Volume 11, issue 1 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Tunnel complexes of $3$–manifolds

Yuya Koda

Algebraic & Geometric Topology 11 (2011) 417–447
Bibliography
1 M Boileau, M Rost, H Zieschang, On Heegaard decompositions of torus knot exteriors and related Seifert fibre spaces, Math. Ann. 279 (1988) 553 MR922434
2 F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983) MR740078
3 S Cho, D McCullough, Cabling sequences of tunnels of torus knots, Algebr. Geom. Topol. 9 (2009) 1 MR2471129
4 S Cho, D McCullough, The tree of knot tunnels, Geom. Topol. 13 (2009) 769 MR2469530
5 S Cho, D McCullough, Constructing knot tunnels using giant steps, Proc. Amer. Math. Soc. 138 (2010) 375 MR2550203
6 S Cho, D McCullough, Tunnel leveling, depth, and bridge numbers, Trans. Amer. Math. Soc. 363 (2011) 259 MR2719681
7 H Goda, C Hayashi, Genus two Heegaard splittings of exteriors of $1$–genus $1$–bridge knots arXiv:1009.2134
8 H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243 MR1778174
9 C M Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987) 285 MR918538
10 J Hass, A Thompson, W Thurston, Stabilization of Heegaard splittings, Geom. Topol. 13 (2009) 2029 MR2507114
11 J Hempel, $3$-Manifolds as viewed from the curve complex, Topology 40 (2001) 631 MR1838999
12 M Hirasawa, Y Uchida, The Gordian complex of knots, from: "Knots 2000 Korea, Vol. 1 (Yongpyong)", J. Knot Theory Ramifications 11 (2002) 363 MR1905691
13 A Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008) 1403 MR2443248
14 A Ishii, K Kishimoto, The IH–complex of spatial trivalent graphs (2009)
15 J Johnson, Bridge number and the curve complex arXiv:math.GT/0603102
16 J Johnson, A Thompson, On tunnel number one knots that are not $(1,n)$ arXiv:math/0606226v3
17 A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996) MR1417494
18 S Kinoshita, On $\theta_n$–curves in $\mathbf{R}^3$ and their constituent knots, from: "Topology and computer science (Atami, 1986)" (editor S Suzuki), Kinokuniya (1987) 211 MR1112593
19 T Kobayashi, Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2 (1999) 259 MR1734412
20 F Luo, On Heegaard diagrams, Math. Res. Lett. 4 (1997) 365 MR1453066
21 D McCullough, Virtually geometrically finite mapping class groups of $3$–manifolds, J. Differential Geom. 33 (1991) 1 MR1085134
22 Y Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988) 465 MR928492
23 K Morimoto, M Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991) 143 MR1087243
24 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “$1+1=3$”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
25 M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593 MR2224466
26 F Waldhausen, Heegaard-Zerlegungen der $3$–Sphäre, Topology 7 (1968) 195 MR0227992