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Planar open books with four binding components

YANKI LEKILI

We study an explicit construction of planar open books with four binding components
on any three-manifold which is given by integral surgery on three component pure
braid closures. This construction is general, indeed any planar open book with
four binding components is given this way. Using this construction and results on
exceptional surgeries on hyperbolic links, we show that any contact structure of
S3 supports a planar open book with four binding components, determining the
minimal number of binding components needed for planar open books supporting
these contact structures. In addition, we study a class of monodromies of a planar open
book with four binding components in detail. We characterize all the symplectically
fillable contact structures in this class and we determine when the Ozsvath—Szabd
contact invariant vanishes. As an application, we give an example of a right-veering
diffeomorphism on the four-holed sphere which is not destabilizable and yet supports
an overtwisted contact structure. This provides a counterexample to a conjecture of
Honda, Kazez and Mati¢ from [16].

5S7TR17

1 Introduction

Let Y be a closed oriented 3—manifold and & be a contact structure on Y . Recall that
an open book is a fibration 7: ¥ — B — S! where B is an oriented link in Y such
that the fibres of 7 are Seifert surfaces for B. The contact structure £ is said to be
supported by an open book 7 if £ is the kernel of a one-form « such that o evaluates
positively on the positively oriented tangent vectors of B and du restricts to a positive
area form on each fibre of . The fibres of 7 are called pages of the open book. We
will consider abstract open books (S, ¢) where S is a page of the open book, and
¢ € Aut(S, dS). It is easy to construct an open book as above, starting from the data
(S, ¢) (see Etnyre [7]).

It is well known that every contact structure & is supported by an open book on Y
and all open book decompositions of Y supporting & are equivalent up to positive
stabilizations and destabilizations (see Giroux [12]). In light of this theorem, to study
contact structures, we will study abstract open books (S, ¢) supporting them. We
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should note that in our case the right notion of equivalence provided by the Giroux’s
theorem is contact isomorphism (not contact isotopy [7]).

In [6], Etnyre proved that every overtwisted contact structure is supported by a planar
open book. On the other hand, there are known obstructions for a tight contact structure
to admit a supporting planar open book (see Etnyre [6], Ozsvath, Stipsicz and Szabé [20]
and Wand [24]).

For a contact structure (Y, £), in [8], Etnyre and Ozbagci defined invariants of £ by a
measure of topological complexity of its supporting open books. We recall these here:

sn(§) = min{—x (7w~ ' (#))|7n: Y — B — S supports £}
sg(&) = min{g(x~1(9)) | m: Y — B — S! supports £}
bn(£) = min{|B| | 7: ¥ — B — S supports £ and g(n~1(0)) = sg(&)}

where @ is any pointin S', g(-) is the genus and |- | is the number of components.

These are called support norm, support genus and binding number in the order given
above. In general, it is hard to compute these invariants for a given £. From the above
definition, it is easy to see that sn(£) < 2sg(£) + bn(§) — 2, however it is known that
in general these invariants are independent of each other (see Etgii and Lekili [5] and
Baldwin and Etnyre [4]).

In this article, we will determine all of these invariants for all the contact structures
on S3. Previously for any contact structure £ on S3, Etnyre and Ozbagci showed that
sg(&) =0, bn(§) < 6 and sn(§) < 4. Recall that, there exists a unique tight contact
structure on S3 having d3 = —1/2. It is easy to show that this is supported by the
open book (D?,id), hence sg =0, bn =1 and sn = —1 for the tight contact structure
on S3. The overtwisted contact structures on S* are classified by their 3 invariants
which takes values in Z + 1/2. We will write &, for the overtwisted contact structure
on S* with d3 = n. Our first result determines the invariants of these:

Theorem 1.1 Let &, be the overtwisted contact structure on S* with d3(&,) = n,
then sg(&,) = 0 for all n and

bn(§1/2) =2
bn(5_/2) =bn(§3/2) =3
bn(&,) =4 forall n #—-1/2, 1/2, 3/2
sn(§1/2) =0
sn(§_1/2) =sn(&3/2) =1
sn(&y) =2 forall n # —1/2, 1/2, 3/2.
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Note that the results for n =—1/2, 1/2, 3/2 were calculated by Etnyre and Ozbagci [8]
via an easy classification of planar open books with three or less boundary components,
which we review here. Let (Y, £) be the contact three-manifold supported by (S, ¢).
Below, we write (Y, &) to denote the unique tight contact structure on Y whenever Y
has a unique tight contact structure. These descriptions and more can be found in [8].

o If S=D? then ¢ =id and (Y, &) = (S3,&).

e For S = S'x][0,1], let a denote the simple closed curve generating H;(S).
If ¢ =77, then (Y, &) = (L(p, p—1), &) for p>0, (Y,£) = (S' x §2,&)
for p =0, and (Y,&) = (L(—p,1),&) for p <0, where £ is overtwisted with
e(€) =0 and d3(£) = (3+ p)/4. Note that S3 appears exactly for p = £1. For
p = 1, this is a stabilization of the standard open book of tight contact structure
in S3, and for p = —1, we get the overtwisted contact structure &, /2

e When S has three boundary components let a, b, ¢ denote boundary parallel
simple closed curves. If ¢ = ¢/ ‘[ 7/, then Y is the Seifert fibered space with
eo=|—-1/pl+|-1/q]+|— l/rj as shown in Figure 1. We only note that it
is easy to draw a contact surgery diagram of these contact structures [8]. The
authors calculate exactly when S3 has such an open book, it turns out all of
these open books support either £_; /5 or £35.

To determine bn(&,) for the remaining cases, we simply construct planar open books
with four binding components supporting &, for the remaining cases. This determines
bn(&,). To calculate sn(&,), we show that none of these contact structures can be
supported by an open book with page a torus with one boundary component.

00 ) E¥%

Figure 1: Open books with page a three-holed sphere

In [15], Honda, Kazez and Mati¢ proves that a contact structure £ is tight if and
only if all of the open book decompositions (S, ¢) supporting £ have right-veering
monodromy ¢ € Aut(S, d.5). This result is useful in proving that £ is overtwisted by
exhibiting a supporting open book with a monodromy which is not a right-veering
diffeomorphism. On the other hand, when S is a punctured torus, the same authors
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in [16] also prove that the supported contact structure is tight if and only if the given
monodromy is right-veering. In general, however a right-veering diffeomorphism does
not always correspond to a tight contact structure. In fact, any open book can be
stabilized to a right-veering one. However, Honda, Kazez and Mati¢ optimistically
conjecture that if the monodromy is given by a right-veering diffeomorphism that does
not admit a destabilization (in the sense of Giroux stabilization) then the supported
contact structure is tight. Our next result gives a counterexample to this conjecture:

Theorem 1.2 There exists an open book (S, ¢) on the Poincaré homology sphere
3(2,3,5) where S is a four-holed sphere and ¢ = r‘f rlf TeT4dT, 2 which is right-veering
and not destabilizable such that the supported contact structure is an overtwisted contact
structure.

Figure 2: Generators of the mapping class group of four-holed sphere

Of independent interest, we also prove the following characterization concerning
positive factorizations of a family of elements in the mapping class group of four-
holed sphere. We denote by ¢ (¢) the Ozsvidth-Szabé contact invariant of the contact
structure supported by (S, ¢), where S is the four-holed sphere.

Theorem 1.3 If ¢ = 7 rf 124 rg 75 t}' , then ¢ admits a positive factorization if and
only if min{w, B, v, §} > max{—e, —n, 0}. Furthermore, this latter condition is satisfied
if and only if ¢t (¢) # 0.

Note that the results of Wendl [25] and Niederkriiger and Wendl [19] together with
Theorem 1.3 imply that the contact structure supported by (S, t5 t;f 124 ‘Cg 75 1}7) admits
a Stein filling (or equivalently a weak-symplectic filling) if and only if min{e, 8, y, 8} >

max{—e, —n,0}. An interesting question left open is whether all nonfillable contact
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structures in the class of monodromies considered above are overtwisted. Note that
one can easily show that some monodromies give overtwisted contact structures by
showing that they are not right-veering, however Theorem 1.2 shows that right-veering
restriction by itself is not enough to answer this question.

We pause here to declare our conventions for the rest of the paper. We denote by t,
a right-handed Dehn twist about the curve a. We will adhere to braid notation for
compositions: 7,7, means applying a right-handed Dehn twist about « first and then
a right-handed Dehn twist about 5. We will also use the following conventions for
braid groups: Our braids will be drawn from top to bottom with the strands numbered
1,2,...,n from left to right. The convention for positive and negative half twist is as
shown below.

i i+1

KX

Figure 3: Braid group generators

Acknowledgements I would like to thank Andy Wand for helpful conversations, Tolga
Etgii and John Etnyre for useful comments on a previous draft. I also acknowledge
Max-Planck Institut fiir Mathematik for the support.

2 A topological study of planar open books

2.1 Planar open books and Dehn surgery

We first recall a classical proposition relating the mapping class group of a n—holed
disk with Dehn surgery on pure braids (see for example Prasalov and Sossinsky [22]
for more than presented here). Let ¢ be a diffeomorphism of the n—holed disk, the
identity on the boundary. This diffeomorphism can be extended to a diffeomorphism ¢
of the disk simply by extending ¢ by the identity. Since any diffeomorphism of the disk
which is the identity on the boundary is isotopic to identity, there exists an isotopy ¢;
such that ¢ = id and ¢, = @. Let xq,...,x, be points in the disks that fill the
holes, then we obtain a pure braid B(¢) by considering the union of arcs (¢;(x;),?) in
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D?*x[0, 1], t €[0, 1] (see Figure 4 for an example). This pure braid almost captures the
whole ¢, except ¢ can have extra boundary twists around the holes. We summarize
this in the proposition below. Let D, denote the n holed disk, and Map(D,,, dD,) be
the mapping class group of diffeomorphisms which are identical on the boundary. Let
P, be the pure braid group on n strands.

Proposition 2.1 Map(D,, dD,) = P, x Z". O
o /\

Figure 4: Pure braid associated with a mapping class

Note that n—holed disk is topologically the same as (rn+1)-holed sphere, however
the above isomorphism is meaningful only after choosing a boundary component of
the (n41)—holed sphere to be identified with the boundary of D? after filling in the
other boundary components with disks. Nevertheless, such a choice can be made once
and for all. By looking at Figure 2, we choose the boundary component parallel to the
curve d to correspond to the boundary of D?, and the pure braid will be obtained by
filling in the boundary components parallel to the curves a, b and ¢, in addition we
choose the ordering of the strands of the pure braid in this order. This is illustrated
in Figure 4. On the left, we see an illustration of the right-handed Dehn twist about
a curve encircling the first two holes, and on the right we see the corresponding pure
braid.

This proposition gives us an alternative way to describe the underlying topological
manifold supported by an open book (Dy, ¢). Namely if ¥ has an open book (Dy, ¢),
then Y is obtained by Dehn surgery on the braid closure ,3 (¢) of the braid B(¢) with
surgery coefficients determined by the above isomorphism.

In this article, we study planar open books with four binding components. For the sake
of explicitness, we give a more precise statement of the above discussion for this case.

Let S = D3 denote a four-holed sphere, the mapping class group Map(S, d.5) is not
a free abelian group in contrast to the case three-holed sphere, in particular it has a
subgroup isomorphic to F,, the free group on two generators, generated by Dehn
twists around e and f in Figure 2. In fact, it is a classical fact that Map(S, d.5) can
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be seen as a direct product Z* x F, (see Fadell and Neuwirth [9]). We can see this as
follows: Because of Proposition 2.1, it suffices to see that P3 is Z x F,. Recall that
P35 is isomorphic to the fundamental group of the space of triples of distinct points on
the plane (see Fox and Neuwirth [10]). Consider the forgetful map, from P; — P;,
given by forgetting about the middle strand. P, is Z and the kernel of this map is
71 (C —{—1,1},0), which is F,. Thus we have a short exact sequence

0—)F2—)P3—>Z—)0

where the kernel is generated by 012 and 022, and the image is generated by the central
element (0,010,)? which corresponds to a full right-handed twist of the three-strands.
Thus, any pure 3-braid is expressed uniquely as (020102)28012 61022 n ---012 €k 022 e
where §, €;, n; are integers.

Therefore, under the identification of Proposition 2.1 any mapping class ¢ € Map(.S, 9.5)
can be represented by

_a By §_e_m  _ _ex Mk
D=1, T T, Ty T Ty

and such a representation is unique.

Here, ¢ is identified with the pure braid B(¢) = (020102)2801251022"‘ ---0126" 02277",
and the integers («, B, v). For such open books, we have the following proposition as
part of the general discussion above:

Proposition 2.2 Let S be the four-holed sphere and ¢ = t& rf 174 rg, 5! r}“ gk r}”‘ )

Let e = Z;‘:l € and n = Z;‘:l ni . Then the topological manifold Y given by the
open book (S, ¢) can be obtained by Dehn surgery on the braid closure of the pure
3—braid B = (020102)2501261022"1 -'-0126" 022""', with surgery coefficients (¢ + § + €,

B+6+e+ny+d5+n). O

2.2 Planar open books on the three-sphere

We would like to construct planar open books with four boundary components on S3.
We will look for planar open books with simple monodromy having the form ¢ =
124 rf 174 ‘L’S ] ‘[}’. In light of Proposition 2.2, we would like to know when a surgery
on a braid closure of a pure 3-braid of the form § = (020102)250126022 7 yields S3.
Fortunately, this question is completely resolved by Armas-Sanabria and Eudave-Mufioz
in [2] by depending on deep results on Dehn surgery on knots. In particular, the authors
list several infinite families. Therefore, we can describe precisely when an open book

(S, Igtfrcyrflrgrn) is an open book on S3.
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From the list provided in [2] we pick a convenient family. By using Kirby calculus, we
will verify independently that these indeed give S3, and our next task is to calculate the
d5 invariants of the contact structures supported by the corresponding open books. The
difficulty is that we would like to see that any value in Z + 1/2 can be achieved. We will
apply several tricks to ensure this. Therefore, as a consequence of these calculations,
we show that every contact structure on S is supported by an open book with a planar
page with at most four binding components.

Proof of Theorem 1.1 We will start with the braid 8 = (020102)201_ 402_ 4 Figure 5
is a picture of the closure of this braid, also known as the chain link. The hyperbolic
structure on its complement was first constructed by Thurston in his notes [23], and
this manifold has been called as the “magic manifold” by Gordon and Wu [13; 14] as
Dehn fillings of this complement recover many of the known hyperbolic manifolds
and account for most of the interesting nonhyperbolic fillings of cusped hyperbolic
manifolds (see Martelli and Petronio [18] for a classification of all exceptional surgeries
on this link). It is the 3—cusped hyperbolic manifold with smallest known volume and
complexity by Adams and Sherman [1].

It is easy to see by blowing down twice that (—1, —2, —4) surgery on this link yields S3
(see below for the more general case).

—4

Figure 5: Surgery on the chain link

Therefore, by our Proposition 2.2, it follows that the open book with page S, a four-

B_v -2

holed sphere, and ¢ = 177, 1c 147, zrf is an open book on S* when

(a—1,6-3,y—-1)=(—1,-2,-4).
More generally, consider the braid g = (020102)201_ 2P oy 4 and perform Dehn surgery
with coefficients (1 — p, —p, —4). In Figure 6, we verify that we still obtain S°3.

By reflecting (which amounts to changing orientation), we also know that Dehn surgery
on B = (020102)_20121703 with coefficients (p — 1, p, 4) also yields S3.
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Figure 6: Surgery on a family of links yields S3

After some experimentation, the author found that the following two families of open
books (which are obtained from one another by reflecting the braid as above) will be
sufficient for our purposes. (Note that reflecting the braid amounts to changing the
orientation, but since S* has an orientation reversing diffeomorphism, this will still
give an open book on S3. Though, as we will see below the supported contact structure
will change!)

It will suffice to consider the following two possibilities:

-3_ _—p_—2

bp =T TaT, 'y

Y -1_3_—1 2

Pp=71y T'Tg WTf

We will denote the supported contact structures by &, and ?;‘_ ». Note that in both open
books the monodromies have boundary parallel negative Dehn twists, it is easy to see
that in this case, the monodromies are not right-veering. Therefore, the supported
contact structures are overtwisted.

To determine the contact structures, following the description in [8] (see also [4]),
we will next compute the 3 invariants of the supported contact structures from the
monodromy data of the open books. First, we briefly review the strategy, for more details
see [8]. Given ¢ as a product of Dehn twists about homologically nontrivial curves
ai,...,ay on a planar surface S with n boundary components, one first constructs
the Stein manifold S x D? in a standard way by attaching n one-handles to D*, then
one attaches 2—handles along Legendrian realizations of @; on S with +1 framing
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depending on whether the Dehn twist about a; is left or right-handed. Let W be the
4-manifold thus constructed. Then the contact manifold (Y, £) supported by the open
book (S, ¢) is the boundary of W. As long as c¢;(£) = 0 (or more generally a torsion
class) in H*(Y), d3(£) is an element of Q and may be computed by the formula

d5(&) = 3 (V) =20 (W) = 30(W) +¢

where ¢ is the number of negative Dehn twists in the factorization of ¢. Furthermore,
c2(W) is the square of the class ¢(W) € H*>(W) which is Poincaré dual to the class
Ef.‘zlrot(ai)Ci € Hy(W,Y), where C; is the cocore of the 2—handle attached along «;
and rot(a;) is the rotation number of a; which can be computed as the winding number
of a; with respect to a standard trivialization of the tangent bundle of the page. Since
we assume c1(£) =0, ¢(W) maps to zero under the natural map H?(W) — H*(Y),
hence it comes from class in H?(W,Y) whose square is ¢>(W) that appear in the
formula above.

Now, Figure 7 is a Kirby diagram for the page of a planar open book with four
boundary components. We drew all the curves a, b, c,d,e and f that appear in the
above monodromies.

Figure 7: The diagram of the page

In order to compute the rotation numbers, we chose an orientation of the curves (note
that the computation of ¢?(W) is independent of this choice). One then computes the
winding numbers of these curves to get

rot(a) = rot(h) = rot(e) = 1
rot(c) =rot( /) =rot(d) = 0.

The rest of the proof is a direct homology calculation based on the descriptions above.
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Computation of d3(&,) and d3 (£, ») Let X, Y, and Z be the 1-handles, which form
a basis of C1(W;Z). Let B, {Cy,C5,C3}, D, {Ey, Es, ..., E|p}, {F1, F2} be the
cores of the handles attached corresponding to the factorization ¢, = 117, rgte Pt
These form a basis of C,(W;Z) and the boundary map can be read off the diagram in
Figure 7 to be

d(B)=Y -X d(C)=X
d(D)=2Z d(D—E;)=X d(F)=Y.

Thus, H; (W) =0 and H,(W) = Z!PI+4_ It will be convenient to pick the following
basis of generators:

{Ci;—=D+E,.Ci—D+Ejp-1.....Ct—D+E{,B+Cy—F;,B+C,— F,
B+C;—Fy, F,— Fy}
Note that we have B2 = D?* = —1 and C} =C} =C} =F} =F; =1 and E} =
sgn(p) and any cross term intersection number is zero. The intersection matrix takes
particularly nice form if we add or subtract the first p elements in the above basis to

the (p+1)-st element according to whether p is negative or positive. So, our new
basis is given by

{Ci =D+ E,.Ci =D+ Ep—1.....Ci— D+ Eqy,
B+ (1—-p)Ci+ pD —Fi—sgn(p)Ey —---—sgn(p)E|p|,
B+C2—F1,B+C3—F1,F2—F1}

Therefore, the intersection matrix of W in the this basis can be calculated to be:

sgn(p) 0 .- cee e e 0

0 0 e e e 0

0 sgn(p) 0 - .- 0

Ow = : : 0 1—p 0 01
: : : 0 1 01

: : : 0 0 1 1

\ 0 0 0 1 1 12

From this one can easily compute that (W) = 2+ p, and also we know that X(W) =
lp| +5. To compute ¢2(W), let us denote the cocores by B, {Ci,Cr,C3}, D,
{E e E Pt {F W F »}. Then from the calculation of rotation numbers it follows that
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c¢(W) is Poincaré dual to

B+Ei +...+Ep
Evaluating ¢(W) on our basis of H,(W), we get the vector (1,...,1,1—p,1,1,0)
hence the Poincaré dual to the pull back of ¢(W) to H*(W,Y) is given by (1,...,1,
1—p,1,1,0)" - (QW)_1 , which one can calculate to be:

sgn(p) 0 0 ( 1
0 . 0  eee aee 0 :
0 sgn(p) O 0 1
0 0 -1 ~1 1 I—p
—1 P -14+p 1-p 1
: : -1 -14+p P l—p
\ 0 0 0 1 1—p 1—p —1+4p K 0 )

Hence

cA(W) = (sgn(p),....sgn(p),—2,—2+3p,—2+3p,3-3p)-(1,...,1,1 — p,1,1,0)
=9p—-6

The number of negative Dehn twists is given by ¢(W) = 5+ (| p| + p)/2. Finally, we
compute

1
lpl+p _ap- L

1
d3(&p) = 7 Op—6=2(p[+5)=3C+p)+5+ = 5

This only covers half of the overtwisted contact structures on S3, to get the other half,
we consider Sp Note, that é‘p is obtained by orientation reversal. Therefore, we do not
need to compute all the above invariants from scratch. Namely, we have

A(=W)=—-c2(W)=-9p+6
XW)=x(W)=|pl+5
o(-W)=—-c(W)=—p-2

J(— W)_2+|p|

Therefore, we have

lpl—p 5
— =2 —.

2 P35
We determined the binding number of all the overtwisted contact structures. The
proof of Theorem 1.1 will be completed once we determine the support norm of

ds(E) = 3 (-9p+6-2(1p| +3)=3(-p~2) +2+
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the overtwisted contact structures. Note that because all of the overtwisted contact
structures are supported by a planar open book with page a four-holed sphere, we have
that sn(§) <2 for all £. We also know that if d3(§) #—1/2,1/2,3/2, then bn(§) =4,
therefore the only way for these contact structures to have support norm strictly less
than 2 is when they are supported by an open book with page a torus with one boundary
component. Now, recall the well-known fact that the only genus one fibred knots on S3
are trefoil and figure-eight knot and the corresponding open books have monodromy
r;tl f;:l , where a and b are standard generators of the homology of the torus, (this
follows from for example [17]). It is now easy to see that 7,73, 7,4 Ty L T, ! Tp are
obtained by positively stabilizing the open books with annulus page supporting the
unique tight contact structure, and the overtwisted contact structure &;/,, and 7, 1 T 1
is obtained by negatively stabilizing &;/,, hence corresponds to £3/,. This completes

the proof of Theorem 1.1. a
n<—-1/2\n=-1/2|n=1/2|n=3/2|n>3/2 &t
bn 4 3 2 3 4 1
sn 2 1 0 1 2 -1
sg 0 0 0 0 0 0

3 Positive factorizations

In this section we give a proof of Theorem 1.3 in the following two propositions. Recall

that for the four-holed sphere S, Map(S, d5) = Z* x F,. The first homology is
Hy(Map(S,dS)) = 75

where the class of a general element ¢ = < rf 174 rg, s 11}7' P rfn" is given by

(a, B, v, 6, Zf-;l €k» Zf;l nx). We will prove the following proposition:

Proposition 3.1 If ¢ =t ‘[5 174 rg TS 1}7, then ¢ admits a positive factorization if and
only if min{c, B, ¥, §} = max{—e, —n, 0}.

Proof Suppose ¢ =1¢, -+ 7, is a positive factorization in Map(S, 95). We consider
the quotient relation in H; (Map(S, dS)) = Z°:

(OCHB’V’S?E? 77) = [TC1]+"'+[TC1(]
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Now, by topological classification of surfaces observe that any simple closed curve C;
is conjugate in Map(.S, 0.5) to one of the curves a,b,c,d, e, f or g in Figure 2. The
classes of Dehn twists around these curves in Hy(Map(S, 05)) are given by [t,4] =
(1,0,0,0,0,0), [tp] = (0,1,0,0,0,0), [z.] = (0,0,1,0,0,0), [t4] = (0,0,0,1,0,0),
e = (0,0,0,0,1,0), [zs] = (0,0,0,0,0,1) and [rg] = (1,1,1,1,—1,—1). For the
latter, observe that by the lantern relation we have 1y = 1,757,747, 1rf_1. Let us
denote by e; € Z the vector with i —th coordinate 1 and other coordinates 0 and let
n=(1,1,1,1,—1,—1). Therefore, each class [‘ECI.] is equal to either some ¢; or n.
Now, if ¢ has positive factorization then

6
(a,B.y.8,€,m) = pon + Zpiei
i=1
for some p; > 0. Thus if € or 5 is negative, po > max{—e, —n}, which shows that
min{e, B, v, 8} = max{—e, —n, 0} as desired.

Conversely, if €, 7 > 0, then the given factorization is positive if min{c, 8, y, 8} > 0.
Without loss of generality, suppose next that € <0 and n =€ +r for r > 0. We have
min{e, B, y,8} > —e¢, set —e = k > 0. Then by using the lantern relation £ times, we
obtain the central element (77T rg)k . We first use this to kill the negative powers of f,
to get

a—k B~k _y—k 8—k_
¢ = Ty

T, T l'fk(l’f‘[e‘fg) Tf

_akﬂkyk —k_—k k
=T, Ty T Ty T Tp rf(rerg) rf

= rg_krl’f krc”_krg_kre k+1‘[g(‘(e‘[g)k I‘L'
The proof will be completed once we show that ‘[_k lrg (tetg )k ! has a positive
factorization. We do this by induction and using the well-known fact that if f: S — S
a diffeomorphism and C a simple closed curve then the equality tr(c) = f e f
holds. For k = 1, the expression is equal to 7, so it is positive. We write

—k+1 k=1 _ _—k+1_ _—(—k+1)_—k+2 k-2
T, Te(Tetg)" =71, TgT, ( )re Tg(TeTg)

—k+2 k—2
= Th—1(g)Te Tg(TeTg)
The latter expression is positive by induction hypothesis, which completes the proof.
In fact, we can simply see that

_ —a—k_B—k_y—k_§—k r
P=1 "1 T TTy T Tk 2(g) " Tre(e) Te Tf - a

Remark 3.2 Suppose more generally that ¢ = 72 rf 174 rgfg lr}“ Tk r}”‘. Let

€= 21—1 €r and n = Zl_l Nk - Then the same argument using H;(Map(S, 95))
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gives that ¢ has a positive factorization only if min{c, 8, y,8} > max{—e, —n, 0}.
However, it is easy to see that this is not sufficient. For example, o777, ! rf_l satisfies
this condition, but one can check that this is not a right-veering monodromy hence
cannot be written as a product of right-handed Dehn twists (by [15] the supported contact
structure can not even be tight). On the other hand, the argument given in the above proof
clearly gives a positive factorization of ¢ if min{w, 8, y,8} > Zf-;l max{e;, n;, 0}.

‘We next determine whether or not the Ozsvath—Szabd contact invariant vanishes for
these contact structures. In our case, it turns out that this is equivalent to whether or
not the contact structure is Stein fillable.

Proposition 3.3 If ¢ =t ‘[5 174 tfl 2] r}’Z, then the contact invariant ¢ (¢p) is nonzero
if and only if min{c, B, y, 6} > max{—e, —n, 0}.

Proof Letusdefine ¢4, ¢p, ¢c, ¢g to be the induced monodromies on the three-holed
planar surface after one “caps off” the boundary components parallel to @, b, ¢ or d by
gluing a disk to the corresponding boundary component and extending the monodromy
by identity on this disk. Let &;, &, & and &; be the corresponding contact structures
obtained this way.

In [3, Corollary 1.3], Baldwin proves that if the contact invariant of any of the contact
structures &,, &, £ and &, is zero, then it must be the case that ¢ (¢) = 0. Without
loss of generality, suppose that € = —k < 0, and o < k. Then let’s consider the open
book ¢ where the boundary component parallel to the curve b is capped off. In
that case, e becomes isotopic to @, and no other curves become isotopic to these pair.
Therefore, the monodromy ¢, has k — o left-handed Dehn twists around the boundary
component corresponding to @, which shows that the supported contact structure &,
is overtwisted [15]. Therefore, the contact invariant ¢ (£;) = 0 by [21]. Hence, it
follows that ¢*(¢) = 0.

Conversely, if min{e, 8, y, 8} > max{—e, —n, 0}, then by the previous proposition, the
supported contact structure is Stein fillable, hence ¢ (¢) # 0 by [21]. a

Remark 3.4 As in the previous remark, for the more general class of diffeomorphisms,
=19 rf 124 rg s lr}“ gk t}”" , the above argument shows that ¢ (¢) = 0 when
min{e, B, y,6} < max{—e,—n,0}. However, the converse is not true again by the
same example given there, namely te7r7, lrfl has vanishing ¢ (¢) = 0, since it
supports an overtwisted contact structure [21]. We would like to point out that this is

an overtwisted contact structure on 73,
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4 An example

4.1 Poincaré homology sphere

Once we have the surgery description on pure 3-braid closures, it is easy to play around
with simple 3-braids and surgeries on them to get interesting open book decompositions
on various manifolds.

Proof of Theorem 1.2 The simplest nontrivial pure 3—braid is arguably the braid
B = (020102)201_ 4 whose braid closure is shown in Figure 8.

+1

+2
Figure 8: The braid closure of 8 = (020102)201_4

We first verify below that if we do surgery on the closure of this braid with surgery
coefficients (k, 1,2), then the result is k — 5 surgery on the left-handed trefoil. By
Proposition 2.2, we obtain an open book with page a four-holed sphere and ¢ =

Z,‘Hr[frctdf 2. In particular, the (4, 1,2) surgery yields the infamous Poincaré

homology sphere which has a unique tight contact structure.

’Sblow -down CQbIOW downOO

Figure 9: Surgery on the left-handed trefoil

It is easy to see that the monodromy ¢ = ‘[k +1 ‘[gl'c 4T, 2 is right-veering. In fact,

the monodromy is given by a multicurve, and it is easy to see that all the boundary
components are protected. To be more careful, since the right-veering diffeomorphisms
is a submonoid of Aut(S,dS), it suffices to show that 7,7, 2 is right-veering with
respect to the boundary component encircled by a. To see this, we can apply the
Lemma 3.3 of [15]. We first put a hyperbolic structure on S so that the boundary
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components are geodesics. Next, we need to find a subsurface S’ of S with geodesic
boundary so that the boundary component of S encircled by «a is a common boundary
component of S and S’ and that 7,2 is identity on S’. This is easily accomplished
by taking S’ to be the pair-of-pants that has boundary at the boundary components
encircled by a and b and also a geodesic curve which encircles both « and b (parallel
to e). Note that by isotoping e if necessary, we can arrange that S’ is disjoint from e
and has geodesic boundary. Thus Lemma 3.3 of [15] applied as above to each boundary

component of S shows that ¢ = rclf +1 ‘Eg‘L'C‘L'd T, 2 is right-veering for k > 0.

We next prove that (S, ¢) is also not destabilizable. If it were, then it would be
a stabilization of an open book (P, ¢’), with page P a three-holed sphere, where
¢ =1f fgrc’ for the curves @, b and ¢ are as in Figure 1. As we noted before, such a
(P, ¢) is an open book on a Seifert fibred space with e = |—1/p]|+|—1/q|+|—1/r].
Now, since ¢q for the Poincaré homology sphere is —2, it follows that at least one
of the exponents p,q or r is negative (for example, 7,2 rlf . is an open book on the
Poincaré homology sphere). Any stabilization which gives a page with four holed
sphere must be obtained by attaching a 1-handle / to a fixed boundary component
of P and introducing a new monodromy curve s which intersects the cocore of /
at a unique point, so that ¢ = 74¢’, where ¢’ is extended by identity along /4 to a
diffeomorphism of .S'. We now argue that the monodromy of every such open book is
not right-veering. Indeed, by noting that the curve s is constraint to intersect the cocore
of /& (which is a properly embedded arc that connects the top two boundary components
of S, in Figure 10), it is easy to see that one could always find a diffeomorphism
of S (not necessarily fixing boundary components but sending boundary components
to boundary components), such that the configuration of monodromy curves in 75¢’
is as in Figure 10, where the sets of curves x, y and z depicted are a permutation
of the images of the sets of curves corresponding to Dehn twists around @, b and ¢
after stabilization. Indeed, S is composed of two pairs-of-pants, separated by a curve
parallel to x curves in Figure 10, and noting the fact that s intersects cocore of /i at a
unique point, we can arrange by isotopy so that either it does not intersect the common
boundary of the two pair-of-pants or it intersects at precisely two points, and now
apply a diffeomorphism of the pair-of-pants at the bottom, which fixes the boundary
component parallel to x curves, but rotates the other boundary components if necessary.
Finally, since we know that at least one of the sets of curves x, y or z are all negative
Dehn twists, by looking at Figure 10, it is now easy to see that the monodromy 3¢’ is

not right-veering. This proves that ¢ cannot be destabilized.

On the other hand, it follows from the obstruction result of [6] that the unique tight
contact structure on the Poincaré homology sphere cannot support a planar open book.
(Alternatively, it is known that the unique tight contact structure on the Poincaré
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Figure 10: Stabilized open books

homology sphere is Stein fillable, hence, by the results of Wendl [25], if a planar open
book supports this contact structure, it should have a positive factorization but this
contradicts our Theorem 1.3.)

Therefore, the contact structure supported by the open book (.S, rg rlf TeTdT, 2) is an
overtwisted one, which completes the proof of our Theorem 1.2. a
Remark 4.1 Note that the way we argued for the overtwistedness of 7 sz TeTqT, 2
is quite special to the case of Poincaré homology sphere. In particular, we used the
fact that the unique tight contact structure on this manifold is not supported by a
planar open book. A similar argument can be made for k£ =0, 1, 2, 3 to obtain right-
veering, not destabilizable monodromies which support overtwisted contact structures
(using the classification result in [11], which in particular says that all the tight con-
tact structures on these manifolds are Stein fillable). However, we do not know if
Tkl r,f Tc747, % is overtwisted or tight for k > 4. These are Seifert fibered manifolds
M(—2;1/2,2/3,k/(k + 1)), they have eq(M) = —2 but they are not L—spaces. The
classification of tight contact structures on these Seifert manifolds seems not yet to have
been completed. Note that the corresponding monodromies are all right-veering diffeo-
morphisms and the contact invariants of the corresponding contact structures are zero.
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