatibility condition on the left and right actions.

Notice that a morphism of bidgas A! A0 between bidgas with m01 D 0 makes A0

into an A–bimodule.

Let us also spell out what an E2 –equivalence f W A!A0 between bidgas with m01D0

is. This is just a morphism f W A ! A0 inducing an isomorphism on horizontal
homology. (So we can think of such an f as a quasi-isomorphism if we think of A

and A0 as complexes with respect to horizontal differentials.)

Now let A be a bidga with m01 D 0 and let M be an A–bimodule. Let

C
n;i
k
.A;M /D

Y
u;v

Hom
�
.A˝n/vu;M

vCi
u�k

�
and for f 2 C

n;i
k
.A;M / define

Df D .�1/kCnCi�1
xmr

02.f ˝ 1/C .�1/kCi
xml

02.1˝f /

C .�1/kCnCif ım02C xm11 ıf C .�1/kC1f ım11:

Then D is a differential, allowing us to make the following definition.

Definition 4.2 For A a bidga with m01 D 0 and M an A–bimodule the Hochschild
cohomology of A with coefficients in M is defined by

HHs;r
bidga.A;M /DH s

�Y
n

C
n;r
��n.A;M /;D

�
:

This is a covariant functor of M and a contravariant functor of A. In the case where
M DA, regarded as a bimodule over itself, this agrees with the earlier definition of
HH�;�bidga.A;A/. Indeed the formula above for the differential D just becomes

Df D .�1/k Œm02; f �C Œm11; f �:

Proposition 4.3 Let .A;m/ and .A0; xm/ be bidgas with m01 D xm01 D 0 and which
are degreewise projective over k . Let f W A! A0 be an E2 –equivalence. Then f
induces an isomorphism of Hochschild cohomology groups

HH�;�bidga.A;A/Š HH�;�bidga.A
0;A0/:
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Proof For each i , we can interpret the Hochschild cohomology HH
�;i
bidga.A;M / as

the cohomology of a (right half-plane) bicomplex. This works very similarly to the
case of Hochschild cohomology of a dga discussed earlier. One differential, say D1 , is
given by the m11 part of the formula for D and the other, say D2 , by the m02 part.

Now consider A and M as complexes with respect to their differentials m11 and
xm11 (with an extra grading). The differential D1 on Homi

�.A
˝p;M / is the induced

differential via the tensor product and Hom functors of complexes. For bounded below
and degreewise projective complexes the ordinary Hom and tensor product functors
agree with the derived versions and are therefore quasi-isomorphism invariant.

Thus the morphism f W A!A0 induces column-wise quasi-isomorphisms of bicom-
plexes C

�;i
� .A;A/! C

�;i
� .A;A0/ and C

�;i
� .A0;A0/! C

�;i
� .A;A0/. It follows that

the induced maps of total complexes are quasi-isomorphisms and

HH�;�bidga.A;A/Š HH�;�bidga.A
0;A0/:

Now we are in a position to give our criterion for intrinsic formality.

Theorem 4.4 Let A be a dga and E its minimal model with dA1–structure m.
By zE , we denote the underlying bidga of E , ie zE DE as k –modules together with
dA1–structure zmDm11Cm02 . If

HHm;2�m
bidga . zE; zE/D 0 for m� 3;

then A is intrinsically formal.

Proof Applying Theorem 3.7 to zE , we obtain that every dA1 structure on zE is E2 –
equivalent to the trivial one. By definition of minimal model, A is E2 –equivalent to E .
Thus A is E2 –equivalent to . zE; triv/. Again by definition of minimal model, . zE; triv/
is E2 –equivalent to .H�.A/; triv/. Thus we have an E2 –equivalence between A and
.H�.A/; triv/ and since these are both dgas an E2 –equivalence is a quasi-isomorphism.
So A is formal.

Now let A0 be a dga with H�.A/ Š H�.A0/ as associative algebras, let E0 be a
minimal model of A0 and let zE0 be its underlying bidga. We have E2 –equivalences

zE0 ' .H�.A0/; triv/' .H�.A/; triv/' zE:

Thus zE0 and zE are E2 –equivalent bidgas. By definition of minimal model they are
degreewise projective and have m01 D 0. Applying Proposition 4.3 gives

HHm;2�m
bidga . zE0; zE0/Š HHm;2�m

bidga . zE; zE/:
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So the Hochschild cohomology of zE0 is zero in the relevant range and the argument of
the preceding paragraph shows that A0 is also formal.

Since A and A0 are both formal, the hypothesis H�.A/ Š H�.A0/ means they are
quasi-isomorphic.

5 Uniqueness of classical A1–structures

In this section k is still a commutative ground ring without 2–torsion unless stated
otherwise. We use Hochschild cohomology of differential graded algebras to give a
uniqueness criterion for extending the differential and multiplication of a fixed dga
to an A1–structure. In the case of a trivial differential this recovers Kadeishvili’s
classical Theorem 1.7. We then apply this to an example in homotopy theory.

Fix a differential graded algebra A with differential m1D @ and multiplication m2D�.
We would like to consider the set of all A1–structures on A (up to quasi-isomorphism)
that extend the differential graded algebra structure, ie A1–structures of the form
mD @C�Cm3Cm4C � � � . Let us write aDm3Cm4C � � � .

Recall that mD @C�C a is an A1–structure if and only if a satisfies the Maurer–
Cartan formula and that such a are called twisting cochains. In this classical case the
Maurer–Cartan formula reads

�D.a/D
1

2
Œa; a�

if 2 is invertible in k or, equivalently, �D.a/D aıa where ı denotes the composition
product; see eg [5, Section 2] and (6).

Lemma 5.1 Let A be a dga with differential @ and multiplication �, and let a be a
twisting cochain. Further, for n� 3, let either p 2 C n;1�n.A;A/ with

dh.p/D Œ�;p�D 0

or p 2 C n�1;2�n.A;A/ with

dv.p/D Œ@;p�D 0:

Then there is a twisting cochain xa such that

� the A1–structures @C�Cxa and @C�C a are quasi-isomorphic,

� xai D ai for i � n� 1,

� xan D an�D.p/.
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We omit the proof since it is very similar to that of Lemma 3.6. For the case where A

is a graded algebra rather than a dga, the analogous result is mentioned without proof
in [9, Section 4].

With the help of Lemma 5.1, we can now prove the sufficient condition for a unique
A1–structure on a dga A extending the existing differential and multiplication. This
is only a minor generalization of Kadeishvili’s classical result [9, Theorem 1] in the
zero differential case, but we have not been able to find a reference.

To formulate the uniqueness results of this section and Section 6 we have to look deeper
into the grading of the Hochschild cohomology of A1–algebras and the internal
grading of representing cocycles. An element of HHn.A;A/ can be nonuniquely
expressed as

Œx�D Œx0Cx1Cx2C � � � � with xi 2 C i;n�i.A;A/:

However, while the sum of the xi is a cocycle the individual summands are not
necessarily cocycles themselves. So generally we do not get a decomposition of
HHn.A;A/ as

Q
i HHi;n�i.A;A/. To keep track of the internal degrees we introduce

a decreasing filtration on HH�.A;A/.

Definition 5.2 For an A1–algebra A, let

Fk HHn.A;A/D

�
Œx� 2 HHn.A;A/

ˇ̌̌
x 2

Y
i�k

C i;n�i.A;A/

�
:

This means that Fk HHn.A;A/ consists of all those elements of HHn.A;A/ whose
representing cocycles can be written as a sum of xi 2 C i;n�i.A;A/ with i � k .

Note that in the case of a bidga the filtration F� given in Definition 5.2 agrees with the
usual filtration arising from the column-wise filtration on the bicomplex; see eg [12,
2.2 and 2.4].

Theorem 5.3 Let A be a dga with differential @ and multiplication �. If

F3 HH2.A;A/D 0;

then any A1–structure on A with m1 D @ and m2 D � is quasi-isomorphic to @C�.

Proof Let a be a twisting cochain. Assuming that there is a k � 3 such that ai D 0

for i < k , we are going to show that there is a twisting cochain xa that is equivalent
to a and satisfies xai D 0 for i � k , ie we are killing off the bottom summand. By
induction, it follows that a is equivalent to zero.
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So let a now be a twisting cochain such that there is a k � 3 with ai D 0 for i < k .
Considering the Maurer–Cartan equation

�D.a/D a ı a

in bidegrees .kC1; 2�k/ and .k; 3�k/, we see that D.ak/D 0 for degree reasons, so
ak is a cocycle and Œak � 2 Fk HH2.A;A/. Since Fk HH2.A;A/D 0, ak also has to
be a coboundary, ie there is a cochain p in total degree 1 with D.p/Dak . This p is the
sum of two cochains p1 and p2 with p1 2 C k;1�k.A;A/ and p2 2 C k�1;2�k.A;A/.
We have dv.p1/C dh.p2/D ak and dh.p1/D dv.p2/D 0 for degree reasons.

C k�1;3�k.A;A/ C k;3�k.A;A/ � � �

C k�1;2�k.A;A/

dv

OO

dh
// C k;2�k.A;A/

dv

OO

dh
// C kC1;2�k.A;A/

� � � C k;1�k.A;A/

dv

OO

dh
// C kC1;1�k.A;A/

Applying Lemma 5.1 for p1 and p2 , we obtain that there is a twisting cochain xa quasi-
isomorphic to a with xai D 0 for i < k and xak D ak �D.p/D 0, which completes
our proof.

Example Consider the dga over the p–local integers

ADZ.p/Œx�˝ƒZ.p/
.e/
ı
.xm;xm�1e/; @.x/Dpe; jejD�.2p�3/; jxjD�.2p�2/

where m� 2. We can compute its Hochschild cohomology as a dga by applying the
spectral sequence for the homology of the total complex of a bicomplex [12, 2.15]. Its
E1 –term is the Hochschild cohomology of A as a graded algebra.

To obtain this, we note that for an A–bimodule M

HH�;�alg .A;M /Š HH�;�alg .Z.p/Œx�
ı
.xm/˝ƒZ.p/

.e/;M /

Š HH�;�alg .Z.p/Œx�
ı
.xm/;M /˝HH�;�alg .ƒZ.p/

.e/;Z.p//:

(Use [2, XI.1] for the second isomorphism. The first follows from a change-of-rings
spectral sequence; see [12].) Computing each factor separately, we obtain

HH�;�alg .A;A/D Z.p/Œf; � �˝ƒZ.p/
.�/˝A

with jf j D .1;�jej/, j� j D .2;�mjxj/ and j� j D .1;�jxj/ for A viewed as a graded
algebra.
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Already at this E1 –stage we can read off that

HHn;2�n
alg .A;A/D 0 for n� 3;

so F3 HH2.A;A/D 0 for A as a dga. Hence �C @ is the only A1–structure on A

with m1 D @ and m2 D �.

Also note that the homology of A coincides with the stable homotopy groups of the
K.p/–local sphere in a certain range, ie

H�i.A/D �i.L1S0/ for 0� i � .m� 1/.2p� 2/� 1:

Combining Kadeishvili’s result on minimal models with Theorem 5.3, we recover the
following result which we already stated earlier as Corollary 1.9.

Corollary 5.4 Let A be a dga over a ground field and H�.A/ its homology algebra.
Suppose that

HHn;2�n
alg .H�.A/;H�.A//D 0 for n� 3:

Then A is intrinsically formal.

Proof We apply Theorem 5.3 to H�.A/ with the trivial differential to see that any
A1–structure on this is quasi-isomorphic to the trivial one. So in particular the
minimal model is quasi-isomorphic to the trivial structure. But the minimal model is
quasi-isomorphic to A, so A is formal.

Now given a dga A0 with H�.A0/ŠH�.A/, the same argument shows that A0 is also
formal and thus that A0 is quasi-isomorphic to A.

We note that the corollary follows from the special case of Theorem 5.3 where the dga
has trivial differential.

6 Massey products

Massey products provide some very useful additional structure when studying differen-
tial graded algebras and their homology. They are closely related to Toda brackets in
triangulated categories which have strong applications in homotopy theory. Here we
explain the relationship between Massey products and the m3 part of A1–structures;
see also [1, Lemma 5.14].

In this section, k denotes a field of characteristic not 2.
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Let A be a differential graded algebra and ˛1; ˛2; ˛3 elements in the homology H�.A/

such that ˛1˛2D 0 and ˛2˛3D 0. That means that for chosen representing cocycles ai

of ˛i there is an element ui such that d.ui/D .�1/1Cjai jaiaiC1 . With those elements,
one can now define the Massey product of ˛1; ˛2 and ˛3 as follows.

Definition 6.1 Let ˛1 , ˛2 and ˛3 be as above. Then the Massey product

h˛1; ˛2; ˛3i �H ja1jCja2jCja3j�1.A/

is defined as the set of homology classes of the elements

.�1/1Cja1ja1u2C .�1/1Cju1ju1a3

ranging over all possible choices of representing cocycles ai of the ˛i and ui such
that d.ui/D .�1/1Cjai jaiaiC1 .

Note that the Massey product h˛1; ˛2; ˛3i is a set rather than an element as the choices
one makes can be altered by appropriate cocycles. Hence, if one fixes any x in the
Massey product, for any other x0 in the Massey product there is a

y 2 ˛1H j˛3jCj˛2j�1.A/˚H j˛2jCj˛1j�1.A/˛3

such that x0 D xCy . The group

˛1H j˛3jCj˛2j�1.A/˚H j˛2jCj˛1j�1.A/˛3

is called the indeterminacy of h˛1; ˛2; ˛3i. So a Massey product consists of only one
element if and only if its indeterminacy is zero. For more details on Massey products,
see eg Ravenel [14, A.1.4].

Example Let k be a field of characteristic different from 2. Consider the following
noncommutative differential graded algebra

AD k hx;yi
ı
.x3;y2;xy D�yx/; @.x/D 0; @.y/D x2; jxj D 2; jyj D 3:

Its homology has a copy of k in degrees 0; 2; 5 and 7 and zero elsewhere. Let Œx� and
Œxy� denote the homology classes of x and xy respectively. Then

2Œxy�D hŒx�; Œx�; Œx�i 2H 5.A/;

the indeterminacy being zero for degree reasons.

Example The dga

ADZ.p/Œx�˝ƒZ.p/
.e/
ı
.xm;xm�1e/; @.x/Dpe; jejD�.2p�3/; jxjD�.2p�2/
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considered in the previous section has nontrivial Massey products. Take ak to be an
order p element in H�.2p�2/kC1.A/. Then

hai ;p; aj i D aiCj :

This is related to the Toda bracket relation h˛i ;p; j̨ i D ˛iCj in the homotopy groups
of the K.p/–local sphere ��L1S0 .

In the context of A1–algebras, Massey products can be reformulated using minimal
models which were introduced in the previous section. We quote the following well-
known result (see also [1, Lemma 5.14]).

Lemma 6.2 Let A be a dga and H�.A/ its minimal model with A1–structure m.
Let ˛1; ˛2; ˛3 2H�.A/. If the Massey product h˛1; ˛2; ˛3i is defined in H�.A/, then

.�1/j˛1jCj˛2jC1m3.˛1˝˛2˝˛3/ 2 h˛1; ˛2; ˛3i :

Hence, if A and B are differential graded algebras with isomorphic homology algebras
H�.A/ and H�.B/, then they have the same Massey products if the A1–structures
of the minimal models have identical m3 . (The converse is not necessarily true – see
the discussion at the end of this section.)

Theorem 6.3 Let A be a dga whose minimal model H�.A/ satisfies mi D 0 for
i ¤ 2; 3 and let xm be an A1–structure on H�.A/ with xm2 Dm2 and xm3 Dm3 . If
F4 HH2.H�.A/;H�.A//D 0, then xm and m are quasi-isomorphic.

Proof The proof is extremely similar to the proof of Theorem 5.3. The differential in
the Hochschild complex for H�.A/ is D DD2CD3 with

D2 D Œm2;��W C
n;k.H�.A/;H�.A// �! C nC1;k.H�.A/;H�.A//

D3 D Œm3;��W C
n;k.H�.A/;H�.A// �! C nC2;k�1.H�.A/;H�.A//:and

Assume there is an A1–structure xm on H�.A/ with

xmDm2Cm3Ca4C a5C � � � :

aDa4C a5C � � � :Let

Because mDm2Cm3 is an A1–structure on the minimal model by assumption, we
know that a is a twisting cochain, ie a satisfies the Maurer–Cartan equation. Again,
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for degree reasons D.a4/D 0 and so there is

p2 2 C 3;�2.H�.A/;H�.A// and p3 2 C 2;�1.H�.A/;H�.A//

with D2.p2/CD3.p3/D a4 and D3.p2/DD2.p3/D 0:

The analogue of Lemma 5.1 also holds in this case: for any

p 2 C n;1�n.H�.A/;H�.A// with D3.p/D 0

p 2 C nC1;�n.H�.A/;H�.A// with D2.p/D 0;or

there is a twisting cochain xaD xa4Cxa5C � � � such that

� xa is equivalent to a,

� xak D ak for k � n,

� xanC1 D anC1�D.p/.

The rest of the proof follows the same steps as the proof of Theorem 5.3.

Of course one would like to apply this theorem to a minimal model

.H�.A/;mDm2Cm3/

of a dga A to obtain a uniqueness result analogous to Corollary 1.9 and conclude that
the vanishing of the right Hochschild cohomology groups implies that A is the only
dga up to quasi-isomorphism with the given homology and Massey products.

This does not quite work- to give the same Massey products on minimal models of
dgas with the same homology algebras, m3 only needs to agree on triples .a; b; c/
with ab D 0D bc: For example, in [1, Example 5.15 and Proposition 5.16] Benson,
Krause and Schwede constructed an example of a dga with trivial Massey products but
nontrivial m3 .

It would also be interesting to study the implication of Massey products regarding
uniqueness criteria in the derived case.

Appendix A Signs in the Lie bracket

In this appendix we verify the signs appearing in the Lie bracket of Section 2.2. The
special case where k D l D 0 recovers the signs in Section 1.2.
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Lemma A.1 In the context of Section 2.2,

Œf;g� WD ��1ŒŒ�.f /; �.g/��

D

n�1X
vD0

.�1/.n�1/.m�1/Cv.m�1/Cj.n�1/f .1˝v˝g˝ 1˝n�v�1/

� .�1/hf;gi
m�1X
vD0

.�1/.m�1/.n�1/Cv.n�1/Ci.m�1/g.1˝v˝f ˝ 1˝m�v�1/

2 C
nCm�1;iCj

kCl
.A;A/

for f 2C
n;i
k
.A;A/ and g 2C

m;j

l
.A;A/. Here, hf;gi WD .nC i�1/.mCj �1/Ckl .

Proof Throughout this proof, by ı, we mean the actual composition of morphisms
rather than the previously used composition product.

The signs arise from the Koszul sign rule for interchanging morphisms. For morphisms
f;g; h and u, we have

.f ˝g/ ı .h˝u/D .�1/isCjt .f ı h/˝ .g ıu/

with g having internal bidegree .i; j / and h having internal bidegree .s; t/.

We then obtain

��1ŒŒ�.f /; �.g/��D ��1

� n�1X
vD0

�.f /.1˝v˝ �.g/˝ 1˝n�v�1/

�

� .�1/hf;gi��1

�m�1X
vD0

�.g/.1˝v˝ �.f /˝ 1˝m�v�1/

�
:

For reasons of symmetry and linearity we are only going to explicitly compute

��1
�
�.f /.1˝v˝ �.g/˝ 1˝n�v�1/

�
:

Up to sign, this is f .1˝v˝g˝ 1˝n�v�1/ and we now calculate the sign.
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The term �.f /.1˝v˝ �.g/˝ 1˝n�v�1/ lies in C
nCm�1;iCjCnCm�2

kCl
.S.A/;S.A//,

so

��1
�
�.f /.1˝v˝ �.g/˝ 1˝n�v�1/

�
D .�1/iCjCnCmCkClC.nCm�1

2 /S�1
ı
�
�.f /.1˝v˝ �.g/˝ 1˝n�v�1/

�
ıS˝nCm�1

D .�1/.
nCm�1

2 /S�1
ıS ıf ı .S�1/˝n

ı
�
1˝v˝ .S ıg ı .S�1/˝m/˝ 1˝n�v�1

�
ıS˝nCm�1

D .�1/.
nCm�1

2 /f ı
�
.S�1/˝v˝S�1

˝ .S�1/˝n�v�1
�

ı
�
1˝v˝ .S ıg ı .S�1/˝m/˝ 1˝n�v�1

�
ıS˝nCm�1:

In the next step we are obtaining a new sign .�1/.n�v�1/.jCm�1/ by interchanging
.S�1/˝n�v�1 with 1˝v˝ .S ıg ı .S�1/˝m/. Interchanging S�1 and 1˝v does not
introduce any new signs, so we continue with

.�1/.
nCm�1

2 /C.n�v�1/.jCm�1/

f ı
�
.S�1/˝v˝ .S�1

ıS ıg ı .S�1/˝m/˝ .S�1/˝n�v�1
�
ıS˝nCm�1

D .�1/.
nCm�1

2 /C.n�v�1/.jCm�1/

f ı
�
.S�1/˝v˝g ı .S�1/˝m

˝ .S�1/˝n�v�1
�
ı
�
S˝v˝S˝m

˝S˝n�v�1
�
:

Since .S�1/˝a D .�1/.
a
2/.S˝a/�1 , we continue with

.�1/.
nCm�1

2 /C.n�v�1
2 /C.m

2 /C.
v
2/C.n�v�1/.jCm�1/

f ı
�
.S˝v/�1

˝g ı .S˝m/�1
˝ .S˝n�v�1/�1

�
ı
�
S˝v˝S˝m

˝S˝n�v�1
�
:

We have that�
nCm� 1

2

�
C

�
n� v� 1

2

�
C

�
m

2

�
C

�
v

2

�
� .n� 1/.vCm/C v .mod 2/

so we can simplify the sign in the above expression to give

.�1/.n�1/.vCm/CvC.n�v�1/.jCm�1/

f ı
�
.S˝v/�1

˝g ı .S˝m/�1
˝ .S˝n�v�1/�1

�
ı
�
S˝v˝S˝m

˝S˝n�v�1
�
:
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We then interchange S˝v with g ı .S˝m/�1˝ .S˝n�v�1/�1 which in addition gives
us the new sign .�1/.jCmCn�v�1/v , so we have

.�1/.n�1/.vCm/CvC.n�v�1/.jCm�1/C.jCmCn�v�1/v

f ı
�
1˝v˝g ı .S˝m/�1

˝ .S˝n�v�1/�1
�
ı
�
1˝v˝S˝m

˝S˝n�v�1
�
:

Finally, we add to the sign by interchanging S˝m with .S˝n�v�1/�1 , so we end up
with

.�1/.n�1/.vCm/CvC.n�v�1/.jCm�1/C.jCmCn�v�1/vCm.n�v�1/

f ı .1˝v˝g˝ 1˝n�v�1/:

We can then simplify the above sign to

.�1/.n�1/.m�1/Cv.m�1/C.n�1/j

which proves our claim.
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