Let $V \cup_{S} W$ be a Heegaard splitting for a closed orientable 3–manifold M. The inclusion-induced homomorphisms $\pi_{1}(S) \rightarrow \pi_{1}(V)$ and $\pi_{1}(S) \rightarrow \pi_{1}(W)$ are both surjective. The paper is principally concerned with the kernels $K = \text{Ker}(\pi_{1}(S) \rightarrow \pi_{1}(V))$, $L = \text{Ker}(\pi_{1}(S) \rightarrow \pi_{1}(W))$, their intersection $K \cap L$ and the quotient $(K \cap L)/[K, L]$. The module $(K \cap L)/[K, L]$ is of special interest because it is isomorphic to the second homotopy module $\pi_{2}(M)$. There are two main results.

(1) We present an exact sequence of $\mathbb{Z}(\pi_{1}(M))$–modules of the form

$$
(K \cap L)/[K, L] \xrightarrow{\phi} R\{x_{1}, \ldots, x_{g}\}/J \xrightarrow{T^{\phi}} R\{y_{1}, \ldots, y_{g}\} \xrightarrow{\theta} R \xrightarrow{\epsilon} \mathbb{Z},
$$

where $R = \mathbb{Z}(\pi_{1}(M))$, J is a cyclic R–submodule of $R\{x_{1}, \ldots, x_{g}\}$, T^{ϕ} and θ are explicitly described morphisms of R–modules and T^{ϕ} involves Fox derivatives related to the gluing data of the Heegaard splitting $M = V \cup_{S} W$.

(2) Let K be the intersection kernel for a Heegaard splitting of a connected sum, and K_{1}, K_{2} the intersection kernels of the two summands. We show that there is a surjection $K \twoheadrightarrow K_{1} \ast K_{2}$ onto the free product with kernel being normally generated by a single geometrically described element.

57M27, 57M99, 20F38; 57M05, 37E30

1 Introduction

Let $M = V \cup_{S} W$ be a Heegaard splitting, where V and W are handlebodies of genus g and S is a closed Riemann surface of genus g with $\partial V = S$ and $\partial W = S$. Consider an essential simple closed curve λ in S. If λ bounds a disk D_{1} in the manifold V and a disk D_{2} in W, then by gluing D_{1} and D_{2} together along λ, we obtain an embedding of the 2–sphere S^{2} in the 3–manifold M and so the splitting is reducible. Motivated from these observations, the purpose of this article is to study the intersecting subgroup of the kernels of $\pi_{1}(S) \rightarrow \pi_{1}(V)$ and $\pi_{1}(S) \rightarrow \pi_{1}(W)$. In other words, we investigate the (possibly singular) curves on the Riemann surface S that can be extended to (possibly singular) disks in V and W, respectively. Note that the intersecting subgroup addressed
here is the kernel of the splitting homomorphism introduced by Stallings [19] and studied by others, for example, Jaco [10] and Papkyriakopoulos [17]. The combinatorial problem of determining the intersecting subgroups is related to the classical Whitehead Asphericity Question in low dimensional topology; see Bogley [4]. Recent development on combinatorial determinations on the general homotopy groups of spheres in homotopy theory also concerns the intersecting subgroups of free groups or braid groups; see Berrick, Cohen, Wong and Wu [1], Cohen and Wu [7; 8], Li and Wu [13] and Wu [20]. In our cases, the intersection is given by an explicit subgroup of the fundamental group of the Riemann surface of genus g with its image under an automorphism. The investigation on intersecting subgroups in our special cases might help for searching the methods for attacking the Whitehead Asphericity Question and the homotopy groups of spheres.

We first consider the algebraic determination on the intersecting kernel of Heegaard splittings. Let V_g be the standard handlebody of genus g with $\partial V_g = S_g$ the Riemann surface of genus g. Given a diffeomorphism $\varphi: S_g \to S_g$, the resulting construction $M = V_g \cup_\varphi V_g$ with equivalence relation generated by $x \sim \varphi(x)$ for $x \in S_g$ gives a Heegaard splitting. Clearly any Heegaard splitting of 3–manifolds is given in such a way. (See Section 2 for details.) Recall that $\pi_1(S_g)$ admits the standard presentation with generators $a_1, \ldots, a_g, b_1, \ldots, b_g$ and a single relation $[a_1, b_1] \cdots [a_g, b_g] = 1$. The fundamental group $\pi_1(V_g)$ is then the free group F^a_g of rank g with free basis a_1, \ldots, a_g. Let $i: S_g \to V_g$ be the canonical inclusion. Then $i*: \pi_1(S_g) \to \pi_1(V_g)$ is the group homomorphism with $i_*(a_j) = a_j$ and $i_*(b_j) = 1$ for $1 \leq j \leq g$. Let $KB_g = \langle b_1, \ldots, b_g \rangle^N$ be the normal closure of b_1, \ldots, b_g in $\pi_1(S_g)$. Then $\text{Ker}(i*: \pi_1(S_g) \to \pi_1(V_g)) = KB_g$. Observe that the inclusion of S_g to the second copy of V_g is given by the composite

$$s_g \xrightarrow{\varphi} \cong S_g \xrightarrow{i} V_g.$$

Thus the intersecting kernel is given by

$$KB_g \cap \varphi_*^{-1}(KB_g)$$

and so the algebraic problem is how to determine the intersecting kernel

$$KB_g \cap \phi^{-1}(KB_g) = \langle b_1, \ldots, b_g \rangle^N \cap ((\phi^{-1}(b_1), \ldots, \phi^{-1}(b_g))^N$$

for any automorphism ϕ of $\pi = \pi_1(S_g)$. Since both KB_g and $\phi^{-1}(KB_g)$ are normal subgroups of π, the commutator subgroup $[KB_g, \phi^{-1}(KB_g)]$ is contained in the subgroup $KB_g \cap \phi^{-1}(KB_g)$. Assume that the words $\phi^{-1}(b_1), \ldots, \phi^{-1}(b_g)$ are given. Then a set of generators for the commutator subgroup $[KB_g, \phi^{-1}(KB_g)]$ can be listed.
and so the algebraic problem is reduced to how to determine the quotient group

\[(1-1) \quad (\text{KB}_g \cap \phi^{-1}(\text{KB}_g))/[\text{KB}_g \cdot \phi^{-1}(\text{KB}_g)] \]

which measures how far the intersecting subgroup is from the commutator subgroup. Observe that the above group is abelian because the commutator subgroup

\[[\text{KB}_g \cap \phi^{-1}(\text{KB}_g), \text{KB}_g \cap \phi^{-1}(\text{KB}_g)] \subseteq [\text{KB}_g, \phi^{-1}(\text{KB}_g)]. \]

Our determination of the group given in Equation (1-1) is as follows. For a ring \(R \), let

\[R\{x_1, \ldots, x_n\} = \bigoplus_{j=1}^{n} Rx_j = R^\oplus n \]

be the direct sum, where \(Rx_j \) is a copy of \(R \) labeled by \(x_j \). For a group \(G \), let \(\mathbb{Z}(G) \) be the group ring of \(G \) and let \(\epsilon: \mathbb{Z}(G) \to \mathbb{Z} \) be the augmentation. Recall that a derivation \(\partial: \mathbb{Z}(G) \to \mathbb{Z}(G) \) means a linear map such that \(\partial(vw) = \partial(v)\epsilon(w) + v\partial(w) \). Let \(F_n \) be the free group of rank \(n \) with a basis \(a_1, \ldots, a_n \). Then there is a unique derivation \(\partial_j = \partial/\partial a_j: \mathbb{Z}(F_n) \to \mathbb{Z}(F_n) \) such that \(\partial_j(a_i) = \delta_{i,j} \), where \(\delta_{i,j} \) is the Kronecker \(\delta \). For a homomorphism \(\theta: \mathbb{Z}(F_n) \to \mathbb{Z}(G) \) and an element \(w \in \mathbb{Z}(F_n) \), let \(\partial^\theta_j(w) = \theta(\partial_j(w)) \) be the image of \(\partial_j(w) \) in the group ring \(\mathbb{Z}(G) \). If the homomorphism \(\theta \) is clear, we simply write \(\partial_j(w) \) for \(\partial^\theta_j(w) \) as an element in \(\mathbb{Z}(G) \).

Theorem 1.1 Let \(M = V_g \cup_\phi V_g \) be a Heegaard splitting given by a diffeomorphism \(\phi: S_g \to S_g \). Let

\[\pi_1(S_g) = \langle a_1, \ldots, a_g, b_1, \ldots, b_g \mid [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle \]

be the standard presentation of \(\pi_1(S_g) \) and let \(q: \pi_1(S_g) \to \pi_1(V_g) = F^a_g \) be the canonical quotient homomorphism. Then the following hold:

1. The group \(\pi_1(M) \) admits a presentation with generators \(a_1, \ldots, a_g \) and the relations given by \(q(\phi_*(b_j)) = 1 \) for \(1 \leq j \leq g \).
2. Let \(R = \mathbb{Z}(\pi_1(M)) \). Then there is an exact sequence of \(R \)-modules

\[(\text{KB}_g \cap \phi_*(\text{KB}_g))/[\text{KB}_g \cdot \phi_*(\text{KB}_g)] \hookrightarrow R\{x_1, \ldots, x_g\}/J \xrightarrow{T^\phi} R\{y_1, \ldots, y_g\} \xrightarrow{\theta} R \xrightarrow{\epsilon} \mathbb{Z}, \]

where \(J \) is the \(R \)-submodule of \(R\{x_1, \ldots, x_g\} \) generated by \(\sum_{j=1}^{g} (a_j - 1)x_j \), \(T^\phi \) is a morphism of \(R \)-modules with \(T^\phi(x_i) = \sum_{j=1}^{g} \partial_j(\phi_*(b_i))y_j \), and \(\theta \) is a morphism of \(R \)-modules with \(\theta(y_i) = a_i - 1 \).
By this result, the computation of the group \((KB_g \cap \phi_*^{-1}(KB_g))/[KB_g, \phi_*^{-1}(KB_g)]\) depends on the presentation of the fundamental group \(\pi_1(M)\) induced by the automorphism \(\phi_*\) on \(\pi_1(S_g)\). Consider the Jacobian of the automorphism \(\phi_*\):

\[
\begin{pmatrix}
(\partial(\phi_*(a_i))/\partial a_j)_{g \times g} & (\partial(\phi_*(b_i))/\partial a_j)_{g \times g} \\
(\partial(\phi_*(a_i))/\partial b_j)_{g \times g} & (\partial(\phi_*(b_i))/\partial b_j)_{g \times g}
\end{pmatrix}_{2g \times 2g}
\]

over \(\mathbb{Z}(\pi_1(M))\). Then \(T^\phi\) is determined by the \(\mathbb{Z}(\pi_1(M))\)-linear transformation

\[
R\{x_1, \ldots, x_g\} \longrightarrow R\{y_1, \ldots, y_g\}
\]

given by the matrix

\[
\begin{pmatrix}
\partial(\phi_*(b_i))/\partial a_j \\
\partial(\phi_*(b_i))/\partial b_j
\end{pmatrix}_{g \times g}
\]

A direct consequence of Theorem 1.1 is to give an algebraic criterion for testing the irreducibility of Heegaard splittings.

Corollary 1.2 (Irreducibility criterion of Heegaard splittings) Let \(M = V_g \cup \phi V_g\) be a Heegaard splitting given by a diffeomorphism \(\phi: S_g \to S_g\). Let

\[
\pi_1(S_g) = \langle a_1, \ldots, a_g, b_1, \ldots, b_g \mid [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle
\]

be the standard presentation of \(\pi_1(S_g)\). Let

\[T^\phi: R\{x_1, \ldots, x_g\}/J \longrightarrow R\{y_1, \ldots, y_g\}\]

be the linear transformation defined as above. Then \(M\) is irreducible if and only if \(T^\phi\) is a monomorphism.

Proof By Brown and Loday [6, Corollary 3.4], we have

\[
\pi_2(M) \cong (KB_g \cap \phi_*^{-1}(KB_g))/[KB_g, \phi_*^{-1}(KB_g)].
\]

According to Milnor [15, Theorem 2] together with the positive solution to Poincaré conjecture (see Morgan and Tian [16]), \(M\) is irreducible if and only if \(\pi_2(M) = 0\). The assertion follows directly from Theorem 1.1.

Our next result concerns the intersecting subgroups of the connected sums of the Heegaard splittings. For our convenience, we also use \((M; V, W; S)\) to denote a Heegaard splitting \(V \cup_S W\) for \(M\). For a Heegaard splitting \(M = (M; V, W; S)\), let \(K(M) = \text{Ker}(i_*: \pi_1(S) \to \pi_1(V)) \cap \text{Ker}(j_*: \pi_1(S) \to \pi_1(W))\), where \(i: S \to V\) and \(j: S \to W\) are the inclusions. Let \(M_i = (M_i; V_i, W_i; S_i)\) with \(i = 1, 2\) be two Heegaard splittings. Then there is a natural way to define the connected sum.
\(M = M_1 \# S_2 M_2 = (M; V, W; S) \) of the splittings \(M_1 \) and \(M_2 \) (See Section 2 for details). The simple close curve \(C = S^2 \cap S \) determines an element \([C] \) in \(\pi_1(S) \). Let \(G_1 \ast G_2 \) denote the free product of the groups \(G_1 \) and \(G_2 \). For a subset \(A = \{ g_\alpha \} \) of a group \(G \), let \(\langle A \rangle^N \) or \(\langle g_\alpha \rangle^N \) denote the normal closure generated by the elements \(g_\alpha \) in \(A \).

Theorem 1.3 Let \(M_1 = (M_1; V_1, W_1; S_1) \), \(M_2 = (M_2; V_2, W_2; S_2) \) be two Heegaard splittings, and \(M = M_1 \# S_2 M_2 = (M; V, W; S) \) the connected sum of \(M_1 \) and \(M_2 \). Then there is a short exact sequence of groups

\[
\{1\} \longrightarrow \langle [C] \rangle^N \longrightarrow K(M) \longrightarrow K(M_1) \ast K(M_2) \longrightarrow \{1\},
\]

where \(C \) is the intersecting curve of the 2–sphere \(S^2 \) and the Heegaard surface \(S \).

The article is organized as follows. In Section 2, we review some basic properties of Heegaard splittings. The proof of Theorem 1.1 is given in Section 3. In Section 4, we give the proof of Theorem 1.3.

2 Preliminaries

In this section we review some of the definitions and results which will be used in the paper, and fix some notation.

2.1 Fundamental facts on Heegaard splittings – brief review

Let \(S_g \) be a closed, connected, oriented surface, and let \(\text{Diff}^+ S_g \) (\(\text{Diff}^+ S_g \), resp.) be the groups of diffeomorphisms (orientation-preserving diffeomorphisms, resp.) of \(S_g \). The mapping class group \(\Gamma_g \) (extended mapping class group \(\Gamma_g^\pm \), resp.) of \(S_g \) is the group \(\text{Diff}^+ S_g \) (\(\text{Diff}^\pm S_g \), resp.) modulo those diffeomorphisms which are isotopic to the identity.

Let \(H_g \) be a handlebody of genus \(g \), and \(S_g \) the boundary of \(H_g \) with induced orientation. The handlebody subgroup \(H_g^\pm \subset \Gamma_g^\pm \) is the (nonnormal) subgroup of all mapping classes that have representatives that extend to diffeomorphisms of \(H_g \).

Let \(H_g' = \tau(H_g) \) be a diffeomorphic image of \(H_g \) with \(\tau(x) = x \) for all \(x \in S_g = \partial H_g \). For an element \(\phi \in \text{Diff}^+ S_g \), \(\phi \) defines a 3–manifold \(M \) in the following way: \(M = H_g \cup \phi H_g' = H_g \cup H_g'/x \sim \phi(x) \), for all \(x \in S_g \), i.e \(M \) is obtained by gluing \(H_g \) and \(H_g' \) together via a diffeomorphism \(\phi: \partial H_g \to \partial H_g' \). The surface \(S_g = \partial H_g = \partial H_g' \) embedded in \(M \) is called a Heegaard surface, and \(H_g \cup S_g H_g' \) is called a Heegaard
splitting for M. The Heegaard splitting is also denoted by $\mathcal{M} = (M; H_g, H'_g; S_g; \phi)$. Clearly, the topological type of M depends only on the mapping class $\hat{\Phi}$ of ϕ, so we sometimes use $H_g \cup \Phi H'_g$ to denote the Heegaard splitting.

It is a well-known fact that every closed, connected, orientable 3–manifold can be obtained from a Heegaard splitting (see for example Scharlemann [18] for a proof).

Heegaard splittings are not unique in general. Suppose M admits Heegaard splittings $H_g \cup \Phi_1 H'_g$ and $H_g \cup \Phi_2 H'_g$ with defining maps $\phi_1, \phi_2 \in \text{Diff}^\pm S_g$. We say the two splittings are equivalent if the two splitting surfaces are isotopic, or equivalently, there exists a diffeomorphism $M \to M$ which takes H_g to H_g, H'_g to H'_g, and so S_g to S_g.

Proposition 2.1 The Heegaard splittings $(M; H_g, H'_g; S_g; \phi)$ and $(M; V_g, V'_g; F_g; \varphi)$ for M defined by $\phi, \varphi \in \text{Diff}^\pm S_g$ are equivalent if and only if φ is in the double coset $H_g^\pm \phi H_g^\pm \subset \text{Diff}^\pm S_g$.

Proof It is essentially due to Birman [2]. Suppose there exists a diffeomorphism $h: M \to M$ with $h(H_g) = H_g$, $h(H'_g) = H'_g$. Let $h_0 = h|H_g$, $h'_0 = h|H'_g$, $h_1 = h_0|\partial H_g$, and $h'_1 = h'_0|\partial H'_g$. In order for h to be well-defined on $\partial H_g = \partial H'_g$, we have the following commutative diagram:

$$
\begin{array}{ccc}
\partial H_g & \xrightarrow{\phi} & \partial H'_g \\
\downarrow h_1 & & \downarrow h'_1 \\
\partial H_g & \xrightarrow{\varphi} & \partial H'_g
\end{array}
$$

Thus $\phi \circ h'_1 = h_1 \circ \varphi$, so $\varphi = (h_1)^{-1} \circ \phi \circ h'_1$, where $(h_1)^{-1}, h'_1 \in H_g^\pm$, as required.

Conversely, if φ is in the double coset $H_g^\pm \phi H_g^\pm$, we can construct a diffeomorphism from M to M which takes H_g to H_g and H'_g to H'_g.

In the category of oriented manifolds and orientation-preserving diffeomorphisms, we have an analogue of the correspondent description (see Birman [2; 3]).

2.2 Intersecting kernels of Heegaard splittings

From now on, when we do not need to stress the genus of a surface or a handlebody, we will omit the symbol g.

Algebraic & Geometric Topology, Volume 11 (2011)
The intersecting kernels of Heegaard splittings

Definition 2.2 Let $\mathcal{M} = (M; H, H'; S; \phi)$ be a Heegaard splitting for a closed orientable 3–manifold M. Let $i: S \hookrightarrow H$ and $i': S \hookrightarrow H'$ be the inclusions, and $i_*: \pi_1(S) \to \pi_1(H)$, $i'_*: \pi_1(S) \to \pi_1(H')$ the induced homomorphisms. Then $	ext{Ker} \ i_* \cap \text{Ker} \ i'_* = \text{Ker} \ i_* \cap \phi_1^{-1}(\text{Ker} \ i_*)$ is called the *intersecting kernel* of the Heegaard splitting \mathcal{M}, and is denoted by $K(\mathcal{M})$.

Clearly $K(\mathcal{M})$ is a (normal) subgroup of $\pi_1(S)$. It is a well-known fact that every subgroup of $\pi_1(S)$ with finite index is an *Fuchsian*–group, and every subgroup of $\pi_1(S)$ with infinite index is free (refer to [14, Proposition 7.4]).

Example 2.3 Let $\mathcal{M} = (S^3; H_1, H'_1; T)$ be a genus 1 Heegaard splitting for S^3. Let a, b be two essential simple closed curves on the torus T such that a bounds a disk in V, b bounds a disk in W, and a and b intersect in a single point P, which we choose as a base point. Then $\{[a],[b]\}$ is a basis for the free abelian group $\pi_1(T)$.

Clearly,

$$\text{Ker} \ (i_*: \pi_1(T) \to \pi_1(V)) = \{ n[a]: n \in \mathbb{Z} \},$$

$$\text{Ker} \ (j_*: \pi_1(T) \to \pi_1(W)) = \{ n[b]: n \in \mathbb{Z} \}.$$

Thus $K(\mathcal{M}) = \{0\}$.

Similarly, for a genus 1 Heegaard splitting \mathcal{M}_1 for a lens space $L(p,q)$ and \mathcal{M}_2 for $S^2 \times S^1$, we have $K(\mathcal{M}_1) = \{0\}$ and $K(\mathcal{M}_2) \cong \mathbb{Z}$.

Let V be a handlebody of genus $n \geq 2$, $\partial V = S$, $i: S \hookrightarrow V$ the inclusion, and $i_*: \pi_1(S) \to \pi_1(V)$ the induced homomorphism. Let $\{a_i, b_i, 1 \leq i \leq n\}$ be a canonical system of oriented simple closed curves on S, that is, $\{b_i, 1 \leq i \leq n\}$ is a collection of pairwise disjoint curves which bound a collection of n pairwise essential disks in V, the manifold obtained by cutting V open along the disks is a 3–ball, and $\{a_i, 1 \leq i \leq n\}$ is a collection of pairwise disjoint curves with $a_i \cap b_j = \emptyset$ if $i \neq j$ and $a_i \cap b_j$ a single point if $i = j$, for each pair of i, j. Choose a base point P in $S - \{a_i, b_i, 1 \leq i \leq n\}$, and by ambiguity still use $[a_i], [b_i]$ to denote the path class of a_i, b_i in $\pi_1(S,P) = \pi_1(P)$, $1 \leq i \leq n$. Then $\text{Ker} \ i_* = \langle [b_i], 1 \leq i \leq n \rangle^N$, the normal closure of $\{[b_i], 1 \leq i \leq n\}$ in $\pi_1(S)$, and the quotient group $\pi_1(S)/\text{Ker} \ i_*$ is a free group of rank n with a basis $\{[a_i], 1 \leq i \leq n\}$.

The next proposition shows that for a Heegaard splitting \mathcal{M} of genus ≥ 2, $K(\mathcal{M})$ is never trivial.

Proposition 2.4 Let $V \cup_S W$ be a Heegaard splitting of genus ≥ 2 for M. Let $i: S \hookrightarrow V$, $j: S \hookrightarrow W$ be the inclusions and $i_*: \pi_1(S) \to \pi_1(V)$, $j_*: \pi_1(S) \to \pi_1(W)$
the induced homomorphisms. Then for any $\alpha \in \text{Ker} i_*, \beta \in \text{Ker} j_*$, we have $[\alpha, \beta] \in K(V \cup S W)$, where $[\alpha, \beta]$ is the commutator of α and β in $\pi_1(S)$. In the other words, $[\text{Ker} i_, \text{Ker} j_*] < K(V \cup S W)$.

Proof By $i_*(\alpha) = 1$, $i_*([\alpha, \beta]) = i_*(\alpha\beta\alpha^{-1}\beta^{-1}) = i_*(\alpha)i_*(\beta)i_*(\alpha^{-1})i_*(\beta^{-1}) = i_*(\beta)i_*(\beta)^{-1} = 1$. Similarly, $j_*([\alpha, \beta]) = 1$. Therefore, $[\alpha, \beta] \in \text{Ker} i_* \cap \text{Ker} j_* = K(V \cup S W)$. □

Proposition 2.5 Suppose that two Heegaard splittings $\mathcal{M}_1 = (M : H_g, H'_g; S_g; \phi)$ and $\mathcal{M}_2 = (M : V_g, V'_g; F_g; \varphi)$ for M defined by $\phi, \varphi \in \text{Diff}^\pm S_g$ are equivalent. Then there exists a $f \in \mathcal{H}_g^\pm$ such that $f_*(K(\mathcal{M}_1)) = K(\mathcal{M}_2)$. In particular, the intersecting kernel is an invariant of Heegaard splittings.

Proof Use the notation as before. By assumption, there exist $h, h' \in \mathcal{H}_g^\pm$ such that $\varphi = h \circ \phi \circ h'$. By definition,

$$K(\mathcal{M}_1) = \text{Ker} i_* \cap \phi_*^{-1}(\text{Ker} i_*),$$

$$K(\mathcal{M}_2) = \text{Ker} i_* \cap \varphi_*^{-1}(\text{Ker} i_*).$$

Thus

$$K(\mathcal{M}_2) = \text{Ker} i_* \cap \varphi_*^{-1}(\text{Ker} i_*)$$

$$= \text{Ker} i_* \cap (h \circ \phi \circ h')^{-1}_*(\text{Ker} i_*)$$

$$= \text{Ker} i_* \cap h'^{-1}_* \circ \phi^{-1}_* \circ h^{-1}_*(\text{Ker} i_*).$$

Note that $h, h' \in \mathcal{H}_g^\pm$, so $h_*(\text{Ker} i_*) = \text{Ker} i_*$, and $h'_*(\text{Ker} i_*) = \text{Ker} i_*$. Hence

$$K(\mathcal{M}_2) = \text{Ker} i_* \cap h'^{-1}_* \circ \phi^{-1}_* \circ h^{-1}_*(\text{Ker} i_*)$$

$$= \text{Ker} i_* \cap h'^{-1}_* \circ \phi^{-1}_*(\text{Ker} i_*)$$

$$= h'^{-1}_*(\text{Ker} i_* \cap \phi^{-1}_*(\text{Ker} i_*))$$

$$= h'^{-1}_*(\text{Ker} i_* \cap \phi^{-1}_*(\text{Ker} i_*)).$$

Set $f = h'^{-1}$. The conclusion follows. □

3 Algebraic determination on intersecting kernels and the proof of Theorem 1.1

Let $\pi = \pi_1(S_g)$. Recall π admits a presentation with generators $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ and a single relation $[a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1$, where the commutator $[a, b] = aba^{-1}b^{-1}$. Let KB_g be the normal subgroup of π generated by b_1, b_2, \ldots, b_g
and let $\phi: \pi \to \pi$ be an automorphism. Then there is a commutative diagram of short exact sequences of groups

$$
\begin{array}{cccc}
q_\phi(KB_g) & \to & \pi / \phi(KB_g) & \to \hat{\pi} \\
\uparrow & & \uparrow & \\
KB_g & \to & \pi & \to q(\phi(KB_g)) \\
\end{array}
$$

(3-1)

where q and q_ϕ are quotient homomorphisms and the top-right square is a push-out diagram. Since KB_g and $\phi(KB_g)$ are normal subgroups of π, the commutator subgroup $[KB_g, \phi(KB_g)]$ is a normal subgroup of π with

$$[KB_g, \phi(KB_g)] \subseteq KB_g \cap \phi(KB_g).$$

Modulo the subgroup $[KB_g, \phi(KB_g)]$, Diagram (3-1) induces the following commutative diagram

$$
\begin{array}{cccc}
q_\phi(KB_g) & \to & \pi / \phi(KB_g) & \to \hat{\pi} \\
\uparrow & & \uparrow & \\
KB_g /[KB_g, \phi(KB_g)] & \to & \pi /[KB_g, \phi(KB_g)] & \to q(\phi(KB_g)) \\
\end{array}
$$

(3-2)

For any group G, let $G^{ab} = H_1(G)$ denote the abelianization of G.

Proposition 3.1 There is a short splitting exact sequence of groups

$$
(KB_g \cap \phi(KB_g)) /[KB_g, \phi(KB_g)] \to (KB_g /[KB_g, \phi(KB_g)])^{ab} \to q_\phi(KB_g)^{ab}.
$$

Proof By applying Hopf Exact Sequence to the short exact sequence in the left column of Diagram (3-2), there is an exact sequence

$$
\begin{aligned}
H_2(KB_g /[KB_g, \phi(KB_g)]) & \to H_2(q_\phi(KB_g)) \to R \\
H_1(KB_g /[KB_g, \phi(KB_g)]) & \to H_1(q_\phi(KB_g)) \to 0.
\end{aligned}
$$

Algebraic & Geometric Topology, Volume 11 (2011)
where R is the quotient group of $(\text{KB}_g \cap \phi(\text{KB}_g))/[\text{KB}_g, \phi(\text{KB}_g)]$ by the commutator subgroup

$$[\text{KB}_g /[\text{KB}_g, \phi(\text{KB}_g)], (\text{KB}_g \cap \phi(\text{KB}_g))/[\text{KB}_g, \phi(\text{KB}_g)]].$$

Since $[\text{KB}_g, \text{KB}_g \cap \phi(\text{KB}_g)] \subseteq [\text{KB}_g, \phi(\text{KB}_g)]$, the commutator subgroup $[\text{KB}_g /[\text{KB}_g, \phi(\text{KB}_g)], (\text{KB}_g \cap \phi(\text{KB}_g))/[\text{KB}_g, \phi(\text{KB}_g)]]$ is trivial and so

$$R = (\text{KB}_g \cap \phi(\text{KB}_g))/[\text{KB}_g, \phi(\text{KB}_g)].$$

From the commutative diagram of short exact sequences of groups

$$\begin{array}{ccc}
\text{KB}_g & \longrightarrow & \pi \\
\downarrow \cong & & \phi \\
\phi(\text{KB}_g) & \longrightarrow & \pi / \phi(\text{KB}_g),
\end{array}$$

the group $\pi / \phi(\text{KB}_g)$ is isomorphic to $F(a_1, \ldots, a_g)$ and so $\pi / \phi(\text{KB}_g)$ is a free group. It follows that the subgroup $q(\phi(\text{KB}_g))$ is a free group. Thus

$$H_2(q(\phi(\text{KB}_g))) = 0$$

and so the exact sequence in Equation (3-3) induces a short exact sequence of abelian groups

$$(\text{KB}_g \cap \phi(\text{KB}_g))/[\text{KB}_g, \phi(\text{KB}_g)] \hookrightarrow H_1(\text{KB}_g /[\text{KB}_g, \phi(\text{KB}_g)]) \rightarrow H_1(q(\phi(\text{KB}_g))).$$

Since $\phi(\text{KB}_g)$ is a free group, $H_1(q(\phi(\text{KB}_g)))$ is a free abelian group. Thus the above short exact sequence splits off and hence the result.

Now we are going to determine $(\text{KB}_g /[\text{KB}_g, \phi(\text{KB}_g)])^{\text{ab}}$ and $q(\phi(\text{KB}_g))^{\text{ab}}$. Let

$$N \hookrightarrow G \twoheadrightarrow G'$$

be a short exact sequence. Consider the (left) conjugation action of G on N given by $g \cdot x = gxg^{-1}$ for $g \in G$ and $x \in N$. Then N^{ab} is a (left) module over the group algebra $\mathbb{Z}(G)$. Observe that $g^{-1}xg \equiv x \mod [N, N]$ for $g, x \in N$. The $\mathbb{Z}(G)$–action on N^{ab} induces a $\mathbb{Z}(G')$–action on N^{ab}. From the short exact sequence $\text{KB}_g^{\text{ab}} \hookrightarrow \pi \twoheadrightarrow F(a_1, \ldots, a_g)$, the abelian group KB_g^{ab} is a (left) module over $\mathbb{Z}(\pi)$. In particular, KB_g^{ab} is a (left) module over $\mathbb{Z}(\phi(\text{KB}_g))$ because KB_g^{ab} is a subgroup of π.

Proposition 3.2 There is an isomorphism of abelian groups

$$(\text{KB}_g /[\text{KB}_g, \phi(\text{KB}_g)])^{\text{ab}} \cong \mathbb{Z} \otimes_{\mathbb{Z}(\phi(\text{KB}_g))} \text{KB}_g^{\text{ab}}.$$
The intersecting kernels of Heegaard splittings

Proof Let $p: KB_g \to (KB_g / [KB_g, \phi(KB_g)])^{ab}$ be the quotient map. Since

$$(KB_g / [KB_g, \phi(KB_g)])^{ab}$$

is abelian, the homomorphism p factors through the quotient group KB_g^{ab}. For $y \in \phi(KB_g)$ and $x \in KB_g$, the conjugation

$$yxy^{-1} \equiv x$$

in $(KB_g / [KB_g, \phi(KB_g)])^{ab}$ because $[y, x] = yxy^{-1}x^{-1} \in [KB_g, \phi(KB_g)]$. Thus the quotient homomorphism p factors through $\mathbb{Z} \otimes \mathbb{Z}(\phi(KB_g)) KB_g^{ab}$. Similarly the quotient homomorphism

$$KB_g \longrightarrow \mathbb{Z} \otimes \mathbb{Z}(\phi(KB_g)) KB_g^{ab}.$$ factors through the quotient $(KB_g / [KB_g, \phi(KB_g)])^{ab}$. The assertion follows. □

Let $F_{2g}^{a,b}$ be the free group of rank $2g$ generated by $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ and let F_g^a be the free group of rank g generated by a_1, a_2, \ldots, a_g. Let

$$p: F_{2g}^{a,b} \longrightarrow F_g^a$$

be the group homomorphism such that $p(a_j) = a_j$ and $p(b_j) = 1$ for $1 \leq j \leq g$. Let \widetilde{KB}_g be the kernel of p. Clearly \widetilde{KB}_g is the normal closure of b_1, \ldots, b_g in $F_{2g}^{a,b}$.

Lemma 3.3 For each g, \widetilde{KB}_g^{ab} is a free module over $\mathbb{Z}(F_g^a)$ with a basis $\{b_1, b_2, \ldots, b_g\}$.

Proof From the short exact sequence,

$$\widetilde{KB}_g \hookrightarrow F_{2g}^{a,b} \longrightarrow F_g^a,$$

the free group \widetilde{KB}_g has a basis $\{wb_jw^{-1} \mid w \in F_g^a 1 \leq j \leq g\}$ and hence the result. □

Lemma 3.4 Let J be the sub-$\mathbb{Z}(F_g^a)$–module of \widetilde{KB}_g^{ab} generated by the element

$$(3-4) \quad (a_1 - 1) \cdot b_1 + (a_2 - 1) \cdot b_2 + \cdots + (a_g - 1) \cdot b_g.$$ Then there is an isomorphism of $\mathbb{Z}(F_g^a)$–modules

$$\widetilde{KB}_g^{ab} / J \cong KB_g^{ab}.$$
Proof Consider the commutative diagram of short exact sequences of groups

\[
\begin{array}{c}
\widehat{K_B}_g & \rightarrow & F_{2g}^{a,b} & \rightarrow & F_g^a \\
\downarrow & & & & \downarrow \\
K_B_g & \rightarrow & \pi & \rightarrow & F_g^a.
\end{array}
\]

The group \(K_B_g \) is the quotient group of \(\widehat{K_B}_g \) by the normal closure generated by the element

\[
C = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = (a_1 b_1 a_1^{-1}) b_1^{-1} (a_2 b_2 a_2^{-1}) b_2^{-1} \cdots (a_g b_g a_g^{-1}) b_g^{-1}.
\]

Let \(C' \) be the image of \(C \) in \(\widehat{K_B}_g^{ab} \). Then

\[
C' = (a_1 \cdot b_1 - b_1) + (a_2 \cdot b_2 - b_2) + \cdots + (a_g \cdot b_g - b_g)
\]

\[
= (a_1 - 1) \cdot b_1 + (a_2 - 1) \cdot b_2 + \cdots + (a_g - 1) \cdot b_g
\]

in \(\widehat{K_B}_g^{ab} \). Let \(p: \widehat{K_B}_g^{ab} \rightarrow K_B_g^{ab} \) be the quotient homomorphism. By the above commutative diagram of short exact sequences, \(p \) is a homomorphism of (right) \(\mathbb{Z}(F_g^a) \)–modules with

\[
p(C') = 0.
\]

It follows that the quotient homomorphism \(p: \widehat{K_B}_g^{ab} \rightarrow K_B_g^{ab} \) factors through \(\widehat{K_B}_g^{ab} / J \). Let

\[
\bar{p}: \widehat{K_B}_g^{ab} / J \rightarrow K_B_g^{ab}
\]

be the resulting homomorphism of (left) \(\mathbb{Z}(F_g^a) \)–modules.

Now consider the quotient homomorphism

\[
p': \widehat{K_B}_g \rightarrow \widehat{K_B}_g^{ab} \rightarrow \widehat{K_B}_g^{ab} / J.
\]

Since \(p'(C) = 0 \), the group homomorphism \(p' \) factors through the quotient group \(K_B_g = \widehat{K_B}_g / (C)^N \). Moreover, since \(\widehat{K_B}_g^{ab} / J \) is abelian, the resulting homomorphism \(K_B_g \rightarrow \widehat{K_B}_g^{ab} / J \) factors through the quotient group \(K_B_g^{ab} \) which gives the inverse of \(\bar{p} \).

The proof is finished.

Let \(\hat{a}_j \) denote the image of \(a_j \) in \(\hat{\pi} \) under the quotient homomorphism \(F_g^a \rightarrow \hat{\pi} \). Since the conjugation action of the subgroup \(\phi(K_B_g) \) of \(\pi \) on \((K_B_g / [K_B_g, \phi(K_B_g)])^{ab} \) is trivial, the conjugation action of \(\pi \) \((K_B_g / [K_B_g, \phi(K_B_g)])^{ab} \) induces an action of \(\hat{\pi} \) and so \((K_B_g / [K_B_g, \phi(K_B_g)])^{ab} \) is a module over \(\mathbb{Z}(\hat{\pi}) \).
Proposition 3.5 As a \(\mathbb{Z}(\hat{\pi}) \)–module, \((\mathbb{K}B_g / [\mathbb{K}B_g, \phi(\mathbb{K}B_g)])^{ab}\) admits a presentation that is generated by letters \(b_1, b_2, \ldots, b_g \) with the single defining relations given by the equation

\[
\sum_{j=1}^g (\hat{a}_j - 1) \cdot b_j = 0.
\]

Proof Consider the quotient homomorphism \(F^a_{2g} \to \pi\). By Lemma 3.3,

\[
\mathbb{K}B^a_g = \mathbb{Z}(F^a_g) \otimes \mathbb{Z}\{b_1, b_2, \ldots, b_g\}.
\]

By Proposition 3.2,

\[
(\mathbb{K}B_g / [\mathbb{K}B_g, \phi(\mathbb{K}B_g)])^{ab} \cong \mathbb{Z} \otimes \mathbb{Z}(\phi(\mathbb{K}B_g)) \mathbb{K}B^a_g = \mathbb{Z} \otimes \mathbb{Z}(q(\phi(\mathbb{K}B_g))) \mathbb{K}B^a_g
\]

as modules over \(\mathbb{Z}(F^a_g) \). Together with Lemma 3.4, \((\mathbb{K}B_g / [\mathbb{K}B_g, \phi(\mathbb{K}B_g)])^{ab}\) is the quotient left \(\mathbb{Z}(F^a_g)\)–module of \(\mathbb{K}B^a_g \) modulo the following relations:

1. The action of the subgroup \(q(\phi(\mathbb{K}B_g)) \) becomes trivial.
2. The element \(C' = \sum_{j=1}^g (a_j - 1) \cdot b_j = 0 \).

By taking the first type relations, we obtain

\[
\mathbb{Z} \otimes \mathbb{Z}(q(\phi(\mathbb{K}B_g))) \mathbb{K}B^a_g \cong \mathbb{Z} \otimes \mathbb{Z}(q(\phi(\mathbb{K}B_g))) (\mathbb{Z}(F^a_g) \otimes \mathbb{Z}\{b_1, b_2, \ldots, b_g\}) \cong \mathbb{Z}(\hat{\pi}) \otimes \mathbb{Z}\{b_1, b_2, \ldots, b_g\}
\]

because \(\hat{\pi} = F^a_{2g} / q(\phi(\mathbb{K}B_g)) \). The second type relation gives the equation in the statement and hence the result. \(\square \)

The following lemma is a well known fact; see Brown [5, Proposition II 5.4]. For readers’ convenience, we include a proof here.

Lemma 3.6 Let \(N \hookrightarrow F \twoheadrightarrow G \) be a short exact sequence of groups such that \(F \) is a free group. Then there is an exact sequence of modules over \(\mathbb{Z}(G) \)

\[
0 \to N^{ab} \to \mathbb{Z}(G) \otimes F^{ab} \to \mathbb{Z}(G) \to \mathbb{Z},
\]

where \(\epsilon \) is the augmentation and \(\mathbb{Z}(G)\)–action on \(N^{ab} \) is induced by the conjugation action of \(G \) on \(N^{ab} \).
Proof Let $IG = \text{Ker}(\epsilon: \mathbb{Z}(G) \to \mathbb{Z})$ be the augmentation ideal. Since F is a free group, its classifying space $BF \simeq \Sigma X$ for a pointed set X (as a discrete topological space), where each nonbasepoint $x_\alpha \in X$ determines a loop in ΣX and $F = \pi_1(\Sigma X)$ has a basis $\{x_\alpha \mid x_\alpha \text{ nonbasepoint in } X\}$. Let $V = \mathbb{Z}\{x_\alpha \mid x_\alpha \text{ nonbasepoint in } X\}$. From the short exact sequence of groups

$$N \hookrightarrow F \twoheadrightarrow G,$$

there is a principal G–bundle

$$G \hookrightarrow BN \xrightarrow{p} \Sigma X.$$

Let $C_+X = \text{IM}(\{0,1/2\} \times X \to \Sigma X = S^1 \wedge X)$ and $C_-X = \text{IM}(\{1/2,1\} \times X \to \Sigma X = S^1 \wedge X)$. Then the restricted bundles

$$G \hookrightarrow p^{-1}(C_+X) \xrightarrow{p|} C_+X \quad \text{and} \quad G \hookrightarrow p^{-1}(C_-X) \xrightarrow{p|} C_-X$$

are trivial bundles because the cones C_+X and C_-X are contractible. It follows that

$$p^{-1}(C_+X) \cong G \times C_+X \quad \text{and} \quad p^{-1}(C_-X) \cong G \times C_-X$$

with $BN = p^{-1}(C_+X) \cup p^{-1}(C_-X)$ and $p^{-1}(C_+X) \cap p^{-1}(C_-X) = G \times X$. Thus there is a cofibre sequence of G–spaces

$$G \simeq G \times C_+X \hookrightarrow BN \twoheadrightarrow BN/p^{-1}(C_+X) \cong (G \times C_-X)/(G \times X) \cong G \times \Sigma X.$$

By applying the homology to the above cofibre sequence, there is a short exact sequence of $\mathbb{Z}(G)$–modules

$$(3-5) \quad H_1(BN) = N^{ab} \hookrightarrow H_1(G \rtimes \Sigma X) = \mathbb{Z}(G) \otimes V \xrightarrow{\partial} \bar{H}_0(G) \cong IG.$$

For each nonbasepoint $x_\alpha \in X$, the corresponding loop in $\Sigma X = \bigvee_\alpha S^1_\alpha$ lifts to a path $\tilde{\lambda}: [0,1] \to BN$ such that $\tilde{\lambda}(0) = \ast$. Then $\tilde{\lambda}(1)$ defines an element in G. Regard x_α as an element in $F = \pi_1(\Sigma X)$. By applying the singular chain complexes to the above cofibre sequence, $\partial(x_\alpha) = \hat{x}_\alpha - 1$, where \hat{x}_α is the image of x_α in G under the quotient homomorphism $F \to G$.

To see that the $\mathbb{Z}(G)$–module structure in Equation (3-5) coincides with the conjugation action of $\mathbb{Z}(G)$ on N^{ab}, let K be the kernel of $IF \to IG$. Then K is the (left) ideal
of $\mathbb{Z}(F)$ generated by IN. Then there is a commutative diagram

$$
\begin{array}{ccc}
K \otimes V & \longrightarrow & K \otimes V \\
\downarrow \text{multi} & & \downarrow \text{multi} \\
K & \hookrightarrow & \mathbb{Z}(F) \otimes V \cong IF \longrightarrow IG \\
\downarrow & & \downarrow \\
K/(K \cdot V) & \hookrightarrow & \mathbb{Z}(G) \otimes V \longrightarrow IG,
\end{array}
$$

where the rows are exact. Now the composite

$$IN \hookrightarrow K \longrightarrow K/(K \cdot V) = K/(K \cdot IF)$$

is an epimorphism as K is the left ideal generated by IN. Moreover the above composite factors through IN/I^2N because $I^2N = IN \cdot IN \subseteq K \cdot IF$. Thus there is a commutative diagram

$$IN \hookrightarrow K \longrightarrow K/(K \cdot V) = K/(K \cdot IF).$$

From Equation (3-5), the resulting homomorphism $N^{ab} \rightarrow K/(K \cdot V)$ is an isomorphism. Now let $x \in N$ and $y \in F$. In the group algebra $\mathbb{Z}(F)$, write $x = 1 + \bar{x}$ and $y = 1 + \bar{y}$ with $\bar{x} \in IN$ and $\bar{y} \in IF$. Then, in IF,

$$yxy^{-1} - 1 = (y(1 + \bar{x})y^{-1} - 1$$

$$= y\bar{x}(1 + \bar{x})^{-1}$$

$$= y \cdot \bar{x} + y\bar{x}y^{-1}.$$

Since $yxy^{-1} \in K \cdot IF$,

we have

$$yxy^{-1} \equiv y \cdot \bar{x}$$

in $K/(K \cdot V) = K/(K \cdot IF) \cong N^{ab}$. It follows that the conjugation action of $\mathbb{Z}(G)$ on N^{ab} coincides with $\mathbb{Z}(G)$–module structure on $N^{ab} \cong K/(K \cdot V)$ and hence the result. \hfill \Box
Proof of Theorem 1.1 (1) Let \(i: S_g \rightarrow V_g \) be the canonical inclusion. By Seifert–van Kampen Theorem, there is a push-out diagram of groups

\[
\begin{array}{ccc}
\pi_1(V_g) & \longrightarrow & \pi_1(M) \\
\downarrow i_* & & \downarrow \\
\pi_1(S_g) & \longrightarrow & \pi_1(V_g)
\end{array}
\]

(3-6)

and hence assertion (1).

(2) Let \(\pi = \pi_1(S_g) \). Observe that the automorphism \(\phi_*: \pi_1(S_g) \rightarrow \pi_1(S_g) \) sends \(\phi_*^{-1}(KB_g) \) and \(KB_g \) to \(KB_g \) and \(\phi_*(KB_g) \), respectively. There is an isomorphism

\[
(KB_g \cap \phi_*^{-1}(KB_g))[KB_g, \phi_*^{-1} KB_g] \xrightarrow{\phi_*} (KB_g \cap \phi_*(KB_g))/[KB_g, \phi_*(KB_g)].
\]

Consider Diagram (3-1). By applying Lemma 3.6 to the short exact sequence

\[
q(\phi_*(KB_g)) \xrightarrow{\alpha} F_g^a \xrightarrow{\hat{\pi}} \pi_1(M)
\]

in the right column of Diagram (3-1), there is an exact sequence of \(\mathbb{Z}(\pi_1(M)) \)–modules

\[
0 \longrightarrow q(\phi_*(KB_g))^{ab} \longrightarrow \mathbb{Z}(\pi_1(M)) \otimes (F_g^a)^{ab} \xrightarrow{\theta} \mathbb{Z}(\pi_1(M)) \xrightarrow{\epsilon} \mathbb{Z}.
\]

Note that the group \(F_g^a \) is the free group with a basis \(a_1, a_2, \ldots, a_g \). We have

\[
\mathbb{Z}(\pi_1(M)) \otimes (F_g^a)^{ab} = \mathbb{Z}(\pi_1(M))\{y_1, \ldots, y_g\},
\]

where \(y_i \) is the image of \(a_i \) in \((F_g^a)^{ab} \). By the proof of Lemma 3.6, \(\theta(y_i) = a_i - 1 \) as an element in \(\mathbb{Z}(\pi_1(M)) \) for \(1 \leq i \leq g \).

By Proposition 3.1, there is a short exact sequence

\[
(KB_g \cap \phi_*(KB_g))/[KB_g, \phi_*(KB_g)] \xrightarrow{\alpha} (\phi_*(KB_g)/[KB_g, \phi_*(KB_g)])^{ab} \xrightarrow{f'} q(\phi_*(KB_g))^{ab}.
\]

According to Proposition 3.5,

\[
(\phi_*(KB_g)/[KB_g, \phi_*(KB_g)])^{ab} = \mathbb{Z}(\pi_1(M))\{x_1, \ldots, x_g\}/J,
\]

where \(x_i \) is the letter \(\phi_*(b_i) \). By identifying the image \(q(\phi_*(KB_g))^{ab} \) as a subgroup of \(\mathbb{Z}(\pi_1(M)) \otimes (F_g^a)^{ab} = \mathbb{Z}(\pi_1(M))\{y_1, \ldots, y_g\} \), \(f'(x_i) \) is the image of \(q(\phi_*(b_i)) - 1 \in IF_g^a \) in its quotient group \(\mathbb{Z}(\pi_1(M)) \otimes (F_g^a)^{ab} \). From the fundamental theorem of free calculus,

\[
q(\phi_*(b_i)) - 1 = \sum_{j=1}^{g} \frac{\partial q(\phi_*(b_i))}{\partial a_j} (a_j - 1) \in IF_g^a.
\]
Thus f' is the same as the $\mathbb{Z}(\pi_1(M))$–morphism

$$T^\phi: \mathbb{Z}(\pi_1(M))\{x_1, \ldots, x_g\}/J \longrightarrow \mathbb{Z}(\pi_1(M))\{y_1, \ldots, y_g\}$$

with $T^\phi(x_i) = \sum_{j=1}^g \partial_j (\phi^*(b_j)) y_j$. The proof is finished.

4 Intersecting kernel of the connected sum of Heegaard splittings and the proof of Theorem 1.3

A Heegaard splitting $\mathcal{M} = (M; V, W; S)$ is reducible if there exist essential disks $D \subset V$ and $E \subset W$ with $\partial D = \partial E$.

It is a well-known result by Haken (see Jaco [11]) that any Heegaard splitting of a reducible 3–manifold is reducible.

Proposition 4.1 A Heegaard splitting $\mathcal{M} = (M; V, W; S)$ is reducible if and only if there exists an essential simple closed curve C in S such that $[C] \in K(\mathcal{M})$.

Proof One direction follows from the definition, the other direction follows from Dehn’s Lemma (refer to Hempel [9] or Jaco [11]).

Let $\mathcal{M}_1 = (M_1; V_1, W_1; S_1), \mathcal{M}_2 = (M_2; V_2, W_2; S_2)$ be two Heegaard splittings with $M_1 = V_1 \cup S_1 W_1, M_2 = V_2 \cup S_2 W_2$. Define the connected sum $\mathcal{M}_1 \# \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 in a natural way as follows: take a small 3–ball B_i in M_i such that $B_i \cap S_i$ is a properly embedded disk in $B_i, i = 1, 2$. Let $h: \partial B_1 \to \partial B_2$ be a homeomorphism which takes the disk $D_1 = (\partial B_1) \cap V_1$ to the disk $D_2 = (\partial B_2) \cap V_2$ and $E_1 = (\partial B_1) \cap W_1$ to $E_2 = (\partial B_2) \cap W_2$. Thus when we set $V_1' = V_1 - B_1, W_1' = W_1 - B_1, S_1' = V_1' \cap W_1'$, and $V_2' = V_2 - B_2, W_2' = W_2 - B_2, S_2' = V_2' \cap W_2'$, we have $V = V_1' \cup D_1 = D_2 V_2', W = W_1' \cup E_1 = E_2 W_2'$, and $S = (S_1' - B_1 \cap S_1') \cup (S_2' - B_2 \cap S_2') = S_1 \# S_2$. Then we have a Heegaard splitting $(M_1 \# M_2; V, W; S)$, which is called the connected sum of \mathcal{M}_1 and \mathcal{M}_2 and is denoted by $\mathcal{M}_1 \# \mathcal{M}_2$.

Set $C = \partial S_1' = \partial S_2'$. Then it is clear that $[C] \in K(\mathcal{M}_1 \# \mathcal{M}_2)$.

Remark The following construction shows that once there exists an essential separating simple closed curve $C \subset S$ with $[C] \in K(M; V, W; S)$, then there exist infinitely many such curves in S.

Construction [12] Use the notation as above. Choose a pair of parallel essential disks Δ_1, Δ_2 in V_1', such that $\Delta_i \cap S_1' = \partial \Delta_i \cap S_1' = d_i$ and $\Delta_i \cap D = \partial \Delta_i \cap D = d_i'$ are two arcs in $\partial \Delta_i$, and $\partial \Delta_i = d_i \cup d_i', i = 1, 2$. Denote $\partial d_i = \partial d_i' = \{p_{i1}, p_{i2}\}$.

Algebraic & Geometric Topology, Volume 11 (2011)
$i = 1, 2$. Similarly, choose a pair of parallel essential disks Σ_1, Σ_2 in W'_2, such that $\Sigma_i \cap S' = \partial \Sigma_i \cap S'_2 = e_i$ and $\Sigma_i \cap E = \partial \Sigma_i \cap E = e'_i$ are two arcs in $\partial \Sigma_i$, and $\partial \Sigma_i = e_i \cup e'_i$, $i = 1, 2$. Furthermore, assume $\partial e_i = \partial e'_i = \{p_{1i}, p_{2i}\}$, $i = 1, 2$; see Figure 1 below.

![Diagram](image)

Figure 1: From C with $[C] \in K(K; V, W; S)$ to get C'

Let $C' = d_1 \cup e_1 \cup d_2 \cup e_2$, then C' is a simple closed curve on S. It is easy to see that C' is essential and separating on S. Since e_1 and e_2 are parallel on S', we can find a proper disk Σ' in V'_2 such that $\partial \Sigma' = d'_1 \cup e_1 \cup d'_2 \cup e_2$. Thus C' bounds a disk $\Delta_1 \cup \Sigma' \cup \Delta_2$ in V. Similarly, C' also bounds a disk in W. So $[C'] \in K(M_1 \# M_2)$. Simply, C' and C are not isotopic on F, and there are infinitely many such ways to construct such curves.

Next we consider how the intersecting kernel of the connected sum of two Heegaard splittings are related to those of its two factors. Suppose $M_1 = (M_1; V_1, W_1; S_1)$, $M_2 = (M_2; V_2, W_2; S_2)$, and $M_1 \# M_2 = (M; V, W; S)$, where $M = M_1 \# M_2$. Use the notation as before.

Let $i_1: S_1 \hookrightarrow V_1$, $j_1: S_1 \hookrightarrow W_1$ and $i_2: S_2 \hookrightarrow V_2$, $j_2: S_2 \hookrightarrow W_2$ be inclusions. Let $K = K(M)$, $K_1 = K(M_1)$ and $K_2 = K(M_2)$. By contracting the 2–sphere $F = \partial B_1 = \partial B_2$ in M to a point, we get a continuous map $f: M \to M_1 \vee M_2$ and $g = f|_S: S \to S_1 \vee S_2$. Clearly, $g_\ast: \pi_1(S) \to \pi_1(S_1 \vee S_2) = \pi_1(S_1) \ast \pi_1(S_2)$ is surjective. Now consider $\rho = g_\ast|_K: K \to \pi_1(S_1) \ast \pi_1(S_2)$.

Lemma 4.2 $\rho = g_\ast|_K: K \to K_1 \ast K_2$ is surjective.

Proof By contracting $V'_2 \cup W'_2$ in M to a point, we get a continuous onto map $f_1: M \to V_1 \cup S_1 \cup W_1$ which induces an epimorphism $f_{1\ast}: \pi_1(M) \to \pi_1(M_1)$. Let $g_1 = f_1|_S: S \to S_1$, and $g_{1\ast}: \pi_1(S) \to \pi_1(S_1)$. Let $i: S \hookrightarrow V$, $j: S \hookrightarrow W$, and $i_1: S_1 \hookrightarrow V_1$, $j_1: S_1 \hookrightarrow W_1$ be inclusions. Then $K = \text{Ker} i_\ast \cap \text{Ker} j_\ast$ and

Algebraic & Geometric Topology, Volume 11 (2011)
$K_1 = \text{Ker} i_{1*} \cap \text{Ker} j_{1*}$. Set $g_{1*}' = g_{1*}|_K: K \to \pi_1(S_1)$. We have the commutative
graph as follows:

$$
\begin{array}{ccc}
\pi_1(W_1) & \xleftarrow{i_*} & \pi_1(S) \\
\downarrow f_1|w_* & & \downarrow g_* \\
\pi_1(W_1) & \xrightarrow{i_{1*}} & \pi_1(S_1) \\
\end{array}
\begin{array}{c}
\xrightarrow{j_*} \\
\xrightarrow{f_1|v_*} \\
\xrightarrow{i_{1*}} \\
\end{array}
\begin{array}{c}
\pi_1(V) \\
\pi_1(V_1) \\
\pi_1(V_1) \\
\end{array}
$$

For any $\alpha \in \text{Ker} i_*$, we have $i_*(\alpha) = 1$, so $i_*=g_{1*}(\alpha) = i_*f|_v(\alpha) = 1$, $g_*(\alpha) \in \text{Ker} i_{1*}$, thus $g_{1*}(\text{Ker} i_*) \subset \text{Ker} i_{1*}$. Similarly, $g_{1*}(\text{Ker} j_*) \subset \text{Ker} j_{1*}$. Therefore $g_{1*}K = g_{1*}(\text{Ker} i_*) \cap g_{1*}(\text{Ker} j_*) \subset \text{Ker} i_{1*} \cap \text{Ker} j_{1*} = K_1$. Hence $g_{1*}|_K = g': K \to K_1$ is well-defined.

We show that $g': K \to K_1$ is surjective.

Observe that the inclusion $S_1' \hookrightarrow S_1$ induces an epimorphism $\pi_1(S_1') \to \pi_1(S_1)$. Note that the inclusions $V_1' \hookrightarrow V_1$ and $W_1' \hookrightarrow W_1$ are homotopy equivalence. Thus there is a commutative diagram

$$
\begin{array}{ccc}
\pi_1(V_1') & \leftarrow & \pi_1(S_1') \\
\downarrow \cong & & \downarrow \cong \\
\pi_1(V_1) & \leftarrow & \pi_1(S_1) \\
\end{array}
\begin{array}{c}
\xrightarrow{i} \\
\xrightarrow{j} \\
\xrightarrow{i} \\
\end{array}
\begin{array}{c}
\pi_1(W_1') \\
\pi_1(W_1) \\
\pi_1(W_1) \\
\end{array}
$$

It follows that

$$
\text{Ker}(\pi_1(S_1') \to \pi_1(S_1)) \subseteq \text{Ker}(\pi_1(S_1') \to \pi_1(V_1')) \cap \text{Ker}(\pi_1(S_1') \to \pi_1(W_1')).
$$

Let $K_1' = \text{Ker}(\pi_1(S_1') \to \pi_1(V_1')) \cap \text{Ker}(\pi_1(S_1') \to \pi_1(W_1'))$. Then, from the above commutative diagram, one can easily check that

$$
K_1' \to K_1
$$

is an epimorphism. From the commutative diagram

$$
\begin{array}{ccc}
V_1 & \hookrightarrow & S_1' \hookrightarrow W_1' \\
\downarrow f_1|_v & & \downarrow f_1|_s & & \downarrow f_1|_w \\
V & \hookrightarrow & S \hookrightarrow W \\
\end{array}
$$

where the composites in the columns are inclusions, the epimorphism $K_1' \to K_1$ admits a decomposition $K_1' \to K \to K_1$. It follows that $g': K \to K_1$ is an epimorphism.
Similarly, \(g'' = g_2^*|_K: K \to K_2\) is surjective, where \(g_2 = f_2|_S: S \to S_2\), and \(f_2: M \to V_2 \cup S_2 W_2\) is a continuous onto map obtained by contracting \(V'_1 \cup W'_1\) in \(M\) to a point. The assertion follows.

\[\square\]

Proof of Theorem 1.3 By Lemma 4.2, \(\rho: K \to K_1 \ast K_2\) is surjective. To show

\[
\{1\} \longrightarrow \langle [C]\rangle^N \longrightarrow K(\mathcal{M}) \xrightarrow{\rho} K_1 \ast K_2 \longrightarrow \{1\}
\]

is a short exact sequence, it suffices to show the kernel of \(\rho\) is the normal closure of \([C]\) in \(\pi_1(S)\). Denote the normal closure of \([C]\) in \(\pi_1(S)\) by \(<[C]>^N\). Then by the definition of \(g: S \to S_1 \cup S_2, \text{Ker } g_* = <[C]>^N\), and \(\pi_1(S)/<[C]>^N \cong \pi_1(S_1) \ast \pi_1(S_2)\).

For all \(\alpha \in \text{Ker } \rho\), \(\rho(\alpha) = 1 \in K_1 \ast K_2 \subset \pi_1(S_1) \ast \pi_1(S_2) \cong \pi_1(S)/<[C]>^N\), \(\alpha \in<[C]>^N\), so \(\text{Ker } \rho \subset<[C]>^N\).

On the other hand, for all \(\beta \in<[C]>^N\), \(\beta\) can be expressed as

\[\beta = y_1[C]^{n_1}y_1^{-1}y_2[C]^{n_2}y_2^{-1}\cdots y_m[C]^{n_m}y_m^{-1},\]

where \(y_p \in \pi_1(S), n_p \in \mathbb{Z}, 1 \leq p \leq m\). Note that \([C] \in \text{Ker } i_* \cap \text{Ker } j_* = K\), so \(i_* \beta = 1\) and \(j_* \beta = 1\). Thus \(\beta \in K\). Clearly, \(\rho(\beta) = 1\), so \(\beta \in \text{Ker } \rho\), and \(<[C]>^N \subset \text{Ker } \rho\). Hence \(\text{Ker } \rho =<[C]>^N\).

This completes the proof of Theorem 1.3. \(\square\)

Example 4.3 Let \(\mathcal{M} = (M; V, W; S)\) be a Heegaard splitting of genus 2 for \(M = S^3\), \(L(p, q)\), or \(L(p, q) \# L(r, s)\), and let \(C\) be a simple closed curve on \(S\) so that \(C\) cuts \(S\) into two once-punctured tori and \(C\) bounds disks in both \(V\) and \(W\). As a direct consequence of Theorem 1.3, we have \(K(\mathcal{M}) =<[C]>^N\). If we choose another simple closed curve \(C'\) on \(S\) with the same property, we also have \(K(\mathcal{M}) =<[C']>[N]\).

Acknowledgements The referee pointed out that the exact sequence in assertion (2) of Theorem 1.1 can also be obtained from the viewpoint of equivariant cellular homology. The authors are grateful to the referee for helpful and valuable comments and suggestions. The first author is partially supported by a key grant, NSFC number 10931005, and NSFC grant number 11028104. The second author is partially supported by the AcRF Tier 1 (WBS numbers R-146-000-101-112 and R-146-000-137-112) of MOE of Singapore and NSFC grant number 11028104.

References

Algebraic & Geometric Topology, Volume 11 (2011)
The intersecting kernels of Heegaard splittings

Algebraic & Geometric Topology, Volume 11 (2011)

School of Mathematical Sciences, Dalian University of Technology
Dalian 116024, China

Department of Mathematics, National University of Singapore
S17-06-02, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

fclei@dlut.edu.cn, matwuj@nus.edu.sg

http://www.math.nus.edu.sg/~matwuje

Received: 25 July 2010 Revised: 29 December 2010