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Tunnel complexes of 3–manifolds

YUYA KODA

For each closed 3–manifold M and natural number t , we define a simplicial complex
Tt .M / , the t –tunnel complex, whose vertices are knots of tunnel number at most t .
These complexes have a strong relation to disk complexes of handlebodies. We show
that the complex Tt .M / is connected for M the 3–sphere or a lens space. Using
this complex, we define an invariant, the t –tunnel complexity, for tunnel number t

knots. These invariants are shown to have a strong relation to toroidal bridge numbers
and the hyperbolic structures.

57M25; 57M15, 57M27

Introduction

In the study of low-dimensional topology, it is often constructed a simplicial complex
whose vertices are the set of topological objects and where every collection of distinct
vertices spans a simplex if they share a certain topological property. Such a property is
basically explained by a “mutually disjoint realization” or by a “topological move”.

Primary examples of the first type are the curve complexes of surfaces as in Hempel [11]
and the disk complexes of handlebodies as in McCullough [21]. Note that a path in the
1–skeleton of such complexes is also understood as a sequence elementary moves.

The second type are essentially defined to be 1–dimensional simplicial complexes and
then sometimes extended to higher dimension requiring to be flag complexes, that is,
any collection of kC 1 vertices such that any two of them are adjacent are required to
span a k –simplex. The Gordian complex for knots (see Hirasawa and Uchida [12]) and
the IH–complex for spatial trivalent graphs (see Ishii and Kishimoto [14]) are examples
of such complexes.

These complexes are used to give global viewpoints for the sets of topological objects.
When the complex is connected, we may define a distance of two topological objects
using the simplicial distance of the corresponding two vertices. The distance gives
topological and geometric information of the objects.
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In this paper, based on the philosophy of the first type, we construct simplicial complexes
for knots with bounded tunnel number. These turn out to have a deep relation to the
complex of nonseparating t –tuple of disks in a genus t C 1 handlebody.

A � –curve of order n, or simply a �n –curve is the graph on two vertices and n edges
˛1; ˛2; : : : ; ˛n joining them. Let M be a closed orientable 3–manifold. The image z�n

of a �n –curve under an embedding �n!M is called a spatial �n –curve. Then each
simple loop z̨i [ z̨j , 1 6 i < j 6 n, forms a knot in M which is called a constituent
knot of z�n . The definition of a constituent knot of a general spatial graph will be
reviewed in Section 1.

Given a knot K in a closed orientable 3–manifold M , an unknotting tunnel system
for K is a set of mutually disjoint simple arcs in M with their endpoints in K such
that the complement of a regular neighborhood of the union of K and the arcs is
a handlebody. The tunnel number of K is the minimum number of arcs over all
unknotting tunnel systems for K .

For each closed orientable 3–manifold M and a natural number t , we define a simplicial
complex Tt .M / whose vertices are knots in M of tunnel number at most t , and where
distinct vertices K0;K1; : : : ;Kk span a k –simplex of Tt .M / if there exists a spatial
�tC2 –curve z�tC2 such that the complement of the interior of a regular neighborhood
of z�tC2 is a handlebody and that for each 0 6 l 6 k , the vertex Kl is a constituent
knot of z�tC2 . We call this complex the t –tunnel complex and denote it by Tt .M /.
Our first main theorem is the following:

Theorem 0.1 (1) If M is the 3–sphere or a lens space, then the tunnel complex
Tt .M / is connected for any natural number t .

(2) Let M be a closed orientable 3–manifold admitting finitely many genus g

Heegaard splittings. Let n be the numbers of genus g Heegaard splittings of M

up to ambient isotopy. Then the number of connected components of Tg�1.M /

is at most 2n.

Recently, Cho and McCullough [4; 5; 3; 6] provided a very strong method for the study
of unknotting tunnels of tunnel number one knots in S3 . They considered a simplicial
complex D.H2/=G2 , where H2 is an unknotted genus two handlebody embedded
in S3 , D.H2/ is the complex of nonseparating disks in H2 , and G2 is the genus two
Goeritz group, ie the group of isotopy classes of orientation-preserving automorphisms
of S3 preserving H2 . In Section 3.1, we will observe that there exists a simplicial
surjection from D.H2/=G2 to T1.S

3/.

Moreover, we will generalize this observation defining the complex Dt .HtC1/ of
nonseparating t –tuples of disks in a genus t C 1 handlebody HtC1 . This complex is
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defined to be a simplicial complex whose vertices are the nonseparating t –tuple (see
Section 3.2) of vertices of D.HtC1/ such that a collection of kC 1 vertices spans a
k –simplex if and only if all vertices in the kC1 t –tuples are realized at the same time
as pairwise disjoint (but some pairs possibly be parallel) disks in HtC1 .

Theorem 0.2 For any t , the simplicial complex Dt .HtC1/ is connected.

Then we show that these complexes are connected and there exists a surjection from
the 1–skeleton of Dt .HtC1/ to that of Tt .M /, where t > 1 and M is the 3–sphere
or a lens space.

A knot in a closed orientable 3–manifold is called a .g; 1/–knot if there exists a genus g

Heegaard splitting of the 3–manifold such that the Heegaard surface splits the knot into
two trivial arcs with respect to the splitting. Note that every knot in a closed orientable
3–manifold is a .g; 1/–knot for a certain g greater than or equal to the Heegaard genus
of the 3–manifold.

Let M be a closed orientable 3–manifold. We define the t –distance dTt .M / of
two knots K1 and K2 of tunnel number at most t to be the simplicial distance of
the corresponding two vertices in the 1–skeleton of Tt .M /. If the two vertices K1

and K2 belong to different components, then we set dTt .M /.K1;K2/D1. Let the
unknot U be a vertex of Tt .M /. Then the t –tunnel complexity, tct .K/, of a knot
K �M of tunnel number at most t is then defined to be the distance from the unknot
to K .

Recall that a .1; t/–decomposition of a knot K in a closed orientable 3–manifold is a
decomposition of K by a genus one Heegaard splitting of the 3–manifold such that
the Heegaard surface splits the knot in t trivial arcs with respect to the splitting.

Proposition 0.3 (1) Let M be the 3–sphere or a lens space. Let K �M be a
tunnel number one knot. Let C be the core of a solid torus appearing in a genus
one Heegaard splitting of M . Then dT1.M /.C;K/ 6 1 if and only if K is a
.1; 1/–knot. In the case of M Š S3 , we have, in particular, tc1.K/6 1 if and
only if K is a .1; 1/–knot.

(2) Let M and C be as in (1). Then dTt .M /.C;K/ 6 1 if K admits a .1; t/–
decomposition.

(3) Let K �M be a tunnel number t nontrivial knot in a closed 3–manifold M .
Then tctC1.K/D 1.

It follows from the above proposition that the tunnel complexity of all Morimoto–
Sakuma–Yokota knots is two (see Section 4).
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We can say more about the tunnel complexity in the case of M Š S3 . In Section 4 we
prove that the diameter of the tunnel complex T1.S

3/ is infinite, as is for D.H2/=G2 :

Theorem 0.4 For every integer n, there exists a tunnel number one knot K � S3

such that tc1.K/ > n, which implies that the diameter of the tunnel complex T1.S
3/ is

infinite.

We see that all nonhyperbolic tunnel number one knots lie in the neighborhood of the
unknot while the tunnel complex T1.S

3/ turns out to be unbounded:

Theorem 0.5 Let K be a tunnel number one knot in S3 . If tc1.K/ > 2, then K is
hyperbolic.

By definition, both D.H2/ and D.H2/=G2 are flag complexes, that is, any cycles of
length three in D.H2/ or D.H2/=G2 spans a 2–simplex. On the contrary, we have the
following in Section 5:

Theorem 0.6 The simplicial complex T1.S
3/ is not a flag complex. Moreover, there

exist infinitely many distinct cycles of length three in T1.S
3/ that do not span 2–

simplices.

Notation Let X be a subset of a given topological space or a manifold Y . Throughout
the paper, we will denote the interior of X by Int X , the closure of X by xX and
the number of components of X by #X . We will use N.X IY / to denote a regular
neighborhood of X in Y . If the ambient space Y is clear from the context, we simply
denote it by N.X /. By a 3–manifold, we always mean a connected, compact and
orientable one without boundary, unless otherwise mentioned. By a graph, we mean
a finite, connected multigraph possibly with loops. Let X be a simplicial complex.
We denote by X .k/ the k –skeleton of X . By a knot, we mean a simple closed curve
embedded in a closed 3–manifold. We say that two knots are the same if they are
ambient isotopic, and distinct otherwise.

1 Preliminaries

Let M be a closed 3–manifold and G be a graph. Throughout the paper, we denote
by zG the image of an embedding f W G!M , and we call it a spatial graph. Let v
(e , respectively) be a vertex (an edge, respectively) of G then we denote its image
under the embedding f by zv (ze , respectively). A cycle of zG is called a constituent
knot of zG when we regard it as a knot.
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1.1 Definition of tunnel complexes

To begin with, we recall the following classical theorem by Kinoshita:

Theorem 1.1 [18] Let n > 3 be an integer. For any collection fKi;j g16i<j6n of
knots in S3 , there exists a spatial �n –curve z�n whose constituent knot z̨i [ z̨j is
ambient isotopic to Ki;j for each pair .i; j /.

This theorem implies that the embeddings of �n are quite varied. Focusing on unknotting
tunnels of knots, we may consider the following question analogous to Theorem 1.1.

Question Let n > 3 be an integer and M be a closed 3–manifold. For any collection
fKi;j g16i<j6n of knots of tunnel number at most n � 2 in M , does there exist a
spatial �n –curve z�n in M such that

(1) M n Int N.z�n/ is a handlebody; and

(2) the constituent knot z̨i [ z̨j is ambient isotopic to the knot Ki;j for each pair
.i; j /?

Note that the first condition of the above question is crucial at least in the case of
M ŠS3 because Theorem 1.1 gives a positive answer without the condition. The above
question asks if we have a result analogous to Theorem 1.1 after restricting the knots
to have tunnel number at most n� 2 and the embedding of �n to have a handlebody
complement. In the case of �3 –curve embedded in the 3–sphere, Kinoshita’s theorem
implies that for any correction, say fJ;K;Lg, of knots in the 3–sphere, one can find a
spatial �3 –curve whose constituent knots are precisely the specified knots fJ;K;Lg.
The above question asks whether this can be achieved for any collection fJ;K;Lg of
knots of tunnel number at most one, while simultaneously requiring the complement
to be a handlebody. In Section 4, we give a negative answer to this question. In fact,
we prove that even when J DK DL is a trefoil, such a embedding of the �3 –curve
does not exist. (See the example after Proposition 3.3.) The aim of the paper is to
understand how far the reality is from the positive answer to the above question.

Definition 1.2 Let M be a closed 3–manifold and t be a natural number. The
t –tunnel complex Tt .M / of M is a simplicial complex such that

(1) the set of vertices of Tt .M / consists of knots of tunnel number at most t in M ;
and

(2) a collection fK0;K1; : : : ;Kkg of distinct vertices spans a k –simplex of Tt .M /

if there exists a spatial �tC2 –curve z�tC2 such that
(a) M n Int N.z�tC2/ is a handlebody; and
(b) each Kl (0 6 l 6 k ) is a constituent knot of z�tC2 .
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The following is straightforward from the definition.

Lemma 1.3 For a closed 3–manifold M , the following holds:

(1) The dimension of Tt .M / is at most .t C 2/.t C 1/=2� 1.

(2) If M is of Heegaard genus g .> 3/, we have

T1.M /D T2.M /D � � � D Tg�2.M /D∅:

(3) There exists a sequence of simplicial embeddings

T1.M / ,! T2.M / ,! � � � ,! Tn.M / ,! � � � :

In particular, the dimension of Tt .M / is less than or equal to that of TtC1.M /

for any natural number t .

2 Connectivity of tunnel complexes

For a spatial graph zG in a closed 3–manifold, We denote by g. zG/ the genus of the
handlebody N. zG/.

Let n > 2 be a natural number. An n–bouquet Bn is a topological space obtained by
gluing together a collection of n circles along a single point, which is called the vertex
of Bn .

Lemma 2.1 Let zG be a spatial trivalent graph with g. zG/D g embedded in a closed
3–manifold M . Let K1 and K2 be constituent knots of zG . Then there exists a spatial
bouquet zBg such that

(1) N. zG/ is ambient isotopic to N. zBg/ in M ; and

(2) both K1 and K2 are constituent knots of zBg .

Proof Let ze be an edge of K1 nK2 . Let zv be an endpoint of ze . Let C be a simple
loop embedded in a solid torus N.K1/ such that

(1) C \ zG D zv ; and

(2) C is ambient isotopic to K1 in N.K1/.

Set zG0 WD . zG n Int ze/[C . Then N. zG/ is ambient isotopic to N. zG0/ in M and both
K1 and K2 are constituent knots of zG0 .

Let K2 consists of the edges ze1; ze2; : : : ; zen . Let zBg be a spatial bouquet obtained
by edge contractions along the edges ze2; ze3; : : : ; zen and some other edges except ze1 .
Then zBg satisfies the required conditions.
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zv ze

zG

K1

K2

K2

C

zG0

N.K1/

Figure 1

Lemma 2.2 Let zG be a spatial trivalent graph with g.zG/Dg in a closed 3–manifold M

such that M n Int N. zG/ be a handlebody. Let K be a constituent knot of zG . Then K

is of tunnel number at most g� 1.

Proof By Lemma 2.1, there exists a spatial bouquet zBg such that

(1) M n Int N. zBg/ is a handlebody; and

(2) K is a constituent knot of zBg .

Let zv be the unique vertex of zBg . Then zBg n .N.zv/[K/ consists of g�1 arcs which
form an unknotting tunnel system of K .

Lemma 2.3 Let zG be a spatial trivalent graph with g. zG/D g embedded in a closed
3–manifold M such that M nInt N. zG/ is a handlebody. Let K1 and K2 be constituent
knots of zG . Then K1 and K2 are adjacent in Tg�1.M /.

Proof By Lemma 2.1, there exists a spatial bouquet zBg such that

(1) M n Int N. zBg/ is a handlebody; and

(2) K1 and K2 are constituent knots of zBg .

Let zv be the unique vertex of zBg . Let zG be the spatial graph obtained by slightly
modifying zBg in N.zv/ as shown in Figure 2. Let ze1 , ze2; : : : ; zeg�2 be the path in
zG shown in the figure. By contracting the edges ze1 , ze2; : : : ; zeg�2 , we get a spatial
�gC1 –curve z�gC1 such that

(1) M n Int N.z�gC1/ is a handlebody; and

(2) K1 and K2 are constituent knots of z�gC1 .

Since both K1 and K2 are vertices of the tunnel complex Tg�1.M / by Lemma 2.2,
this means that K1 and K2 are adjacent in Tg�1.M /.

Algebraic & Geometric Topology, Volume 11 (2011)



424 Yuya Koda

... ...

Bg G

e1

e2

e3

eg�2

eg�3

Figure 2: From Bg to G

The above proof of Lemma 2.3 gives rise to the following proposition.

Proposition 2.4 Let K0 , K1; : : : ;Kg�1 be the set of constituent knots of a spatial
bouquet zBg with M n Int N. zBg/ a handlebody. Then there exists a spatial �gC1 –
curve z�gC1 such that

(1) M n Int N.z�gC1/ is a handlebody; and

(2) all K0 , K1; : : : ;Kg�1 are constituent knots of z�gC1 .

Remark Let M be a closed 3–manifold and t be a natural number. Let Bt .M / be a
simplicial complex defined by:

(1) the set of vertices of Bt .M / consists of the set of knots in M of tunnel number
at most t ; and

(2) a collection of distinct vertices K0;K1; : : : ;Kk spans a k –simplex of Bt .M /

if there exists a spatial bouquet zBtC1 such that
(a) M n Int N.BtC1/ is a handlebody; and
(b) each Kl .0 6 l 6 k/ is a constituent knot of zBtC1 .

Then Proposition 2.4 implies that there exists a canonical simplicial injection from
Bt .M / to the t –tunnel complex Tt .M /.

Let zG be a trivalent spatial graph in a compact 3–manifold (possibly with nonempty
boundary). An IH–move for zG is a local change of zG as illustrated in Figure 3. Note
that the inverse of an IH–move is also an IH–move. A trivalent spine of a handlebody H

is a spatial trivalent graph zG embedded in H such that a regular neighborhood of zG
is a deformation retract of H .

Lemma 2.5 [20; 13] Given two trivalent spines of a handlebody, there exists a finite
sequence of IH–moves and ambient isotopies transforming one into the other.
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Figure 3: IH–move

Lemma 2.6 Let zG1 and zG2 be spatial trivalent graphs embedded in a closed 3–
manifold M such that

(1) M n Int N. zGi/ .i D 1; 2/ is a genus g handlebody; and

(2) zG2 is obtained from zG1 by an IH–move.

Let Ki .i D 1; 2/ be a constituent knot of zGi . Then K1 and K2 belong to the same
component of Tg�1.M /.

Proof Let an IH–move for zG1 is performed along an edge ze , and let zG2 be the
resulting trivalent spatial graph. Note that N. zG1/ is ambient isotopic to N. zG2/ in M .
To prove the lemma, it suffices to show that there exists a constituent knot of zG1 which
is also a constituent knot of zG2 .

Let zv1 and zv2 be the endpoints of ze and let ze1 , ze2 , ze3 and ze4 be the edges shown in
Figure 4.

zv1

zv2

ze
ze1 ze2

ze3 ze4

Figure 4

Case 1 ze is a cut edge of zG1 .

In this case, if there exists a cycle zC in zG1 which contains both ze1 and ze2 and does
not contain neither ze3 nor ze4 . Then zC is also a constituent knot of zG2 . Suppose
that there exists no such a cycle zC . Since zG1 is trivalent, we may easily check that
there must be a cycle zC 0 which contains none of the edges ze1 , ze2 , ze3 and ze4 , by an
argument of Euler Characteristics of zG1 . Then it is clear that zC 0 is also a constituent
knot of zG2 .

Case 2 ze is not a cut edge of zG1 .

In this case, there exists a path zP in zG n Int ze connecting zv1 and zv2 . Set zC WD zP [ ze .
Then zC is also a constituent knot of zG2 .
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Lemma 2.7 Let zGi .i D 1; 2/ be a spatial trivalent graph with g. zGi/D g embedded
in a closed 3–manifold M such that

(1) M n Int N. zGi/ .i D 1; 2/ is a handlebody; and

(2) N. zG1/ is ambient isotopic to N. zG2/.

Let Ki .i D 1; 2/ be a constituent knot of zGi . Then K1 and K2 belong to the same
component of Tg�1.M /.

Proof By Lemma 2.5, zG1 is transformed into zG2 by a finite sequence of IH–moves
and ambient isotopies. Let

zG1 D
zT1

IH–move
�����! zT2

IH–move
�����! � � �

IH–move
�����! zTn D

zG2

be such a sequence.

By Lemma 2.2, all constituent knots of zTi for i D 1; 2; : : : ; n are knots of tunnel
number at most t . By Lemma 2.3, all constituent knots of zTi are adjacent in Tg�1.M /

for each 1 6 i 6 n. Moreover, by Lemma 2.6, all constituent knots of zTi and zTiC1

(i D 1; 2; : : : ; n� 1) belong to the same component of Tg�1.M /. This implies that
K1 and K2 belong to the same component of Tg�1.M /.

Lemma 2.8 (Remark in Section 2 of [10]) The two handlebodies of a genus g

Heegaard splitting of a closed orientable 3–manifold can be interchanged by an ambient
isotopy after stabilizing at most g times.

The following classical results play an important role in the proof of Theorem 0.1.

Theorem 2.9 (1) (Waldhausen [26]) Every Heegaard splitting of S3 is standard,
that is, every Heegaard splitting of S3 is obtained by stabilizing the unique
splitting of genus zero.

(2) (Bonahon and Otal [2]) Every Heegaard splitting of a lens space is standard,
that is, every Heegaard splitting of a lens space is obtained by stabilizing the
unique Heegaard splitting of genus one.

Proof of Theorem 0.1 (1) Assume that M is the 3–sphere or a lens space and
let t be a natural number. Let K1 and K2 be arbitrary knots of tunnel number at
most t . Let f�1; �2; : : : ; �tg (f�1; �2; : : : ; �tg, respectively) be an unknotting tunnel
system of K1 (K2 , respectively). Then both the union zG1 WD K1[ .

St
iD1 �i/ and

zG2 WDK2[ .
St

iD1 �i/ are spatial trivalent graphs with handlebody complements.
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By Theorem 2.9, zG1 and zG2 are trivalent spine of one of the two genus t C 1 han-
dlebodies appearing in the standard genus t C 1 Heegaard splitting M D V [W .
Since the Heegaard splitting M D V [W is obtained by stabilizing the standard genus
one Heegaard splitting of M , there exists an ambient isotopy interchanging V and
W due to Lemma 2.8. Therefore we may regard zG1 and zG2 as trivalent spines of
the handlebody V . This implies that zG1 and zG2 satisfy the assumption of Lemma
2.7, therefore K1 and K2 belong to the same component of Tt .M /. This means that
Tt .M / is connected, which concludes the proof of (1).

(2) Let V1[W1 , V2[W2 and Vn[Wn be the set of all genus g Heegaard splittings
of M . It is clear that each knot of tunnel number at most g� 1 belong to one of the
constituent knots of a trivalent spine of some Vk or Wk (1 6 k 6 n). By Lemma
2.7, any constituent knots of any trivalent spines of Vk or Wk belong to the same
component of Tg�1.M /. This implies (2).

Corollary 2.10 Let M be a closed 3–manifold of Heegaard genus at least two. Let
g be a natural number greater than two. If all of genus g Heegaard splitting of M is
stabilized, then the tunnel complex Tg�1.M / is connected.

Proof Let K be an arbitrary knot of tunnel number at most g�1. Let �1 , �2; : : : ; �g�1

be an unknotting tunnel system of K . Set zG WD K[ .
Sg�1

iD1
�i/. Then the union

N. zG/[.M nInt N. zG// is a stabilized Heegaard splitting by the assumption. It follows
that there exists a trivalent spine of N. zG/ of which the unknot is a constituent knot.
By Lemma 2.7, K and the unknot belong to the same component of Tg�1.M /. This
implies that Tg�1.M / is connected.

3 Tunnel complexes Tt.M / and disk complexes

3.1 The tunnel complex T1.S 3/ and the Cho–McCullough complex

We briefly review the notion and a theory of Cho and McCullough. See [4; 5; 3; 6] for
the details.

Let M be a compact, irreducible 3–manifold. The disk complex K.M / is the simplicial
complex such that

(1) the set of vertices of K.M / consists of the ambient isotopy classes of essential
properly embedded disks in M ; and

(2) a collection of kC 1 vertices spans a k –simplex if and only if they admit a set
of pairwise-disjoint representatives.
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Denote by D.M / the subcomplex of K.M / spanned by the nonseparating disks.

Theorem 3.1 [21] The following holds:

(1) If @M is compressible, then K.M / is contractible.

(2) If M has a nonseparating compressing disk, then D.M / is contractible.

Let H2 be an unknotted genus two handlebody embedded in S3 . Let G2 be the
Goeritz group, ie the group of isotopy classes of orientation-preserving automorphisms
of S3 preserving H2 . Then the group G2 acts on D.H2/ and the quotient D.H2/=G2

naturally inherits the structure of simplicial complex.

Theorem 3.2 [4] The simplicial complex D.H2/=G2 is contractible.

Recall that an essential properly embedded disk D in H2 is said to be primitive if there
exists a properly embedded disk D0 in the complementary handlebody S3 n Int H2

such that the circles @D and @D0 in @H2 intersect transversely in a single point. Denote
by �0 , �0 and �0 the unique G2 –orbit of the primitive disks, the pairs of primitive
disks, and the triples of primitive disks, respectively. Note that the set of tunnels of the
tunnel number one or zero knots embedded in S3 bijectively correspond to the set of
vertices except �0 and �0 of the quotient D.H2/=G2 . In [4], Cho and McCullough
called the “upper” and “lower” tunnels of 2–bridge knots simple tunnels. Denote by †
the set of all 2–simplices spanned by �0 , �0 and a simple tunnel (these 2–simplices
are called half simplices in [4]). Denote also by � the set of all 1–simplices spanned
by �0 and simple tunnels.

Consider the set

S D f�0; �0; h�0; �0i; h�0; �0i; h�0; �0i; h�0; �0; �0ig[ � [†

of (open) simplices in D.H2/=G2 . Set X WD .D.H2/=G2/nS . Observe that D.H2/=G2

collapses onto X , hence X is connected. Observe also that the set of vertices of X
exactly corresponds to the set of tunnels of tunnel number one or zero knots embedded
in S3 . Let p1W D.H2/! X be the simplicial map defined by the composition of the
quotient by G2 and the above collapsing. Let p2W X ! T1.S

3/ be the simplicial map
which sends each tunnel � to its associated knot. In this way, we get a sequence of
simplicial surjections

D.H2/
p1
�! X

p2
�! T1.S

3/:

Observe that the map p2 is complicated, since knots can have more than one unknotting
tunnels and there will be identifications made under this map that reflects the nature of
tunnel number one knots with multiple unknotting tunnels. Note that many torus knots
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�0

�0
�0 �0

half-simplices
D.H2/=G2 X

Figure 5: D.H2/ and X

have both non–.1; 1/– and .1; 1/–tunnels (see [3]). Note also that Goda and Hayashi
gave an example of non–torus knot having both non–.1; 1/– and .1; 1/–tunnels (see
Figure 18 in [7]).

Let M be a lens space. Let M D V [W be a genus two Heegaard splitting of M .
Since there exists an ambient isotopy in M interchanging V and W , we may see in
the similar argument as above that there exists a simplicial surjection from the disk
complex D.H2/.

Summing up the above argument, we have the following:

Proposition 3.3 Let M be the 3–sphere or a lens space. Let M D V [W be the
unique genus two Heegaard splitting of M . Then there exists a simplicial surjection

D.H2/! T1.M /:

In particular, if M is the 3–sphere, there exists a factorization

D.H2/! X ! T1.S
3/

of simplicial surjections.

Since D.H2/ is connected, Theorem 0.1 (1) in the case of t D 1 follows from the
above proposition.

Example There exists no edge in T1.S
3/ connecting the .right or left-handed/ trefoil

knot with the figure-eight knot. In fact, if they are adjacent in T1.S
3/, there would be

an edge in X connecting one of the two unknotting tunnels of the figure-eight knot (see
Kobayashi [19]) to the unique tunnel of the trefoil (see Boileau, Rost and Zieschang [1]
and Moriah [22]). However, the argument in [4] shows that no such an edge exists.
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Recall Question. We see that even when J DK D L is a trefoil, such a embedding
of the �3 –curve does not exist. Assume for contradiction that such an embedding
of the �3 –curve exists. Then there exist a collection of mutually disjoint, mutually
nonparallel, essential nonseparating disks D0;D1;D2 in H2 � S3 . Note that one of
D0;D1;D2 is primitive. Since the trefoil has a unique unknotting tunnel, the three
disks is contained in the same G2 –orbit. Then there must be a vertex corresponding to
the G2 –orbit of the pair fD0;D1g. However, the argument in [4] shows that no such a
vertex exists.

3.2 Complex of nonseparating t–tuples of disks in a genus .t C 1/ han-
dlebody

In this subsection, we generalize the observation in the above subsection.

Let g be a natural number. Let t 6 g be a natural number and let Hg be a genus g

handlebody. A t –tuple fŒD1�; ŒD2�; : : : ; ŒDt �g of pairwise distinct vertices of the disk
complex D.Hg/ is said to be nonseparating if the exterior Hg n Int.

St
iD1 N.Di// is

a solid torus.

The complex Dt .HtC1/ of nonseparating t –tuples of disks is defined to be a simplicial
complex whose vertices are the nonseparating t –tuples of vertices of D.HtC1/ such
that a collection of kC1 vertices spans a k –simplex if and only if all vertices in all of
the .kC 1/ t –tuples are realized at the same time as pairwise disjoint (but some pairs
possibly be parallel) disks in HtC1 . Note that D.H2/DD1.H2/.

Lemma 3.4 Let fv1; v2; : : : ; vtg and fw1; w2; : : : ; wtg be vertices of Dt .HtC1/. As-
sume that v1 and w1 are adjacent in D.HtC1/ and that fv1; w1g is a nonseparating pair
of HtC1 . Then fv1; v2; : : : ; vtg and fw1; w2; : : : ; wtg belong to the same component
of Dt .HtC1/.

Proof The proof proceeds by induction on t . There is nothing to prove the case of
t D 1 since D.H2/DD1.H2/ is connected.

Assume that t > 1. Let H v1
t be the handlebody obtained by cutting HtC1 along the

disk v1 . Since fv1; v2; : : : ; vtg is a nonseparating t –tuple, fv2; v3; : : : ; vtg becomes a
nonseparating .t�1/–tuple of distinct vertices of D.H v1

t /. In fact, if vi and vj i ¤ j

are parallel in H v1
t , fv1; vi ; vj g would be a separating triple of HtC1 and this is a

contradiction. Also, in H v1
t , w1 becomes a vertex of D.H v1

t /. Then there exists a
vertices v0

3
; v0

4
; : : : ; v0t of D.H v1

t / such that fw1; v
0
3
; v0

4
; : : : ; v0tg is a .t�1/–tuple of

distinct vertices of D.H v1
t /. By the induction assumption, there exists a sequence of

nonseparating .t�1/–tuples .fxi
2
;xi

3
; : : : ;xi

tg/
n1

iD1
in Dt�1.H

v1
t / such that
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(1) fv2; v3; : : : ; vtg D fx
1
2
;x1

3
; : : : ;x1

t g;

(2) fw1; v
0
3
; : : : ; v0tg D fx

n1

2
;x

n1

3
; : : : ;x

n1

t g; and

(3) fxi
2
;xi

3
; : : : ;xi

tg and fxiC1
2

;xiC1
3

; : : : ;xiC1
t g are adjacent in Dt�1.H

v1
t / for

1 6 i 6 n1 .

This implies that fv1; v2; : : : ; vtg and fv1; w1; v
0
3
; : : : ; v0tg belong to the same compo-

nent of Dt .HtC1/.

Let Hw1
t be the handlebody obtained by cutting HtC1 along the disk w1 . Then by

the same reason as above, fv1; v
0
3
; : : : ; v0tg and fw2; w3; : : : ; wtg become nonseparat-

ing .t�1/–tuples of distinct vertices of Dt�1.H
w1
t /. Applying again the induction

assumption for these two .t�1/–tuple as above, we get a path of nonseparating .t�1/–
tuples in Dt�1.H

w1
t / which connects fv1; v

0
3
; : : : ; v0tg and fw2; w3; : : : ; wtg. This

implies that fv1; w1; v
0
3
; : : : ; v0tg and fw1; w2; : : : ; wtg belong to the same component

of Dt .HtC1/. This completes the proof.

Lemma 3.5 Let g > 2. Let v1 and w1 be vertices of D.Hg/. Then there exists a
path .pi/

n
iD1

from v1 to w1 in D.Hg/ such that p1 D v1 , pn D w1 and each pair
fpi ;piC1g is nonseparating.

Proof Since the complex D.Hg/ is connected, there exists a path .p0i/
m
iD1

from v1

to w1 in D.Hg/ such that p0
1
Dv1 , p0mDw1 and each pair fp0i ;p

0
iC1
g is nonseparating.

Assume that the pair fp0i ;p
0
iC1
g is separating for Hg . Since each of p0i and p0

iC1
is

nonseparating, there exists a vertex qi of D.Hg/ such that both pairs fp0i ; qig and
fp0

iC1
; qig are nonseparating. Hence, substituting an edge .p0i ;p

0
iC1

/ in the sequence
by the two edges .p0i ; qi/ [ .p

0
iC1

; qi/ for all of such pairs fp0i ;p
0
iC1
g, we get a

required path.

Proof of Theorem 0.2 There is nothing to prove the case of t D 1 since D.H2/D

D1.H2/ is already shown to be connected.

Let fv1; v2; : : : ; vtg and fw1; w2; : : : ; wtg be two vertices of Dt .HtC1/. By Lemma
3.5, there exists a path .pi/

n
iD1

from v1 to w1 in Dt .HtC1/ such that p1 D v1 ,
pn D w1 and each pair fpi ;piC1g is nonseparating. For each pi (2 6 i 6 n� 1),
there exists a nonseparating t –tuple fpi ; v

i
2
; vi

3
; : : : ; vi

tg of vertices of Dt .HtC1/. Set
vi D v

.1/
i and wi D v

.n/
i for 2 6 i 6 t . By Lemma 3.4, there exists a path from

fpi ; v
i
2
; vi

3
; : : : ; vi

tg to fpiC1; v
iC1
2

; viC1
3

; : : : ; viC1
t g in Dt .HtC1/ for 1 6 i 6 n� 1.

This completes the proof.
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Let M be the 3–sphere or a lens space. Let HtC1 be an embedded genus t C 1

handlebody in M such that M n Int N.HtC1/ is a handlebody. Define a vertex map
�t W D.0/t .HtC1/ ! T .0/t .S3/ by sending each vertex fŒD1�; ŒD2�; : : : ; ŒDt �g to the
equivalent class of the core knot K of the solid torus HtC1 n Int.

St
iD1 N.Di//.

Let v WDfv1; v2; : : : ; vtg and w WDfw1; w2; : : : ; wtg be adjacent vertices of Dt .HtC1/.
Then the union v[w can be realized as a pairwise disjoint (but some pairs possibly
be parallel) disks in HtC1 . Let fz1; z2; : : : ; zsg be the subset of v [ w obtained
by removing one of the parallel disks for each parallel pairs. Adding some more
disks zsC1; zsC2; : : : ; z3t , we get a set fz1; z2; : : : ; z3tg of pairwise disjoint, pairwise
nonparallel essential disks which gives a pants decomposition of HtC1 . Let zG �
HtC1 be a spatial trivalent spine corresponds to this pants decomposition. Set K1 WD

�t .fv1; v2; : : : ; vtg/ and K2 WD �t .fw1; w2; : : : ; wtg/. Then both K1 and K2 are
constituent knots of zG .

Corollary 3.6 The vertex map �t can be extended to a simplicial map

�t W D.1/t .HtC1/! T .1/t .M /

and it is a surjection.

Proof By Lemma 2.1 and Lemma 2.3, �t W D.1/t .HtC1/!T .1/t .S3/ a simplicial map.
By Lemma 2.2 it is a surjection for the vertices. Let K1 and K2 be adjacent in T .1/t .M /.
Let then there exist an spatial �tC2 –curve z�tC2 such that M n Int N.z�tC2/ is a handle-
body and both K1 and K2 are constituent knots of z�tC2 . Then slightly modifying z�tC2

as shown in Figure 6, we may get a trivalent spine zG of HtC1 containing K1 and K2

as constituent knots. Taking t edges from f˛1; ˛2; : : : ; ˛tC2g, we obtain vertices

z̨1

z̨2

z̨3

z̨tC2z�tC2

z̨1

z̨2

z̨3

z̨tC2

zG

Figure 6

fv1; v2; : : : ; vtg and fw1; w2; : : : ; wtg of Dt .HtC1/ where �t .fv1; v2; : : : ; vtg/DK1

and �t .fw1; w2; : : : ; wtg/DK2 . Now, the edge .fv1; v2; : : : ; vtg; fw1; w2; : : : ; wtg/

is mapped by �t to the edge .K1;K2/ of Tt .M /. This completes the proof.
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Observe that the above corollary gives an alternative proof (from a relative viewpoint)
of Theorem 0.1.

4 Tunnel complexities

4.1 Definition of the tunnel complexities

Let M be a closed 3–manifold. Let K be a knot of tunnel number t 2N embedded
in M . Define a distance dTt .M / , t –distance, of two knots K1 and K2 of tunnel number
at most t belonging to the same component of Tt .M / to be the simplicial distance of
the two vertices K1 and K2 in the 1–skeleton T .1/t .M / of Tt .M /. More precisely,
T .1/t .M / becomes a geodesic space by letting each edge have length 1, and dTt .M /

is defined by taking the minimal of the length of geodesics between given two vertices
K1 and K2 . We define dTt .M /.K1;K2/ D 1 if K1 and K2 belong to different
component of Tt .M /. Note that Theorem 0.1 implies that dTt .M /.K1;K2/ <1 for
any two vertices K1 and K2 in Tt .M / if M is the 3–sphere or a lens space.

Definition 4.1 The t –tunnel complexity tct .K/ of K is the simplicial distance be-
tween K and the unknot in the 1–skeleton T .1/t .S3/ of Tt .S

3/, that is, the minimal
number of edges contained in paths in T .1/t .S3/ connecting K and the unknot.

Proposition 4.2 Let M be a closed 3–manifold. Let K1 and K2 be adjacent vertices
of Tt .M /. Then there exists a spatial �tC2 –curve z�tC2 in M such that z̨1 [ z̨2 is
ambient isotopic to K1 and z̨2[ z̨3 is ambient isotopic to K2 .

Proof This follows from the argument in Lemma 2.1 and Lemma 2.3.

Remark Let M be a closed 3–manifold. By Proposition 4.2, a path

.K1;K2; : : : ;Kn/ .n > 2/

in T .1/t .M / can be recognized as the following operations:

Step 0 Set i D 1.

Step 1 Take an unknotting tunnel system f� i
1
; � i

2
; : : : ; � i

t g for the knot Ki . (Here, @� i
1

separates Ki into two arcs ˇi and 
i .)

Step 2 Set KiC1 WD ˇi [ �
i
1

.

Step 3 Back to Step 1 unless i D n� 1, adding 1 to i .
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T .5; 8/

�

T .2; 3/

T .5; 8/ T .2; 3/

Figure 7: A path in T1.S
3/

Proof of Proposition 0.3 (1) Since the union of a tunnel number one knot K and
its .1; 1/–tunnel is a spatial �3 –curve which guarantees the existence of an edge in
T1.M / whose endpoints are the core of a genus one handlebody of a Heegaard splitting
of M and K , we easily see the “if” part. We will prove the “only if” part.

Assume that dT1.M /.C;K/D 1. Then there exists a spatial �3 –curve z�3 �M such
that z̨1[ z̨2 D C and z̨2[ z̨3 DK . Set N1 WDN.C / and N2 WDM n Int N1 . Note
that both N1 and N2 are solid tori, and ˛0

3
WD z̨3 nN1 is an arc properly embedded

in the solid torus N2 . Since W WD N2 n Int N.z̨0
3
/ is a handlebody, the cocore loop

in @W of the arc ˛0
3

turns out to be primitive due to Theorem 10 in [9]. This implies
that the arc ˛0

3
is unknotted in N2 and hence the Heegaard splitting N1[N2 gives a

.1; 1/–decomposition of K . This completes the proof of (1).

(2) Let K admits a .1; t/–decomposition. Using a .1; t/–decomposition M DV [W

of K , we can find an unknotting tunnel system f�1; �2; : : : ; �tg of K as shown in
Figure 8. Then the spatial trivalent graph zG WDK[ .

S
i �i/ contains a constituent knot

... ...

�1

�2
�3 �4

K

V

K

W

Figure 8: A unknotting tunnel system f�1; �2; : : : ; �tg of K
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consisting of �1 and a subarc of K that is ambient isotopic to the core C of a solid
torus V1 appearing in the shown Heegaard splitting. This implies that zG contains C

and K as constituent knots. Hence by Lemma 2.3, C and K are adjacent in Tt .M /.

(3) Let f�1; �2; : : : ; �tg be an unknotting tunnel system of K . Let �tC1 be a tunnel
parallel to �1 . Then there exists an embedded square I � I such that

(1) f0g � I � �1 ;

(2) f1g � I � �tC1 ; and

(3) I � f0; 1g �K .

Note that f�1; �2; : : : ; �t ; �tC1g is also an unknotting tunnel system of K and the
unknot @S is a constituent knot of the spatial trivalent graph zT1 WDK1[ .

St
iD1 �i/.

By Lemma 2.3, there exists a spatial �tC1 –curve of which both the unknot and K are
constituent. This concludes the proof of (3).

Consider twisted torus knots K.p; qI r/� S3 shown in Figure 9. Morimoto, Sakuma

...

..
.

.p; q/–torus knot

r half twists
�

Figure 9: Twisted torus knots K.p; qI r/

and Yokota [24] showed that the knot K.7; 17I 10m� 4/ (m 2N ) admits no .1; 1/–
decompositions. We call these knots Morimoto–Sakuma–Yokota knots. Since every
K.p; qI r/ admits an unknotting tunnel � shown in Figure 9, K.p; qI r/ is connected
with a torus knot in T1.S

3/. By this fact and Proposition 0.3, we immediately get the
following corollary.

Corollary 4.3 The tunnel complexity of every Morimoto–Sakuma–Yokota knot is two.

Note that in [16], Johnson and Thompson show that for any natural number n there
exists a tunnel number one knot in S3 that does not admit a .1; n/–decomposition.
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4.2 Unboundedness of tunnel complexity

Cho and McCullough defined an invariant of an unknotting tunnel � of a tunnel number
one knot in S3 , called the depth. Recall that each unknotting tunnel � is a vertex of
the simplicial complex X . Then the depth depth.�/ of � is the simplicial distance
of � and �0 in the 1–skeleton X .1/ of X . Define depth.K/ to be the minimum of
the depths of all unknotting tunnels of K .

Proposition 4.4 Let K be a tunnel number one knot. Then we have tc1.K/ 6
depth.K/. In particular, tc1.K/D depth.K/D 1 for a .1; 1/–knot K .

Proof This follows from the existence of the simplicial map p2W X ! T1.M / which
we observed in Section 3.1.

In [6], it is obtained as a corollary of Tunnel Leveling Addendum (see also [8]) the
following lower bound of the bridge number.

Theorem 4.5 [6] Let � be an unknotting tunnel of a tunnel number one knot K in
the 3–sphere. Then the bridge number of K is bounded below by

.1C
p

2/depth.�/
p

2
�
.1�
p

2/depth.�/
p

2
:

We can deduces the above theorem and Proposition 4.4 that the bridge number of a
knot in S3 is bounded below by

.1C
p

2/tc1.K /

p
2

�
.1�
p

2/tc1.K /

p
2

:

Observe that this lower bound is weaker than that in Theorem 4.5 since there exists
a torus knot having unknotting tunnels both with depth one and an arbitrary number,
however, it is still deserved to be mentioned.

Let † be a closed orientable surface. The curve complex, denoted by C.†/, is a
simplicial complex whose vertices are ambient isotopy classes of essential simple
closed curves and whose simplices are pairwise disjoint sets of simple closed curves.
The distance between simple closed curves `1 and `2 in † is defined as the length of
the shortest edge path in C.†/ between the vertices representing them. Let K � S3

be a tunnel number one knot and � be its unknotting tunnel. Set H WD N.K [ �/.
Then the distance of � , denoted by dist.�/, is defined to be the distance in the curve
complex C.@H / from the co-core of � to the boundaries of properly embedded essential
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disks in S3nInt H . Define dist.K/ to be the minimum of the distances of all unknotting
tunnels of K .

To show that the 1–tunnel complexity of S3 is unbounded, we use the following very
strong result given by Scharlemann and Tomova [25] and Johnson [15]. (Note that
Scharlemann and Tomova [25] proved a much more general case and Johnson [15]
deduced the following from it.)

Theorem 4.6 [25; 15] Let � be an unknotting tunnel of a tunnel number one knot
K � S3 . If dist.�/ > 5, then � is the unique unknotting tunnel of K .

In [15] Johnson also showed the following:

Theorem 4.7 [15] For every integer n, there exists an unknotting tunnel � of a tunnel
number one knot K � S3 such that dist.�/ > n.

Proposition 4.8 [6] Let � be an unknotting tunnel of a tunnel number one knot
K � S3 . Then the following holds:

(1) dist.�/D 1 if and only if � D �0 .

(2) dist.�/D 2 if depth.�/D 1.

(3) dist.�/� 1 6 depth.�/.

The following is immediately deduced from the above proposition:

Corollary 4.9 Let K � S3 be a tunnel number one knot.

(1) dist.K/D 1 if and only if K is the unknot.

(2) dist.K/D 2 if tc1.K/D 1.

(3) dist.K/� 1 6 depth.K/.

Proof of Theorem 0.4 We shall use the same notation as in Section 3. Let Y be
the subcomplex of X spanned by the tunnels of distance more than 5. Theorem 4.6
implies that restriction p2jY W Y! T1.S

3/ is an embedding.

Sending each unknotting tunnel � to maxf5; dist.�/g defines a simplicial map sW X !
Œ5;1/, where R has the simplicial structure with vertices the integers. By Theorem
4.6, all of the nontrivial identifications made by the map p2W X ! T1.S

3/ occur
in s�1.5/. Consequently, s factors through p2W X ! T1.S

3/, giving a simplicial
map xsW T1.S

3/ ! Œ5;1/. By definition, xs maps a tunnel number one knot to

Algebraic & Geometric Topology, Volume 11 (2011)



438 Yuya Koda

minf5; dist.�/ j � is an unknotting tunnel of Kg. Since s is a surjection by Theorem
4.7, xs is also a surjection.

X s //

p2

""

Œ5;1/

T1.S
3/

xs
::

Let d be an arbitrary natural number greater than five. Then there exists a tunnel
number one knot K � S3 such that xs.K/D d . Since the map xs is simplicial, we have

tc1.K/D distT1.S3/.U;K/> xs.K/�xs.U /D d � 5;

where U denotes the unknot. Since d can be arbitrary large, this completes the proof.

4.3 Hyperbolicity

We denote by T .p; q/ the .p; q/–torus knot in S3 . Let T be a standard torus bounding
a solid torus V in S3 and let T .p; q/ lies in T . The unknotting tunnels of torus knots
were classified by Boileau, Rost and Zieschang [1] and Moriah [22]. Recall that the
middle tunnel of T .p; q/ is represented by an arc in the torus T that meets T .p; q/

only in its endpoints. The lower (upper, respectively) tunnel of T .p; q/ is represented
by an arc ˛ properly embedded in the solid torus V (S3nInt V , respectively), such that
the circle which is the union of ˛ with one of the two arcs of T .p; q/ with endpoints
equal to the endpoints of ˛ is a deformation retract of V (S3 n Int V , respectively).

Recall that a nontrivial knot in S3 is hyperbolic if it is neither a torus knot nor a
satellite knot (see eg [17]).

Proof of Theorem 0.5 Given a nontrivial torus knot T .p; q/, since the union of
T .p; q/ and its lower tunnel � is a spatial � –curve of which both the unknot and the
torus knot itself are constituent knots, we have tc1.T .p; q//D 1. On the other hand,
Morimoto and Sakuma [23] gave the complete list of tunnel number one satellite knots,
and they showed that all of them are .1; 1/–knots. It follows from Proposition 0.3 that
the 1–tunnel complexity of them are one. This completes the proof.

5 2–simplices of the tunnel complex T1.S 3/

By Proposition 0.3, we get another example of knots which provide negative answer to
the Question in Section 1 in the case of M Š S3 and t D 1. That is, there exists no
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2–simplex whose vertices contain both the unknot and a Morimoto–Sakuma–Yokota
knot. Moreover, we proved in Section 4 that the diameter of T1.S

3/ is infinite. This
implies that the realization of three knots of tunnel number one as the constituent
knots of the same spatial � –curve is far from being success, and the shape of tunnel
complexes is not too simple. How about if any two knots of the triple fK0;K1;K2g

of tunnel number one knots in S3 span 1–simplices. In this section, we focus on the
2–simplices of the tunnel complex T1.S

3/.

We first introduce some obvious sufficient conditions for a triple fK0;K1;K2g of
tunnel number one knots in S3 to span a 2–simplex in T1.S

3/.

Lemma 5.1 Let a1; a2; : : : ; an be even integers. Then the triple fU;D.a1; a2; : : : ; an/;

D.a1˙ 1; a2; : : : ; an/g .fU;D.a1; a2; : : : ; an/;D.a1; a2; : : : ; an˙ 1/g, respectively/
of knots spans a 2–simplex in T1.S

3/, where U denotes the unknot and D. � ; � ; � � � ; � /

denotes the Conway presentation of a two bridge knot.

Proof This is due to the complete classification of unknotting tunnels for two bridge
knots up to ambient isotopies and homeomorphisms in [19].

Lemma 5.2 Given a twisted torus knot K.p; qI r/, where .p; q/D 1 and r 2 2Z>0 ,
let u and v be positive integers satisfying pv� quD 1. Let u< p and v < q . Then
the triple fK.p; qI r/;T .p; q/;T .u; v/g spans a 2–simplex in T1.S

3/.

Proof This can be proved using the middle tunnels for given torus knots.

Example The triple fT .2; 3/;T .3; 5/;T .5; 8/g of torus knots spans a 2–simplex
in T1.S

3/.

In fact, the spatial �3 –curve z�3 illustrated in Figure 10 shows that z̨1[ z̨2 � T .5; 8/,
z̨2[ z̨3 � T .3; 5/ and z̨3[ z̨1 � T .2; 3/.

Recall that in [4], Cho and McCullough introduced a parametrization of all unknotting
tunnels of all tunnel number one knots by sequences of rational numbers and ”binary”
invariants and that they calculated these invariants for 2–bridge knots in [4] and torus
knots in [3].

Proof of Theorem 0.6 For any i 2 N , set Ti WD T .3i C 4; 2i C 3/. Let �m
i be the

middle tunnel of Ti and � l
i (�u

i , respectively) be the lower (upper, respectively) tunnel
of Ti . Note that some of �m

i , � l
i and �u

i coincide, see [1]. We give the Cho and
McCullough’s parameter of these unknotting tunnel using the argument in [3]. First, we
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z̨1 z̨2

z̨3

Figure 10: T .5; 8/ , T .2; 3/ and T .3; 5/ span a 2–simplex in T1.S
3/ .

consider the middle slopes �m
i . Since the fraction .3iC4/=.2iC3/ can be represented

using a continued fraction
3i C 4

2i C 3
D Œ1; 2; i C 1�;

we get by an easy calculation that the parameter of the middle slope �m
i is

Œ1=3�; f12k � 7g16k6iC1; s2 D 1; s3 D s4 D � � � D siC1 D 0:

Next, we consider the lower tunnels. If k D 3l � 2 (l > 1), we have

.3l � 2/.2i C 3/D .2l � 2/.3i C 4/C .l C 2i C 2/

and 0< l C 2i C 2< 3i C 4. This implies that�
.3l � 2/.2i C 3/

3i C 4

�
D 2l � 1;

where dj e WDminfk 2Z j j 6 kg for a positive real number j . If k D 3l � 1 (l > 1),
we have

.3l � 1/.2i C 3/D .2l � 1/.3i C 4/C .l C i C 1/

and 0< l C i C 1< 4C 3i . This implies that�
.3l � 1/.2i C 3/

3i C 4

�
D 2l:

If k D 3l (l > 0), we have

3l.2i C 3/D .2l � 2/.3i C 4/C l
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and 0< l < 4C 3i . This implies that�
3l.2i C 3/

3i C 4

�
D 2l C 1:

Hence the parameter of the lower slope � l
i is

Œ1=3�; fpkg36k63iC3; s2 D s3 D � � � D s3iC1 D 0;

where p3l�2 D 4l � 3 (l > 1), p3l�1 D 4l � 1 (l > 1) and m3l D 4l C 1 (l > 0).

Finally, we consider the upper tunnels. If k D 2l � 1 (l > 1), we have

.2l � 1/.3i C 4/D .3l � 2/.2i C 3/C .�l C i C 2/

and 0< i � l C 2< 2i C 3. This implies that�
.2l � 1/.3i C 4/

2i C 3

�
D 3l � 1:

If k D 2l (l > 0), we have

.2l/.3i C 4/D .3l � 1/.2i C 3/C .�l C 2i C 3/

and 0< �l C 2i C 3< 3C 2i . This implies that�
2l.3i C 4/

2i C 3

�
D 3l:

Hence the parameter of the upper slope �u
i is

Œ1=3�; fp0kg26k62iC2; s2 D s3 D � � � D s2iC1 D 0;

where p0
2l�1
D 6l � 3 (l > 1) and p0

2l
D 6l � 1 (l > 0).

By the above argument, we obtain the following (see Figure 11):

(1) depth.��i /D 1 for any i 2N and � 2 fl;ug.

(2) depth.�m
i /D 2 for any i 2N .

(3) �m
i and �m

iC1
are adjacent for i 2N .

(4) �
�1

i and ��2

iC1
are not adjacent for any i 2N and �1; �2 2 fl;ug.

Then the existence of simplicial surjection p1 ıp2 from D.H2/=G2 to T1.M / implies
that each Ti and the unknot U are adjacent in T1.S

3/ since � l
i and �0 are adjacent

in D.H2/=G2 , and that each Ti and TiC1 are adjacent in T1.S
3/ since �m

i and �m
iC1

are adjacent in D.H2/=G2 . Therefore, there exist a cycle Ci of length three which
contains the three vertices U , Ki and KiC1 for each i 2N . Due to the classification
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�u
1

�u
2

�u
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�u
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� l
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� l
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� l
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� l
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� l
5

� l
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�m
i �m
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�m

3
�m

2
�m

1

Œ1=3�

Figure 11: The tunnels of Ti (i 2N ) in D.H2/=G2

of torus knot, it is clear that these cycles are distinct. On the other hand, any triple
f�0; �

�1

i ; �
�2

iC1
g (�1; �2 2 fm; l;ug) does not span a 2–simplex in D.H2/=G2 since

there exists no cycle of length three in D.H2/=G2 that contains any of these triples.
This implies that the cycle Ci does not span a 2–simplex in T1.S

3/ due to the fact
that p2 ıp1 is a simplicial surjection, which completes the proof.

6 Problems and perspectives

Recall that our first motivation was to consider a realization of tunnel number t knots
as constituent knots of the same spatial �tC1 –curve with complement a handlebody.
In this viewpoint, the following is the most fundamental problem.

� Find the dimension of Tt .M / for t > 1.

By Theorem 0.1 (2), we see that if there exist a closed 3–manifold admitting finitely
many Heegaard splittings of genus g then the number of component of Tg�1.M / is
also finite. Hence the following question naturally arises:

� Does there exist a closed 3–manifold admitting infinitely many Heegaard split-
tings of genus g but having finitely many components of Tg�1.M /?
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On the t –distance of tunnel complexes, the following problems are fundamental.

� Is the diameter of any Tt .M / infinite?

In Proposition 4.4, we have that the 1–tunnel complexity of a tunnel number one
knot K in S3 is at most its depth.

� Find a tunnel number one knot K � S3 with tc1.K/ < depth.K/.

In Theorem 0.5 we observed that knots in S3 of 1–tunnel complexity at least two is
hyperbolic.

� Can we have a similar result for t –tunnel complexity?

� Let f .n/ be the minimal hyperbolic volumes of knots in S3 with 1–tunnel
complexity n. Does f .n/ monotonically increase?

In [15], Johnson gave a lower bound for Seifert genus for tunnel number one knots
with respect to the distance of unknotting tunnel.

� Can we estimate a Seifert genus of tunnel number one knots in S3 using tunnel
complexity?

In Section 5, we analyzed 2–simplices of T1.S
3/.

� Study interesting subspaces of T1.S
3/. In particular, determine the subcomplex

of T1.S
3/ spanned by all torus knots or all hyperbolic knots, etc.

� What is �1.T1.S
3//?

Since tunnel complexes are defined for closed 3–manifolds, the following is also very
fundamental.

� Consider the relation between two tunnel complexes Tt .M1/ and Tt .M2/. Does
there exist closed 3–manifolds M1 and M2 with M1©M2 such that Tt .M1/Š

Tt .M2/ for any t ?
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7 Appendix

In Section 2, we proved, in particular, that T1.M / is connected, where M is S3 or a
lens space. In this case, we can prove the following stronger fact:

Theorem 7.1 Let zG1 and zG2 be spatial �3 –curves in a 3–manifold M having ambi-
ent isotopic regular neighborhoods. Then there exists a finite sequence of IH–moves
and ambient isotopies transforming one into the other such that any spatial trivalent
graphs appearing in the sequence is a spatial �3 –curve.

Remark This theorem implies not only that the tunnel complex T1.M /, where M is
S3 or a lens space, is connected but also the full-subcomplex of the IH–complex CIH

(see [14]) spanned by spatial �3 –curves is connected in each component of CIH .

Proof By Lemma 2.5, the trivalent spatial graph zG1 is transformed into zG2 by a finite
sequence of IH–moves as

zG1 DW
zT1

IH–move
�����! zT2

IH–move
�����! zT3

IH–move
�����! � � �

IH–move
�����! zTn�1

IH–move
�����! zTn D

zG2:

Recall that there exist only two trivalent graphs of Betti number two, the �3 –curve and
the handcuff graph, shown in the left-hand side and the right-hand side of Figure 12,
respectively.

Figure 12: The �3 –curve and the handcuff graph

Suppose that a spatial handcuff graph appears in the above sequence. Then there exists
an integer 2 6 i 6 n� 1 such that zTi is a spatial handcuff graph and zTj is the spatial
�3 –curve for all 1 6 j < i . An IH–move for a spatial trivalent graph is performed in
a regular neighborhood of an edge of the graph with two distinct endpoints. Such an
edge ze for the spatial handcuff graph zTi is uniquely determined. Hence the graph zTiC1

is a spatial �3 –curve. Observe that the graph zTi might be modified by ambient isotopy
before performing an IH–move. Indeed, we may possibly twist around the end point of
the edge ze as shown in the left hand side of Figure 13. We claim that the graph zTi�1

can be related by zTiC1 by a sequence of ambient isotopies and IH–moves which
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.

IH–move

isotopy

IH–move

IH–move IH–move

IH–move

IH–move

IH–move

IH–move

IH–move

zHk

if k is odd if k is even

k half twists

e

zTi�1

zTi

zTi

zTiC1

zH1

zH2

zH3

zH4

Figure 13: Bypass of sequences of IH–moves

produces only spatial �3 –curves. Consider the sequence of spatial trivalent graphs zH1 ,
zH2; : : : ; zHk shown in the right hand side of Figure 13. Note that all of these graphs

are spatial �3 –curves and they are obtained by a sequence of ambient isotopies and
IH–moves from zTi�1 . Then it is clear from the figure that zTiC1 is ambient isotopic
to zHk . Using the bypass

zTi�1
IH–move
�����! zH1

IH–move
�����! zH2

IH–move
�����! � � �

IH–move
�����! zHk D

zTiC1

instead of zTi�1
IH–move
�����! zTi

IH–move
�����! zTiC1;
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we get another sequence of ambient isotopies and IH–moves such that all graphs
appearing before zTiC1 are spatial �3 –curves.

Iterating this argument, we finally get a sequence of ambient isotopies and IH–moves
from zG1 to zG2 such that all graphs appearing in the sequence are spatial �3 –curve.
This concludes the proof.
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