Volume 11, issue 1 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23, 1 issue

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Tunnel complexes of $3$–manifolds

Yuya Koda

Algebraic & Geometric Topology 11 (2011) 417–447
Bibliography
1 M Boileau, M Rost, H Zieschang, On Heegaard decompositions of torus knot exteriors and related Seifert fibre spaces, Math. Ann. 279 (1988) 553 MR922434
2 F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983) MR740078
3 S Cho, D McCullough, Cabling sequences of tunnels of torus knots, Algebr. Geom. Topol. 9 (2009) 1 MR2471129
4 S Cho, D McCullough, The tree of knot tunnels, Geom. Topol. 13 (2009) 769 MR2469530
5 S Cho, D McCullough, Constructing knot tunnels using giant steps, Proc. Amer. Math. Soc. 138 (2010) 375 MR2550203
6 S Cho, D McCullough, Tunnel leveling, depth, and bridge numbers, Trans. Amer. Math. Soc. 363 (2011) 259 MR2719681
7 H Goda, C Hayashi, Genus two Heegaard splittings of exteriors of $1$–genus $1$–bridge knots arXiv:1009.2134
8 H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243 MR1778174
9 C M Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987) 285 MR918538
10 J Hass, A Thompson, W Thurston, Stabilization of Heegaard splittings, Geom. Topol. 13 (2009) 2029 MR2507114
11 J Hempel, $3$-Manifolds as viewed from the curve complex, Topology 40 (2001) 631 MR1838999
12 M Hirasawa, Y Uchida, The Gordian complex of knots, from: "Knots 2000 Korea, Vol. 1 (Yongpyong)", J. Knot Theory Ramifications 11 (2002) 363 MR1905691
13 A Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008) 1403 MR2443248
14 A Ishii, K Kishimoto, The IH–complex of spatial trivalent graphs (2009)
15 J Johnson, Bridge number and the curve complex arXiv:math.GT/0603102
16 J Johnson, A Thompson, On tunnel number one knots that are not $(1,n)$ arXiv:math/0606226v3
17 A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996) MR1417494
18 S Kinoshita, On $\theta_n$–curves in $\mathbf{R}^3$ and their constituent knots, from: "Topology and computer science (Atami, 1986)" (editor S Suzuki), Kinokuniya (1987) 211 MR1112593
19 T Kobayashi, Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2 (1999) 259 MR1734412
20 F Luo, On Heegaard diagrams, Math. Res. Lett. 4 (1997) 365 MR1453066
21 D McCullough, Virtually geometrically finite mapping class groups of $3$–manifolds, J. Differential Geom. 33 (1991) 1 MR1085134
22 Y Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988) 465 MR928492
23 K Morimoto, M Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991) 143 MR1087243
24 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “$1+1=3$”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
25 M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593 MR2224466
26 F Waldhausen, Heegaard-Zerlegungen der $3$–Sphäre, Topology 7 (1968) 195 MR0227992