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Hyperbolic graphs of surface groups

HONGLIN MIN

We give a sufficient condition for the fundamental group of a reglued graph of surfaces
to be hyperbolic. A reglued graph of surfaces is constructed by cutting a fixed graph
of surfaces along the edge surfaces, then regluing by pseudo-Anosov homeomor-
phisms of the edge surfaces. By carefully choosing the regluing homeomorphism, we
construct an example of such a reglued graph of surfaces, whose fundamental group
is not abstractly commensurable to any surface-by-free group, ie which is different
from all the examples given by Mosher [10].

20F67, 20F65; 57TMO07, 20F28

1 Introduction

The fundamental group of the mapping torus of a pseudo-Anosov homeomorphism of
an oriented closed hyperbolic surface is hyperbolic. This was first proved by Thurston.
A direct proof was given by Bestvina and Feighn [1]. Using their idea, Mosher [10]
proved the following theorem.

Consider an oriented closed hyperbolic surface S'. Let ©, ..., ®, e MCG(S) be an in-
dependent set of pseudo-Anosov mapping classes of S, and let ¢1, ..., ¢, € Homeo(S)
be pseudo-Anosov representatives of @1, ..., O, respectively. If iq,..., i, are large
enough positive integers, then the fundamental group of the graph of spaces G, as
shown in Figure 1, is a hyperbolic group. In the statement of this theorem, by saying a
set B of pseudo-Anosov mapping classes is independent, we mean the sets Fix(®) are
pairwise disjoint for ® € B, where Fix(®) consists of the attractor and the repeller
of ® on the space of projective measured foliations PMF(S).

A graph of surfaces ST consists of an oriented, connected, finite underlying graph I",
a function which assigns to each vertex a closed hyperbolic surface or orbifold, to each
edge a closed hyperbolic surface, and another function which assigns to each oriented
edge a covering map from the edge surface to the vertex surface of the origin of the
edge. In the cases studied in this paper, we change the canonical graph of surfaces
by cutting along the edge surfaces, then choosing pseudo-Anosov homeomorphisms
of the edge surfaces, precomposing with one of the corresponding attaching maps,
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Figure 1

then regluing. We call it a graph of surfaces with pseudo-Anosov regluing. Thus, the
mapping torus of a pseudo-Anosov homeomorphism can be considered as this type of
space where the underlying graph consists of only one vertex and one edge, and the
vertex and edge spaces are the same hyperbolic surface. The case studied by Mosher is
a different reglued graph of surfaces where the underlying graph consists of only one
vertex and, in addition, the vertex and edge spaces are the same hyperbolic surface S'.

We shall extend Mosher’s theorem to the general graphs of surfaces with pseudo-Anosov
regluing. Theorem 1.1 says that if the pseudo-Anosov homeomorphisms are chosen
to satisfy an appropriate independence condition, then the fundamental group of the
reglued graph of surfaces is word hyperbolic, when these homeomorphisms are replaced
with sufficiently high powers of themselves.

We shall describe this cutting and regluing process in more detail. Let ST be a graph of
surfaces with the underlying graph I', let E be the set of oriented edges of I', and let
V be the set of vertices of I". Foreach e € E, let S, be the corresponding edge surface.
For each oriented edge e, there is a finite covering map pe: Se — Fo(e), Where Fy(e)
is the vertex surface of the origin o(e) of the edge e. For each inverse pair of oriented
edges e, e, there is an inverse pair of homeomorphisms g.: Se — Sz, ge_l: Sz — Se.
Let ¢ = {¢e | € € E}, where ¢e: Se — S is a pseudo-Anosov homeomorphism of S, .
Notice that ¢z = ¢, L. Also, let S I'y be the graph of surfaces with pseudo-Anosov
regluing obtained from ST by cutting along each S, and regluing using ¢, ie in the
reglued graph of surfaces, the effect is to replace the map g.: Se — Sg by the map
ge O e, for e € E. Let m = {m, | e € E}, where m, are positive integers, and let
STym be the graph of surfaces obtained from ST by regluing using ¢s'¢ for each
eckE.

Algebraic € Geometric Topology, Volume 11 (2011)



Hyperbolic graphs of surface groups 451

Given a vertex v of the underlying graph I', let F;, be the corresponding vertex
surface (or orbifold). For each v € V', let I, = {i | ¢; is an oriented edge such that the
origin of ¢; is v}. For each v € V and each i € I, there is a finite index covering
map p;: S; — Fy, where S; is a shorthand notation of S, . If an oriented edge ¢;
has v as both its origin and terminal vertex, the covering maps p;: S; — Fy, and
piyo gi: Si — S;— F, might be different, where g; is a shorthand notation of g, .
The portion of ST',m around a vertex space Fy could be as in Figure 2.

e
&j °¢j !
.

Figure 2

For the purpose of Theorem 1.1, fix a hyperbolic structure on each vertex surface Fj.
For each v € V and each i € I, suppose S; is equipped with the metric pulled back by
the covering map p;: S; — Fy. Hence, for each covering map p;, there is the derivative
map Dp;: PS; — PF,, where PS; and PF, are the projective tangent bundles of .S;
and F), respectively. For an oriented edge e;, let gz‘)mj : §; — §; be the pseudo-Anosov
homeomorphism for the edge e;, with the stable geodes1c lammatlon As C S;. The
stable geodesic lamination A% C S of (¢] ) = g]qb gJ is homotoplc to the
image under g; of the unstable geodesw lamination of (]5 " The geodesic laminations
As and A% are independent of the choice of the exponent mj . In the following, let
TAIS. denote the unit tangent space of Aj.

The Main Theorem of this paper is:

Theorem 1.1 Let ST'ym be a graph of surfaces with pseudo-Anosov regluing. Let I'
be its underlying graph. If for each vertex v € I', and for each i € I, the derivative
maps D p;|TAj are injections and their images are disjoint compact subsets of PF,,
then the fundamental group of ST'ym is hyperbolic, when m; € m are sufficiently
large.
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The proof of the hyperbolicity of ST'ym depends ultimately on the Combination
Theorem of Bestvina and Feighn [1]. The Combination Theorem says that if the
quasi-isometrically embedded condition (which is automatically satisfied in the cases
studied in this paper) and the hallways flare condition (which is much more difficult
to check) both hold, then ST,m is a hyperbolic space. In order to check that the
hallways flare condition is satisfied, we need to extend the Parallel Corresponds Lemma
of Mosher [10], the key in that paper, to a new version of the Parallel Corresponds
Lemma. The reason is that Mosher’s Parallel Corresponds Lemma only applies to
closed geodesics, but we need to study the preimages of closed curves on the vertex
surfaces, and these might not continue to be closed curves.

The idea of the proof of Theorem 1.1 is this, the new version of Parallel Corresponds
Lemma implies that if a curve is sufficiently far from the stable geodesic lamination A¥
of a pseudo-Anosov ¢, then it is stretched by ¢ by a definite amount for sufficiently
large m. The hypothesis of the disjointness of D p;|TA} implies no curve is close to
more than one of the Af. Therefore, the “all but one stretch” condition, similar to
Mosher’s “2m — 1 out of 2m stretch”, implies the hyperbolicity of STgm .

Here are some applications of this theorem.

First: Let S be a closed hyperbolic surface, let G, H be finite subgroups of the
mapping class group MCG(S), and let ® € MCG(S) be a pseudo-Anosov mapping
class. Suppose G', H each have trivial intersection with the virtual centralizer of ()
in MCG(S). Then for sufficiently large n, the subgroup A of MCG(S) generated by
G, " HO™" is isomorphic to the free product of these subgroups. Even more, 4 is a
virtual Schottky subgroup of MCG(S), in the sense of Farb and Mosher [4].

Second: Let Ggm be a graph of surfaces with regluing as in Figure 3, where S and F

¢m
sT—2¢

g¢m= )4 q

F

Figure 3

are genus 3 and 2 tori, and ¢: S — S is a pseudo-Anosov homeomorphism. Suppose
there exist simple closed curves a C F and ¢ C S, as shown in Figure 4, such that
p~Ya)=c, c c g7 (a), and ¢~ !(a) is disconnected. In addition, suppose that in the
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group MCG(S), the virtual centralizer of (®) has trivial intersection with the deck
transformation groups of p and ¢, where ® is the mapping class of ¢. Then 71 (Ggm)
is hyperbolic when m is sufficiently large.

SCORCEE
S F

Figure 4

More interestingly, we will see that there exists a pseudo-Anosov homeomorphism ¢
of S, such that 7 (Ggm) is not commensurable to 71 (S”) x K, for any oriented, closed
hyperbolic surface S’, and for any free group K, where Gym is as above. Moreover,
m1(Ggm) is not even quasi-isometric to any surface-by-free group. Therefore 771 (Ggm)
is different from all the hyperbolic groups constructed by Mosher [10].

Problem Do there exist some reducible homeomorphisms of the edge surfaces, such
that the graph of surfaces with reducible homeomorphism regluing are hyperbolic?

Problem Is Theorem 1.1 still true when the vertex and edge groups are free groups?

2 Preliminaries

In this section, we recall some preliminaries about combinatorial and geometric group
theory and some facts about hyperbolic geometry which will be needed later.

Graphs of surfaces Let I be an oriented, connected, finite graph, let e be an oriented
edge of ' and let e be the inverse edge of e. The vertex o(e) is the origin of e and
the vertex ¢(e) is the terminal of e, obviously o(e) = t(e).

A graph of surfaces ST consists of an oriented, connected, finite graph I' and a
function which assigns to each vertex v € I" a closed hyperbolic surface or orbifold F;,
to each pair of oriented edges e, e closed hyperbolic surfaces S., Sz and an inverse
pair of homeomorphisms g.: Se — Sz, gz: Sz — Se, and to each edge e a continuous
map pe: Se = Fy(e), such that p, induces an injection on the fundamental groups. In
most of our cases, the p,. are covering maps for every edge e of I'.

Given a graph of surfaces ST', we can define the rotal space St as the quotient of
the disjoint union (| J{Fy | v € V(I)}) J(J{Se x I | e € E(T")}) by identifying the
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equivalent classes: (s, 1) ~ pe(s) for (s,1) € Se X1, pe(s) € Fieys (5,0) ~ (ge(s),0)
for (5,0) € Se X I, (ge(s),0) € Sgx I, where g.: Se — Sz. The fundamental group
of the graph of surfaces 1(ST) is defined to be the fundamental group of the total
space St. There is a projection map m: St — I', such that each vertex surface Fj
maps to the vertex v, and S, x I U Sz X I —>e,and 7w isa surjection.

The universal cover ST of ST is a union of copies of the universal covers §; x I and
F’v .In ST, if we identify each copy of 13; to a point and each copy of 3’; x I to a copy
of I, then we obtain a graph ¢ and there is a canonical projection map 7: ST — 1.1t
is not hard to see that ¢ is a tree, called the Bass—Serre tree. The action of 71 (ST")
on ST descends to an action of m1(ST) on ¢, where the quotient graph coincides
with the original graph I', and the stabilizers of each vertex and each edge of ¢ are
conjugates of corresponding fundamental groups of Fy and S,.

Construction of pseudo-Anosov homeomorphisms In a surface S, C is an essential
curve system, if C ={cy,...,cp}, where cy,..., c, are nontrivial simple closed curves
on S which are pairwise disjoint and pairwise nonhomotopic.

Let C and D be two disjoint essential curve systems, C hits D efficiently if C inter-
sects D transversely, and no component on S\ (C U D) is a bigon, ie the interior of a
disk whose boundary consists of one arc of C € C and one arc of D € D. We say that
CUD fills S if the components of the complement of (C U D) are disks.

The following shows how to construct pseudo-Anosov homeomorphisms.

Theorem 2.1 (Penner [13]) Suppose that C and D are essential curve systems in
an oriented surface F so that C hits D efficiently and CUD fills F. Let R(C*,D™)
be the free semigroup generated by the Dehn twists {t;" : ¢ € C} U {r‘;l :d € D}.
Each component map of the isotopy class of w € R(Ct, D7) is either the identity or
pseudo-Anosov, and the isotopy class of w is itself pseudo-Anosov if each ;5 and ‘E;l
occur at least once in w.

Surface group extensions A surface group extension is a short exact sequence of the
form

(1) l>m(S,x)>T'—>G—1

where S is a closed, oriented surface of genus g > 2. The canonical example is the
Birman exact sequence

) I —> 711(S, x) —> MCG(S, x) —1> MCG(S) —> 1
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where MCG(S) is the mapping class group of S, MCG(S, x) is the mapping class
group of S punctured at x. This short exact sequence is universal for surface group
extensions, meaning that for any extension in the short exact sequence (1), there exists
a commutative diagram

Il —— m1(S,x) ——> r —_ G — 1

| l .

I —— 71(S,x) —— MCG(S, x) —— MCG(S) —> 1
where I' is identified with the pullback group

“4) Ly =1{(¢.v) e MCG(S.x) X G | q(¢) = a(y)}.

« is a homomorphism from G to MCG(S), and the homomorphisms I' — G and
I' - MCG(S, x) are the projection homomorphisms of the pullback group. We are
more interested in the case where « is an inclusion.

The virtual centralizer of ® Given a subgroup H of a group G, the virtual central-
izer VC(H) of H in G is the subgroup of all g € G which commute with a finite index
subgroup of H. The virtual centralizer of an infinite cyclic pseudo-Anosov subgroup
has a nice geometric description. Let PML(.S) denote the space of projective measured
laminations of the surface S'. Let A®, A* C PML be the fixed points of a pseudo-
Anosov mapping class ®, and let Fix{A*, A*} denote the subgroup in MCG(S) whose
elements fix A® and A% pointwise. Mosher [12] proved that Fix{A®, A*} = VC(®).

Facts of hyperbolic geometry Our proofs make heavy use of the following facts of
hyperbolic geometry:

Fact1 Forany 0 <§ < 1, and D > 0, there exists a number [(§, D), such that if
y,a are geodesic segments of length at least [(§, D), and the end points x, y of y
have distance at most D from the end points x’, y’ of a respectively, then there exist
subsegments y’' C y, o’ C « of lengths at least (1—§)Length(y) and (1 —§)Length(«)
respectively, such that the Hausdorff distance between v’ and o' is less than §.

Roughly speaking, for any two geodesic segments, if their end points have bounded
distances from each other, then large subsegments of them are arbitrarily close to each
other provided the segments are long enough.

Fact 2 Given k > 1, ¢ > 0, there exists a constant Ny(k,c), such that any (k,c)
quasigeodesic line or segment in hyperbolic space H? has Hausdorff distance at most
Ny(k, c) from a geodesic line or segment with the same end points.

Algebraic € Geometric Topology, Volume 11 (2011)



456 Honglin Min

Fact 3 Let Ay and A, be two minimal geodesic laminations filling a hyperbolic
surface S'. If their lifts A1 and A, to the universal cover of S have at least one end
point in common, then A1 = A;.

A geodesic lamination A is minimal if every leaf L is dense, thatis, L = A. A
geodesic lamination A C S is a filling lamination if no simple closed curve in S is
disjoint from A.

The reason this fact is true is that two minimal filling surface geodesic laminations
either transversely intersect each other or are equal to each other.

From Fathi, Laudenbach and Poenaru [6], we know that the stable and unstable geodesic
laminations of a pseudo-Anosov homeomorphism are minimal and filling.

3 The Main Theorem

We will give a new version of the Parallel Corresponds Lemma and use it to prove
Theorem 1.1. Moreover we will reformulate the hypothesis of Theorem 1.1. The
original Corresponds Lemma was given by Mosher [10].

3.1 All but one stretch

Mosher proved the hyperbolicity of 7{(G) using a lemma called “2m — 1 out of
2m stretch”, where G as shown in Figure 1. The “2m — 1 out of 2m stretch”
Lemma says that for any A > 1, if iy,...,i, are sufficiently large integers, then
for any nontrivial element g € 71 (S, x), at least 2m — 1 out of the 2m elements
() o ..., Im dmim) stretch g by a factor of A. In this lemma, @, ..., @m
are considered as elements in MCG(S, x), since by taking powers, we can assume
@1,...,¢m each have a fixed point x. We use the same symbol ¢ to denote the
corresponding element of Aut(m;(S, x)), for any ¢ € MCG(S, x). ¢ stretches g by
a factor of X if the length of ¢(g) is greater than A times the length of g, where the
length is the word metric length.

Following Mosher’s idea, we shall prove the hyperbolicity of ST',m by showing that
it satisfies the “all but one stretch” Condition. We say that ST,m satisfies the “all
but one stretch” Condition, if there exist A > 1 and C > 0, such that for any based
geodesic segment y on a vertex surface Fy of STym, with length at least C, all but
at most one of the preimages of y are stretched by corresponding (]bl.m " by a factor of
at least A for any i € I,. The proof of the Main Theorem shows that ST',m satisfies
this condition.
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3.2 A new version of the Parallel Corresponds Lemma

Consider a pseudo-Anosov mapping class ® C MCG(S) and let ¢ € Homeo(S) be a
pseudo-Anosov representative with the stable and unstable measured foliations f ¢f, f q;‘ .
Recall that the transverse measures on f df and f d? define a singular Euclidean structure
on S, with isolated cone singularities. We call the leaves of f qf the horizontal leaves
and the leaves of f dﬁ‘ the vertical leaves. The singular Euclidean structure determines
a metric dg on S in which each path can be homotoped rel end points to a unique
geodesic. The lifts to the universal covers of the hyperbolic metric and the singular
Euclidean metric are quasi-isometric.

In the following, for a homotopy class ¢ of a curve rel end points, let yh denote
the hyperbolic geodesic segment in the homotopy class of y, and let y £ denote the
singular Euclidean geodesic segment in the same homotopy class. For a homotopy
class y, let |y| denote the hyperbolic length of y”, let |y|g denotes the singular
Euclidean length of y £

Given 0 < n < 1, define slope” to be the set of all homotopy classes y, such that the
(unsigned) Euclidean angle between yE and f df is at least 7, on a subset of y £ of
length at least n-|y|g. Given A > 1, let stretch)‘ ={y | (@) > Aly|}. Let n be a
large enough integer, such that if the vector v € IE2 makes an angle of at least n with
the horizontal axis, then the matrix
(+)
0 A %

stretches v by a factor of at least A /7, where A4 = lim; oo |¢p? ()| '/? is the stretching
factor of ¢, o is a simple closed geodesic on S. Since the singular Euclidean metric is
quasi-isometric to the hyperbolic metric, it follows that given ¢, 0 <n <1 and A > 1,
there exists N such that if » > N, then slopez C stretch;;,,

An n-lever is a homotopy from a singular Euclidean geodesic segment « to a horizontal
segment 3, where B is a segment of a nonsingular leaf of the horizontal foliation f;,
such that each track of the homotopy is a vertical geodesic segment, possibly degenerate,
and each point of int(«) is disjoint from singularities during the homotopy, and int(c)
makes an angle of at most 1 with the horizontal leaves. In Mosher [10], 8 is not
necessarily a segment of a nonsingular leaf. But we can always assume f is a segment
of a nonsingular leaf, because there exist nonsingular leafs which are arbitrary close to
a singular leaf. Notice that the angle between a singular Euclidean geodesic and the
horizontal leaves changes only when the singular Euclidean geodesic passes through a
singularity. Therefore, the interior of « has a constant angle with the horizontal leaf.
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A lever is denoted by («, B8), where « is called the inclined edge of the lever, and B is
called the horizontal edge of the lever. A lever is maximal if and only if a singularity
is contained in the track of each end point of «. The length of the lever is |«| g, the
height of the lever is the maximum singular Euclidean length of the tracks of the points
of o, which is achieved at the endpoints.

Proposition 3.1 (Mosher [10]) Forany /, H > 0, there exists n(/, H) > 0, so that
every maximal n—-lever has length at least | and height at most H .

The proof is given in the first seven paragraphs of the proof of the sublemma on page
3451 of Mosher [10]. This proposition will be used in the proof of the following lemma.

In the proof of the following lemma, we need some facts. It is well known that the
measured foliations f qf, f q;‘ can be straightened to measured geodesic laminations
15,1 z Actually, there is a 1-1 correspondence between leaves of /5 and smooth
leaves of f df’ where a smooth leaf is either a nonsingular leaf or the union of two
singular half-leaves meeting at a singularity with angle 180°. Similarly for f. dﬁ‘ The
singularities are discrete, so the length of any geodesic connecting them has a positive
lower bound.

Lemma 3.2 (A new version of Parallel Corresponds Lemma) Given any pseudo-
Anosov homeomorphism ¢ and 0 <€ < 1, there exist 0 <n <1 and L > 0 such that
for any homotopy class y, if y ¢ slope” and |y|g = L, then on a subset of y" of
length at least (1 —€)|y|, the distance between the tangent line of y" and the set I,
measured in PS, is at most €.

The differences between the Parallel Corresponds Lemma of Mosher [10] and this
new version are as follows. In [10], the Parallel Corresponds Lemma works only for
closed based geodesics, and the word metric is used to define the stretching factor; in
this paper, the new version of the Parallel Corresponds Lemma works for nonclosed
geodesics as well, and the hyperbolic metric is used to define the stretching factor.

Proof The first step is to find long subsegments ; C £ and segments B; of leaves
of f § such that o; is homotopic to 8;. Then we shall project «; to a subsegment of )/

and prOJect Bi to a segment of a leaf Bh of l; and show that the long subsegments
of these projections are very close to each other. Finally we shall prove the long
subsegments of y” are almost covered by the long subsegments of these projections.

For y ¢ slope let {(«i, Bi)} be the set of all maximal n—levers of y£, where the
inclined edge o; is a subsegment of y £ and the horizontal edge f; is a segment of
some nonsingular leaf BiE of f7 e
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Step 1 First, let H = 1. By Proposition 3.1, we know that for any / > 0, there exists
n > 0 such that every maximal n-lever {(«;, 8;)} has length at least / and height at
most H = 1. The first step is proven.

Step 2 we shall construct long subsegments of )/h from the inclined edges o; C y £
of the maximal levers, such that these long subsegments of )/h have small distance
from /5 measured in P.S. For the remainder of the proof, the distance and length mean
hyperbolic distance and length, unless we will use the terminology Euclidean distance
and length.

We know that any nonsingular leaf BE of f df is a quasigeodesic under the hyperbolic
metric, and it can be straightened to a unique leaf Bh of l * . Denote by §; C y and
0; C Bh the closest point projections from o; C y £ to yh and from B; C BE to Bh,
respectlvely We shall see that a long subsegment of §; has small distance from o;, for
all 7.

Since yF is a (k,c) quasigeodesic segment contained in the Ny (k, c) neighborhood
of )/h, and §;, «; are subsegments of )/h , vE respectively, it follows that the distances
between the end points of §; and «; are not greater than Ny. For the same reason, the
distance between the end points of o; and B; are not greater than Ny. The singular
Euclidean distance between the end points of 8; and «; is less than the height H = 1.
The hyperbolic distances between their end point are at most mk, for some m > 0,
because the singular Euclidean and hyperbolic metric are (k,¢) quasi-isometric to
each other. Therefore the distances between the end points of §; and o; are less than
2Ny + mk. According to Fact 1, for any €; > 0, there exists a constant L depending
on 2Ny + mk and €1, so that if the length of §; is greater than L, then more than
(1 —€1)|d;| portion of §; has distance less than €; with o;.

The condition that the length of §; be greater than L is easy to satisfy. Since «; is
a quasigeodesic segment whose end points have distances less than Ny from the end
points of §;, there exists a constant /; > 0, such that if the Euclidean length of «;
is greater that /, then the length of §; is greater than L. By applying Step 1, we
may now choose #n small enough, so that the Euclidean length of «; is greater than /;
for any i . Therefore, more than a (1 —€;)|§;| portion of §; has distance less than €,
from o; .

So far, we have proved that for any €, there exists 1, such that if y ¢ slopeg5 , then we
can locate long subsegments §; of yh, such that more than (1 —€¢) of the length of &;
has distance less than €; with o; C Bih, forany 7.

Step 3 we will prove thata (1—e€;) >, |§;| portion of ( J;(;) covers long subsegments
of . We call this (1 —€;) Y, |8;] part of | J;(5;) the “good” part of y".
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Since y ¢ slope on a subset of y£ of length at least (1 —1)|y| g, the angle between
yE and f df is less than 7, ie the n—levers cover more than a (1 —mn) portion of yE

The worst situation is that the two end subsegments of y £ are covered by n—levers
with lengths less than /; . In this case, after straightening, the end subsegments of )/h
may not have distances less than €; from B”. We will only prove this lemma for the
worst situation, ie when more than a (1 —€;)|y|g portion of y £ is covered by the
union of the maximal n-levers («;, 8;) and two end n-levers which cover the two end

segments of ¥ £ respectively and with lengths less than /.

In the following, the quasi-isometries will be replaced by bi-Lipschitz maps when
we are dealing with long segments. Keep in mind that in the following, §; is not the
projection of an end subsegment of y %

(e 1= (1 —en ( Ll —2N0))
> (1 —61)(Z(|a;€|E —2N0)).

4

According to Proposition 3.1, we can take 1 to be small enough, so that |o;|g = [, =
4k Ny for any i, thus

(=X lalz - e 2 llE,

Since the union of the maximal n—levers and the two end n—-levers, covers more than
(1—€1)|y| g portion of ¥ £, and we can suppose that the two end n—levers have lengths
less than /q,

(I—eDlyle—20L
2k ’

(I—e) > 8= (-

taking |y |g to be long enough, so that |y|g > L, =211 /€1,

(1=2e)|ylE

(=) D I8l = (1 —er)—

_ (=2alyls
- 2k

-2
Hence, (1 —61)2 |6i] > ——— 61) |V|E
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The “bad” parts of yh are of three kinds. The first kind of bad part are the two end
subsegments of )/h which have lengths less than L. The sum of the lengths of the
end subsegments of yh is at most 2L 1. We can take |y|g to be big enough so that
2L =elylE-

The second kind of bad part of 3" is the €;|8;| portion of §;’s which may be outside
of the €1 neighborhood of o;. Since the projection map cannot prolong length, and the
distances between the ends of «; and §; are not greater than Ny,

D erlsil <er Y (loi| +2No).
i i

We can take 1 to be small enough, so that |a;|g > [, = 4k Ny for any i. The singular
Euclidean metric and the hyperbolic metric are k bi-Lipschitz; thus, |o;|g < k]|o;].
Therefore, 2Ny < 2k Ny < |o;|/2, thus

3
Ze1|8i|5e152|ai|
1 1
3
selszwE
1

<e2klylE.

A third kind of bad part of yh is the projection of an €;|y|g portion of y£ which
has slope greater than €¢; with f qf . Let & denote this kind of subsegment of y £
There is a lower bound b of the Euclidean lengths of &; for all i, and it equals the
minimum of the Euclidean distances between singularities. The sum of the lengths of
the projections from &; to y” is at most Y ikl&ilE+c) <) (k|&|E+(m—1)kb) <
ny ;(k|&|g) <nkei|y|E, for some n satisfying ¢ < (n—1)kb.

Therefore, the length of the “bad” part of y" is at most the sum of the above three
kinds, which is (2k + 1+ nk)e;|y|£. Hence, the ratio of the “good” part of " to the
“bad” part of " is at least (1 —2¢;)2/(2k(1 + 2k + nk)e;). From this, it is easy to
see, for any constant € there exists a small enough €, such that the ratio of the ‘good’
part of ¥” to " is at least (1 —¢).

To recap: for any € >0, we can choose €; small enough so (1—2¢;)2/2k(14+2k+nk)e;
is greater than 1 — € therefore, the “good” part of yh covers more than (1 —¢) of the
total length of yh. Next choose 1 small enough so that if vE ¢ slopeg, then more than
(1 —¢€)|8;] portion of §; has distance less than ¢; from o;. In addition, take |y|g to
be at least L, where L = max{L,,2L/¢;}. Hence if n is small enough, y & slope

and |y|g > L, then the large subsegment of »” has distance at most € to /3, measured
in PS'. |
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Given a geodesic lamination A and 0 < e < 1, let WN¢(A) denote the set of all the
homotopy classes, y, so that on a subset of yh of length at least (1 —¢)|y|, the distance
from the tangent line of yh to the set A, measured in PSS, is at most €. Using this
notation, the Parallel Corresponds Lemma says that for any 0 < € < 1, there exists
0<n<1and L >0, such thatif y ¢ slopeg5 and |y|g > L, then y € WN¢(A?®),
where A is the measured stable geodesic lamination of ¢.

3.3 Proof of the Main Theorem

Proof of Theorem 1.1 We shall prove the “all but one stretch” Condition is satisfied,
ie there exist A > 1 and C > 0, so that for any vertex w € I, if a based geodesic
segment )/lf’, C Fy has length at least C, then all but at most one preimages belong to
stretchglfni for corresponding ¢;, for any i € I,,, where I, = {i | ¢; is an oriented edge
such that the origin of e; is w}. Therefore, ST'ym is a hyperbolic surface.

Let v be a vertex of I, let yv C Fy be a based geodesic segment. Consider the set
Y = Uljer, Pi” 1()/If’) where p;” 1()/v) is the set of all preimages of yv under the
map p;. Notice that all the elements of ¥ are based geodesics, since the edge surfaces
of ST'ym are equipped with the pullback metrics.

First, we claim that there exist 0 < €9 < 1 and Hy > 0, such that if the length of )/v i
greater than Hj, then at most one of the elements of X, say f € Pi, (yh) satlsﬁes
B € WNg, (Afo), for some iy € I,; all other elements of X are not contained in
WNe (A7) for the corresponding Aj. Second, according to Lemma 3.2, for this eo,
there exist 0 <7n(ep) <1 and L(eg) > 0, such that for any o € ¥ with length |«| = |yv |
greater than L(¢gp), if ¢ WNe, (AS ), then a € slope"(e‘)) C stretch mJ for sufficiently
large m; . So, for any yv with length greater C= maX{H L(eg)}, all but at most one
of the preimages of )/v belongs to stretchd,l'_"z for the corresponding ¢; .

Suppose the claim is not true. In other words, for any €, — 0, and any H, — oo,
there exist based geodesic segments yn C F, with lengths at least H, and by passing
to a subsequence, without loss of generality, we can suppose Ah €py 1()/n) and
Bh €p; 1()/ ) such that Ah € WNg, (A}) and Bh € WNg, (A3). Projecting Ah and
Bh to A{ and A% respectively, we see that there exist long subsegments v, C A} and
wy C Ai, such that [V|, |@wn| — 00, and the distance between Dp|T v, and Dp, | Twy,
converges to zero. This contradicts with the fact that Dp{|TA{ and Dp,|TAS are
disjoint. a

3.4 Reformulation of Theorem 1.1

Notation here is the same as in the Introduction. The only difference is that here, the
edge surfaces are not necessary equipped with the pullback metrics.
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Let v be a vertex of I', let y be the base point of Fy, and let I, be as defined before.
Consider the set p;” 1(y) € S; of all the points of S; that cover y via the map p;, for

iel,. Let X = Ulelv pi_l(y).

Suppose a € p_l(y) choose a lift p,: (§,,5) — (fv,)'?) where S; and F, are the
universal covers of S, and Fj, respectively. Let As C S, be the stable lamination
of ¢; and let As C S; be the lift of A3 . Notice that 9 p, (AS ) C 8Fv is well deﬁned
independent of the choice of y and a. If foranya #be X, dp, (As) Napp (AS) =
where a € p;” '), be pj 1(y), then we say v satisfies the disjointness condztzon We
only require a # b, but i might equal j. The reformulation of Theorem 1.1 is the
following.

Theorem 3.3 Let ST'ym be a finite graph of surfaces with underlying graph T". If for
any vertex v € I', the disjointness condition is satisfied, then 1 (STym) is a hyperbolic
group, when the m; € m are sufficiently large.

We shall show the equivalence of the hypotheses of Theorem 1.1 and Theorem 3.3.

First, suppose D p;(TA7) is disjoint from D p; (TA; ), for i # j. Then the images of
the leaves A under the map p; must transversely intersect the images of the leaves A;
under the map p;. Thus, the end points of their lifts in F' are disjoint.

Second, suppose D p;(TA?) is injection for all i. If 8pal (AS) N0 Pa, (As) # @, for
some day,dz € p; 1(y), then there exist leaves Li.L, C AS such that Pal(L1) =
Da, (Lz) But this contradicts the injectiveness of D p;(TA} ) So, we have finished
the proof of one direction.

Suppose Dp;(TA7) is not disjoint with D p; (TAS) ie there exist leaves L C A} and
J C As such that Dp; (L) = Dpj (J). Then there exist a lift L of L and a 11ft J
of J such that pa(L) pb(J) for some a € p;” 1(y) and some b € p; ~1(y). This
contradicts with the hypothesis of Theorem 3.3. The proof of the injectivity of the
Dp;(TAY) forall i is similar.

4 Applications

The following theorem will be used to prove Corollary 4.3.

Theorem 4.1 (Farb and Mosher [4, Theorem 1.2]) Let 1(S) be the fundamental
group of a surface S, and let I'y, be the surface group extension of a group G . If T,
is word hyperbolic, then the homomorphism «: G — MCG(S) has finite kernel and
convex cocompact image.
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Let STym be a graph of surfaces with pseudo-Anosov regluings. Let p: Se — Fy be
an index r covering map, where F, and S, are vertex and edge surfaces of ST ym
respectively and v isanend of e. Let y € F, be abase point, let {x;,....x,}=p ' (»)
denote the preimages of y under the coverlng map p, and let X; € Se be a covering
point of x; for i € {l,...,r}. Let p, (Se,x,) — (Fv, ¥) be alift of p. Given a
geodesic lamination A C Se, if ap,(A) ﬂapJ(A) =@ forany i # j €{l,...,r},
we say that the ends of p(A\) are disjoint.

Lemma 4.2 Let p: S — F, be a normal covering map. Let ® € MCG(S,) be a
pseudo-Anosov mapping class, and let A, A" be the stable and unstable geodesic
lamination respectively. Suppose the virtual centralizer of (®) has trivial intersection
with GD,, the image of the deck transformation group of p in MCG(S'). Then the
ends of both p(A®) and p(A") are disjoint.

Proof We shall only prove that 35 (A®) and 9> (A®) are disjoint; a similar argu-
ment shows the pairwise disjointness of {dp;(A%)} and the pairwise disjointness of
{0p;(A")}, forall i €{1,...,r}.

Let Dq3: (Se, x1) = (Se, x2) be a deck transformation of the covering map p, and
let Dqy: (Se,X1) = (Se, X) be alift of Dq,.

Since p; = ﬁzﬁlz )2 (Ks) = ﬁzﬁlz(xs) Hence, if the boundary points of the
images of AS under p1 and p, have one pomt in common, then D1 Z(AS) and A*
have one end point in common. Since D12(As ) and A are the lifts of the geodesic
laminations D1,(A%) and A*® respectively, by Fact 3, we know Dq,(A*) = A%, where
Dy, is considered as an element of GD, C MCG(S). Applying [12, Theorem 3.5], if
D1,(A%)= A?,then D, is contained in the virtual centralizer of (®). This contradicts
the hypothesis that the virtual centralizer of (®) has trivial intersection with GD,,. O

Corollary 4.3 Let G, H be finite subgroups of MCG(S), and let ® € MCG(S)
be a pseudo-Anosov mapping class. If the virtual centralizer of (®) has trivial in-
tersection with G and H, then for sufficiently large M , (G, ®M H®~M) s a free
product in MCG(S), ie (G, PM HOM) =~ G « ®M HO M | and its extension group
is hyperbolic.

Remark If G is a finite subgroup of MCG(S)), then G has a faithful representation
as a subgroup of Homeo(S), which we continue to denote by G . The quotient S/G,
called Fy, is a hyperbolic surface or orbifold. There exists a canonical embedding
i: PML(Fy) — PML(S), where PML is the projective measured geodesic lam-
inations space. Given a pseudo-Anosov mapping class ® € MCG(S), if the stable

Algebraic € Geometric Topology, Volume 11 (2011)



Hyperbolic graphs of surface groups 465

and unstable geodesic laminations A*, A% & i (PML(Fy)), then the virtual centralizer
of (®) has trivial intersection with G'. Therefore, it is easy to find a ® C MCG(S)
which satisfies the hypothesis of this corollary.

Proof Let the symbols G, H denote both the finite groups of MCG(S) and their
faithful representations in Homeo(S). Let Fo =S/G, Fy =S/H. Let p: S — F)y,
q: S — F; denote the corresponding covering maps, and let py: 71(S) — 71 (Fp),
qx: 71(S) — w1 (F1) denote the induced maps on fundamental groups.

Let GT' be the following graph of groups:

71(Fo) <2 71(S) q}—M) T1(S) —=— 1y (Fy)

So, m1(GT) is the fundamental group of the following graph of surfaces ST':

M
Fo<l s .52,

where ¢ € Homeo(S) is a pseudo-Anosov representative homeomorphism of .
There exists a short exact sequence
1 - 71(S,x) > Tgyom go-m — Gx @M HO™ 1.

It is not hard to see that I'g,gm ge—s is isomorphic to I'g *, (s) 'em gre—r , and
that I'G *, (s) CgM gre—m is isomorphic to 771 (GT).

By Theorem 4.1, if 771 (GT) is a word hyperbolic group, then §: G * @M Hd—M
MCG(S) has finite kernel. Since G and ®™ H®~M are finite groups, by applying [14,
Theorem 3.11], a normal subgroup of G s ®™ H®~M must be trivial or of finite index.
Therefore, § is an injection, which tells us that (G, ®M HOM) ~ G « dPM HO—M |

In order to prove m1(GI'") is word hyperbolic, we only need show that ST is a
hyperbolic graph of surfaces. By Lemma 4.2, we know that the ends of p(A®) and
q(A") are disjoint. Therefore, ST is hyperbolic by Theorem 3.3. |

Let Ggm be as in Figure 3, where §, F are genus 3 and 2 tori. Let p: S — F
and ¢g: S — F be covering maps and let ¢ be a pseudo-Anosov homeomorphism
of the mapping class ®. Abusing of notation, we use D,, D, for both the deck
transformations of p, ¢ and the mapping classes of the deck transformations. It is
easy to see that the deck transformation group GD, of p contains only two elements,
D, and the identity, the same is true for the deck transformation group of ¢. Further
abusing of notation, we let GD, denote both the deck transformation group of p and
its image in MCG(S).
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Corollary 4.4 Suppose a: S! — F and ¢: S' — S are simple closed curves such
that p~1(a(S")) = c(S1), c(SY) c g (a(S")), and ¢~ (a(S")) is disconnected, as
in Figure 4. In addition, suppose the virtual centralizer of (®) has trivial intersection
with the images of the deck transformation groups of p and q in MCG(S). Then
m1(Ggm) is a hyperbolic group, when m is sufficiently large.

Proof Let z be the base point of F', let x, x, be the covering points of z through
the covering map 2z and let V1.2 be the coverlng pomts of z through the covering
map ¢. Let D (S X1) — (F Z) and ps: (S X)) — (F Z) be the lifts of p, and let
D (S,%1) = (S, %) be the lift of D,, and similarly for g.

According to Theorem 3.3, we only need to show that {3 (A%), d52(A%), 871 (AY),
0g>(A™)} is a pairwise disjoint set.

First, using Lemma 4.2, we obtain 85y (A%) N3 5,(A%) = @, 871 (A*) N G2 (A%) = &
Second, we claim that if there exist 35, (A*) and 8,(A%) which are not disjoint, for
some r,t € {1, 2},then p(AS) = ¢g(A") is a geodesic lamination on F. It follows that

A* is a fixed point of GD, C MCG(S). Therefore the virtual centralizer of (®) and
the deck transformation group have nontrivial intersection. A contradiction.

In the following, we will prove the above claim. Since px(w1(S)) # ¢«(71(S)), and
they are both index two subgroups of w1 (F), p«(71(S)) N g«(w1(S)) is an index
four subgroup of 7(S). By calculating the Euler characteristic, we know there is a
genus five surface G, and covering maps i and j, such that the diagram in Figure 5
commutes, ie pi =¢qj.

S/G\S
N A

Figure 5

After straightening, the preimages of i ~!(A®) and j~!(A¥) are geodesic laminations,
called £° and £*, on G.

Without loss of generahty, suppose pq (As ) and g1 (A”) have one end point in common,
then pyi 7(£%) and qiJ (E”) have one end point in common. Combining this with the

Algebraic € Geometric Topology, Volume 11 (2011)



Hyperbolic graphs of surface groups 467

fact that 57 and G G — F are homeomorphisms, we know that £° and £* have
one common end point. We claim that £% and £* are minimal geodesic laminations and
fill the surface G . Therefore, if they have one common end point in the universal cover
of G, then £5 = L*. Tt is not hard to see that £® is connected and without isolated
leaves; therefore, according to [3, Corollary 4.7.2] £5 is minimal. The laminations £*
and L* fill G because they are lifts of filling laminations A* and A*.

There exists some m such that ¢™: S — S is lifts by i and j to homeomorphisms
of G. Denote the lift of ¢"": S — S through i as {: G — G, and the lift of ¢—"™
through j as o: G — G. Notice that £° is the stable geodesic lamination of { and
L* is the stable geodesic lamination of o . Since £% = L¥, there exist positive integers
ki, ko, such that ¢¥1 is homotopic to o2,

Since §k1 is homotopic to o*2 and pi = ¢qj, we know that pi Zkl is homotopic
to gjo’2. Also, p¢¥1™i is homotopic to g %2 j because ¢p¥1"i = i¢%1 and
p~ramj = joku.

Let p(c): S! — F be the closed curve which is the composition of ¢: S' — S with the
covering map p: S — F. Similar notation are used for other compositions of closed
curves with covering maps. The map c2: S' — S is defined to be the composition
of the map z — z? on the unit circle S! with map ¢: S! — S. Let [a], [c] denote
the conjugacy classes in the fundamental group of F represented by the simple closed
curve a, c.

Since p(c) is homotopic to a2 and ¢(c) is homotopic to a, we see that [a] € p«(771(S)),
[a] € ¢+ (1(S)), and [a]? € ps«(71(S)) N g« (1(S)). Hence there exists y: S! - G
which is homotopic to a simple closed curve, such that i (y) is homotopic to ¢ and j(y)
is homotopic to ¢2. Therefore, pd*1™(c), pd*1™i(y), g¢p~*2™ j(y) and g2 (c2)
are homotopic to each other.

We claim that q¢_k2’”(c) is homotopic to a simple closed curve on F. Let B be the
closed geodesic on F which is homotopic to g¢p %2 (¢). If B is not simple, then there
exits a point z € B(S1), and a simple closed curve a: S! — S which is homotopic
to ¢ k2™ (¢), such that ¢(«) = B, and there exists two points x; # x, € a(S!) such
that ¢(x;) = g(x2) = z. Since ppK1™(c¢) is homotopic to gp—*2"(c?2), there exists
a simple closed curve 1 from S! to S which is homotopic to #*1™(¢), and whose
image under the map p goes around f twice, to be more precise, p(n) = 2. It follows
that there are four different points y;, v, y3, y4 € n(S1) such that p(y;) = p(y;) =
p(r3) = p(y4) = z, which contradicts the fact that p: S — F is an index 2 covering
map.

Algebraic € Geometric Topology, Volume 11 (2011)



468 Honglin Min

By iterating, we have

pi ™1 is homotopic to ¢jo"*? forall n € N,

—nkom

"KM (1) is homotopic to g¢ j(y)foralln e N,

pd™*1™ (¢) is homotopic to g "¥2™ (¢2) for all n € N.

By using the same argument, we know qu_”kzm(c) is homotopic to a simple closed
curve on F', for all n € N. Let o, denote the geodesic in the free homotopy class of
¢_”k2m(c). There exists a subsequence of «;,, without loss of generality still call it oy,
such that i, — A% as n — co. Since g¢ %2 (¢) is homotopic to a simple closed
curve on F for all n, the geodesics in the free homotopy classes of the g¢ %2 (¢)
converge to a geodesic lamination ® C F, after passing to a subsequence. It follows
that g(A¥) is a geodesic lamination.

Notice that in the proof, we can only lift ¢"*: S — S by i and | j to homeomorphisms
of G for some m € N, but the end points of 9 p; (AS) and 0g; (A”) for any i, j € {1 2}
do not depend on m. Therefore, we have proved that {dp; (As) aps (AS) 941 (A“)
0g> (A”)} is a pairwise disjoint set. According to Theorem 3.3, we know 1 (Ggm) is
hyperbolic for sufficiently large m. O

5 An example which is not abstractly commensurable to a
surface-by-free group

In this section, we will show that there exist a graph of surfaces whose fundamental
group is hyperbolic, but which is not abstractly commensurable to any surface-by-
free group, for any closed hyperbolic surface or orbifold S’ and any free group K.
Therefore, this group is different from all the groups constructed by Mosher [10]. By
applying [5, Theorem 1.1], it follows that the example constructed here is not even
quasi-isometric to any surface-by-free group.

Recall that, groups G and H are called abstractly commensurable, if there exist finite
index subgroups G| < G and Hy < H, so that G is isomorphic to H;. A group G is
called a surface-by-free group, if there is a hyperbolic surface or a hyperbolic orbifold S,
and a free group K, such that there exists a short exact sequence:

l->m(S)>G—>K—1

First, we shall give a necessary and sufficient condition for a group to be abstractly
commensurable to a surface-by-free group. Second, we shall construct a nonhyperbolic
graph of surfaces G, by applying the condition, whose fundamental group is not
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abstractly commensurable to any surface-by-free group. Finally, we shall construct
a hyperbolic graph of surfaces Ggm from G such that m;(Ggm) is not abstractly
commensurable to any surface-by-free group.

Let ¢ denote the Bass—Serre tree of a graph of surfaces ST, and let V, E denote the
set of all the vertices and edges of ¢, respectively. The group 71 (ST') acts on ¢ with
subgroups stab(v) and stab(e), which stabilize the vertex v € V' and the edge ¢ € E,
respectively.

Lemma 5.1 The fundamental group of a graph of surfaces ST is abstractly commen-
surable to a surface-by-free group if and only if [stab(v) : [),,ep stab(w)] < oo, for all
veV.

Proof According to Farb and Mosher [5], a finite index subgroup of a surface-by-free
group is a surface-by-free group. If 71 (ST) is abstractly commensurable to a surface-
by-free group, then there exists a finite index subgroup of H of 71 (ST) which is
isomorphic to a surface-by-free group.

The group H acts on ¢, a locally-finite tree with bounded valence, and the index
[stab(v) : H Nstab(v)] <[m;(ST) : H] is finite. H acts on ¢ with compact quotient
and 7 may be identified with a Bass—Serre tree for H. Since H is isomorphic to a
surface-by-free group 71 (S’) x F, where S’ is a hyperbolic surface and F is a finite
rank free group, there exists a normal subgroup N of H which is isomorphic to 71 (S”)
and so that N acts trivially on 7.

Let N denote (), (stab(w) N H) which is a finite index subgroup of stab(v) N H
for any vertex v €1, ie [stab(v) N H : (), ep (stab(w) N H)] < oco. Therefore,

|:stab(v) : ﬂ stab(w)i| < |:stab(v) : ﬂ (stab(w) N H)i|

weV wevV

= [stab(v) : H N stab(v)]|:H N stab(v) : ﬂ (stab(w) N H)]
wevV
< 00.

This finishes the proof for one direction.

Now we will prove the other direction. The action of 71 (ST") on ¢ induces a homo-
morphism o: 71 (ST) — Aut(?). Let K =),y stab(w), K =ker(o). Since K is
a finite index subgroup of stab(v) for any v € V', m1(ST)/K acts on ¢ with finite
edge and vertex stabilizers. In addition, 71 (ST)/K acts on ¢ cocompactly. Therefore
t/(1(ST)/K) is afinite graph of finite groups. Applying [14, Theorem 7.3], it follows
that 71 (ST)/K is virtually free. Hence, 71 (ST') is abstractly commensurable to a
surface-by-free group. |
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In the rest of this paper, let G denote a graph of surfaces as in Figure 6, where S, F,
P, q and the simple closed curves ¢ C S, a C F are as described in Corollary 4.4.

N

F

Figure 6

The conclusion of the next lemma that 771 (G) is not commensurable to a surface-by-free
group was discovered and proved independently by Chris Odden in his thesis, and also
by Lee Mosher. I will give a different proof which will generalize to my later examples.

Define subgroups L;, R;, G; of m{(S), and subgroups H; of 1 (F) by induction as
follows:

e Let Hy=m1(F), Gy = m1(S).

o Let Hy = p«(Go) Nqx(Go), L1 = py ' (H1), Ry =q5 ' (Hy), Gy = L1 NRy.

o Let Hip1 = p«(Gi) N q«(Gi), Liv1 = py (Hix1). Riv1 = g5 ' (Hiy1),
Giy1=Lit1 N Rj41.

From py([c]) = ¢«([c?]) = [a?], we know [a?] € H, but [a] ¢ H}, [c] € L;, [c*] € R,
but [c] ¢ R;. Therefore, L{ # Ry, [c?] € Gy, [c] £ G;.

Similarly, from p«([c?]) =[a*], ¢« ([c?]) =[a?], we know p«(G1) # g«(G1), [c®]€ L,,
[c*] € Ry, but [c2] ¢ R;, [¢*] € G,. Inductively, we have [¢2"] € G, p«([c*"]) =[a*"],
(") = [*"]. 50 p(Gn) # qx(Gn). ["] € Lug1. [c¥'] ¢ Rupy. but [c¥" '] €
R, 1. Hence, we get two sequences {L;} and {R;} of finite index normal subgroups
of m1(S), the indexes of [71(S): L;] and [71(S) : Rij] — 00 as i — o0.

Lemma 5.2 Suppose [71(S) : L;] and [71(S) : R;] — 0o asi — oo, where L;, R;
are the sequences of finite index normal subgroups of 1 (S) defined inductively above.
If L; # R; for all i, then r1(G) is not commensurable to a surface-by-free group.

Proof It is known that every edge or vertex stabilizer in the Bass—Serre tree ¢ is
isomorphic to some edge or vertex group of the graph of groups. Let e; be an edge
of the Bass—Serre tree ¢ such that the stabilizer stab(e;) = 7;(S). Let g be the

Algebraic € Geometric Topology, Volume 11 (2011)



Hyperbolic graphs of surface groups 471

generator of the underlying graph I' of the graph of spaces G; by Scott and Wall [14]
we know that if 71 (S) is identified with p4(1(S)), then g« (71(S)) = g 171 (S)g.
There exists a unique edge e, € ¢, such that e, = gey. It is easy to see that Ry =
g3 (P« (1 (S) N q«(m1(S))) = stab(eq) N stab(e,). Let ej = gej_y for a positive
integer j, let o; be the oriented path eq * --- % ¢; in the Bass—Serre tree 7. Then
ﬂeeai stab(e) = ﬂ§=1 stab(ej) = R;. Similarly, there exists another sequence of
oriented paths {f} in ¢ such that (., stab(e) = Ly . Therefore, [71(S): Li]— oo
and [71(S) : R;] — oo imply [stab(e) : [.cfg stab(€)] = oco. For the case studied
here, every edge stabilizer is a finite index subgroup of some vertex stabilizer where
the vertex is an end point of that edge. So, [stab(e) : () ¢ stab(€)] = oo implies
[stab(v) :[)pep Stab(w)] = o0o. According to Lemma 5.1, 3 (G) is not commensurable
to a surface-by-free group. a

In order to construct a group which is not abstractly commensurable to a surface-by-free
group, a first strategy might be to find a pseudo-Anosov mapping class & which fixes
all the finite index normal subgroups of 7 (S). But unfortunately, the theorem below
tells us that there does not exist such a pseudo-Anosov mapping class.

Theorem 5.3 Let S), be a closed surface of genus n, where n > 2. For any ® €
Aut(m((Sp)), if © fixes all the finite index normal subgroups of w1(Sy), then ® €
Inn(m1(Sy))-

Before proving this theorem, we introduce some related history and preliminaries first.
Lubotzky [9] proved that for any free group F,, n > 2, if ¥ € Aut(F}) fixes all the
finite index normal subgroups of Fj, then ¥ € Inn(F,). In particular, every normal
automorphism of Fj, is inner. Bogopolski, Kudryavtseva and Zieschang [2] proved that
for any closed hyperbolic surface S, of genus # not less than 2, if ® € Aut(1(Sy))
fixes all the normal subgroups (not necessarily of finite index) of 7{(Sy), then ® €
Inn(7r;(Sy)). The main theorem in that paper says for any nonseparating simple closed
curve « on S, up to conjugate equivalence, « is the only nonseparating simple closed
curve in its normal closure. The theorem in [2] is the following:

Theorem 5.4 (Bogopolski, Kudryavtseva and Zieschang [2]) Let S be a closed
orientable surface and g, h are nontrivial elements of w1 (S) both containing simple
closed two-sided curves y and k, resp. The group element h belongs to the normal
closure of g if and only if h is conjugate to g€ orto (gug~'u=')¢, € € {1, —1}; here
u is a homotopy class containing a simple closed curve (& which properly intersects y
exactly once.

I would like to thank Jason Deblois for help with Lemma 5.5.
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Lemma 5.5 For any two nontrivial, non—freely homotopic, nonseparating simple
closed curves a and b on S, let [a], [b] denote their homotopy classes in 71 (S). Then
there exists a finite index normal subgroup N € w1(S), such that [a] € N and [b] € N .

A group G is said to be residually finite, if for any element g € G, g # 1, there exists
a finite group K and a homomorphism 4: G — K, such that h(g) # 1.

A Haken manifold is a compact, orientable, irreducible 3—manifold which contains a
2-sided incompressible surface.

Proof Let M =S x I, where [ is the interval [0, 1]. 71 (M) is isomorphic to 71 (S).
Since a is a simple closed curve on S, attach a 2-handle B to M along ax{0}Uax{1}
obtaining a Haken manifold M’. This attachment gives a surjective homomorphism
€: w1 (M) — m1(M'), and the kernel is the normal closure of [a]. Since a is the only
nonseparating simple closed curve in the normal closure of [¢], by applying Theorem
5.4, it follows that [b] does not belong to the kernel of €.

According to [7, Theorem 1.1], 1 (M) is residually finite. So, for [b] € 1 (M), there
exists a finite group K and a homomorphism §: 71 (M’) — K such that [b] € ker(5).
Let N denote the kernel ker(é o €). Obviously, N is a finite index normal subgroup
of m1(S), and [a] € N,but [b] € N . |

Proof of Theorem 5.3 Let @ be an element of Aut(m1(S)), and let ¢ be a repre-
sentative of it in Homeo(S). According to [2], if ® ¢ Inn(7r(S)), then there exists
a nonseparating simple closed curve @ on S such that a and ¢(a) are not freely
homotopic to each other. By Lemma 5.5, there exists a finite index normal subgroup
N < m1(S), such that [a] € N and [¢p(a)] € N . It follows that P(N) # N . a

In the following, we shall construct a pseudo-Anosov mapping class which does not fix
all the finite index normal subgroups of 71 (S), but fixes L; and R; as in Lemma 5.2.
Also, let Ggm be a graph of surfaces as in Figure 3, where F, S, p, ¢ as described in
Corollary 4.4.

Theorem 5.6 There exists a pseudo-Anosov homeomorphism ¢ € Homeo(S'), so that
m1(Ggm) is hyperbolic but is not commensurable to a surface-by-free group.

Proof If there exists a pseudo-Anosov homeomorphism ¢, such that ¢« (L;) = L; and
¢« (R;) = R;, then [stab(e) : [ ). g stab(€)] = oo, according to Lemma 5.2. Therefore,
m1(Ggm) is not commensurable to a surface-by-free group.
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Figure 7

P(B)~q(B)

Figure 8

The curves mentioned in this theorem are shown in Figure 7 and Figure 8, which are a
refinement of Figure 4.

First, we will describe the covering maps p and ¢ in more detail. Let p~!(a?) = c,
g '(a) = cUd. Tt is easy to see that p(a) is homotopic to g(a) C F and p(B) is
homotopic to g(f8) C F, where , B C S are as in Figure 7. Therefore [«], [8]€ LiNR;
for all 7.

Second, we claim that if y is a simple closed curve in S, such that [y] € L; for
some i, then the induced map (ty )« of the Dehn twist 7, fixes L;. Let S’ be the
cover of S corresponding to L;, and let T" be the finite set of preimages of y to S’.
Then (tr)+ = (7y)«|r; , where 12 S" — §’.

If we can find disjointly essential curve systems C and D which satisfy the conditions
in Theorem 2.1 and if all the homotopy classes of the elements of C and D belong to
L; and R; for all i, then we can construct a pseudo-Anosov homeomorphism ¢ as
described in Theorem 2.1, such that ¢, fixes L; and R; forall i.

In the following, we will prove that there exist disjointly essential curve systems
C=aUd,and D= B UPpB,suchthat C UD fills S, where «, § as in Figure 7. In
addition, [«], [@], [B] and [B] € ();(L; N R;).
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In order to find a simple closed curve & satisfying the above conditions, first, we will
show that there exists a simple closed curve o’ such that o] € ();(L; N R;). Since L;
and R; are finite index normal subgroups of 71 (S) and [«] € ();(L; N R;), the normal
closure Ny of [«] is a subgroup of (1);(L; N R;). Recall that the normal closure N
of [«] is the smallest normal subgroup of 71 (S') which contains [«]. Applying Theorem
5.4, we only need the easy direction of this theorem, the separating curve o’ as in
Figure 7 represents an element in N .

Second, we shall construct a simple closed curve & on S from the simple closed
curve «’. From Mosher [11], we know there exists a short exact sequence

1 — (Ty) — stab(a) > MCG(S —a) —> 1

where (Ty) is the cyclic subgroup of MCG(S') generated by the mapping class Ty, of
the Dehn twist 7, around «, stab(a) is a subgroup of MCG(S) which fixes a, S—« isa
surface obtained by cutting S along «. The homomorphism ¢: stab(a) —> MCG(S —«)
is defined by & — ®|g_,,, for ® € stab(«).

Choose a pseudo-Anosov homeomorphism 1 € Homeo(S —«). Pass to a high enough
power of ¥, so that @ = ¥ (a’) is very close to the stable geodesic lamination Ai
of ; therefore, @ U B fills S —a. Also, & is disjoint from « because «’ is disjoint
from o. Using the same method, we can find a simple closed curve 3 which is disjoint
with 8 and B U« fills S — 8.

Let C = {a,a}, D = {ﬁ,,g}, it is easy to see that C U D fills §. According to
Theorem 2.1, if ¢g is a homeomorphism of S, such that 7}, ‘L’g_ , 7g and 73 appear
at least once in ¢g, then ¢ is a pseudo-Anosov homeomorphism. Since [«],[¢], [B].
[,g] € (;(L; N R;), we have that (¢o)« fixes L; and R; for all i.

In order to finish the proof of this theorem, according to Corollary 4.4, we only need to
show that there exists some pseudo-Anosov homeomorphism ¢ constructed as above,
so that the virtual centralizer VC(®) of (®) has trivial intersection with the mapping
classes of the deck transformation groups of the covering maps p and ¢, respectively,
where ® € MCG(SS) is the mapping class of ¢. Abusing notation, denote both the deck
transformations and the mapping classes of the deck transformations by D, and Dy .
The deck transformation group of p has only two elements D, and the identity.

Let ¢ be a pseudo-Anosov homeomorphism of S constructed above, and let ® be
its mapping class. Let A¥ . and A"0 be the stable and unstable geodesic laminations
of ¢¢, respectively. It is known that ®¢ fixes L; and R; forall i.

Suppose the deck transformation group of p has nontrivial intersection with the virtual
centralizer of (®y), ie D) (Afi)o) = A;O. We claim that Dp(Ta(A;)O)) # Ty (A;)O),
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where 7, is the mapping class of the Dehn twist 7. Notice that Ty (As ) is the
stable geodesic lamination of the pseudo-Anosov mapping class T, ®o T, ! and that
Toa®oT, I fixes L; and R; for all i . If the claim is true and letting ®; = Ta CIDOTa_l,
then VC(®;) has trivial intersection with D,

We shall prove the claim. Notice that there exists a simple closed curve y on S,
which is disjoint from «, such that D,(e) = y. According to [8, Lemma 4.1.C],
DpTu Dy =Tp,a)=Ty.
Suppose D, Ty (A;O) =Ty (Afpo)’ then

DpTa(Abe) = Tpr(A;O) = TV(Apr)~
Therefore, T, (Afpo) =T (Afpo). It follows that 7, 1T}, € VC(®,), but from [12,
Theorem 3.5], we know that VC{®) has (®g) as a finite index subgroup. Hence, up to

some power m, (T, 1 T)))™ € (®y), but obviously (7,1 T;,)™ is neither pseudo-Anosov
nor the identity, so it is not an element of (®,). Therefore D, Ty (Afbo) # Ty (Afbo)'

If, in addition, Dy Ty (AZO) # Ty (Ago), then take ® = ®; and the theorem is proved
in this case.

If DgTu(Al)) = Ta(A})), then we claim D, TaZ(A;gO) £ Tof(AgO). If the claim is
not true, then
DTNy ) =T7(AY)
=Tq (Dq Ty (Ago))
= Dq Ty (T (Agyo))v
where 6 = Dy () is a simple closed curve on S disjoint from «. Therefore,

Ty ' Ty ' Dy DT (Ay ) = A

o’
It follows that T 1T 1T2(A” )= A(‘;O Since 0, « are dlS]OlIlt simple closed curves,
we have T, T, ' = T 1Ty Therefore T, 'T, 1T2(A" ) = lTa(A” ) =AY .

By the same reason as in the above argument, 1‘[ is 1mposs1b1e

Replacing Ty, T, by T2, T2 in the above proof of DpTa(As %+ Ta(AS ) we see
that DPTO%(A;O) #* Tj(Afp ) Taking ® = T2y T, 2, the theorem is proved O
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