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Configuration-like spaces and coincidences of maps on orbits

R N KARASEV

A YU VOLOVIKOV

In this paper we study the spaces of q–tuples of points in a Euclidean space, with-
out k –wise coincidences (configuration-like spaces). A transitive group action by
permuting these points is considered, and some new upper bounds on the genus (in
the sense of Krasnosel’skii–Schwarz and Clapp–Puppe) for this action are given.
Some theorems of Cohen–Lusk type for coincidence points of continuous maps to
Euclidean spaces are deduced.

55R80; 55M20, 55M30, 55M35, 57S17

1 Introduction

In this paper we address the question of finding some sufficient conditions that guarantee
that a continuous map f W X !Rm has a certain number of self-coincidences on an
orbit of a G –action on X , where G is a finite group. The most famous result of this
kind is the Borsuk–Ulam theorem [5], where X is the m–dimensional sphere and
G D Z=2 acts on X by the antipodal action. Partial solutions of the Knaster problem
by Makeev [18] and the second author [24] provide another application.

In order to simplify the statements we need some definitions.

Definition 1.1 Let G be a finite group, and X be a G–space, that is, a topological
space with continuous left G–action. For a given continuous map f W X ! Y we
denote by A.f; k/ the coincidence set

A.f; k/D fx 2X W 9 distinct g1; : : : ;gk 2G such that f .g1x/D � � � D f .gkx/g:

Generally, to deduce existence theorems for coincidences, we have to define the
complexity of the action of G on the space X . The following definition was made for
G D Z=2 by Krasnosel’skii [15; 17] and Yang [28; 29], and for arbitrary finite G by
Krasnosel’skii in [16], as noted by Schwarz [20]. It is usually called the Krasnosel’skii–
Schwarz genus.
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1034 R N Karasev and A Yu Volovikov

Definition 1.2 The free genus of a free G–space X is the least number n such that
X can be covered by n open subsets X1; : : : ;Xn so that for every i there exists a
G –equivariant map Xi!G . We denote the free genus by gfree.X /.

In this definition it makes sense to consider paracompact spaces X only, see Section 2
for more details. In this case, we can take closed sets in the definition, instead of open
sets. Thus, in the sequel we consider paracompact G –spaces, unless otherwise stated.
The following theorem was proved by Schwarz [21]. In this theorem and in the rest
of the paper p is a prime number, Z=p is the cyclic group of order p , and Fp is the
same group, considered as a field.

Theorem 1.3 Let X be a free connected Z=p–space. Assume that gfree.X / >

m.p�1/. Then for any continuous map f W X !Rm

gfree.A.f;p//� gfree.X /�m.p� 1/:

In particular, the set A.f;p/ is non-empty.

In [8], Cohen and Lusk considered the partial coincidences on an orbit, and proved the
following theorem.

Theorem 1.4 Let X be a free Z=p–space. Let .p C 1/=2 � k � p or k D 2.
Suppose that X is connected and acyclic over the field Fp in dimensions less than
.m�1/.p�1/Ck�1. Then for any continuous map f W X!Rm we have A.f; k/ 6D∅.

It was conjectured in [8] that the restrictions on k are not necessary. A step in this
direction was made by Bolotov in [4], where the case k D 1

2
.p� 1/ was considered,

and in [26; 27] the second author proved this conjecture for k ¤ 3. Here we assume p

to be odd, because the case p D 2 is already covered by Theorem 1.4.

In this paper we establish upper and lower bounds on the genus gfree of certain
configuration-like spaces in Section 5. Among the consequences is the following result
that incorporates both cited theorems without any restrictions on k in Theorem 1.4.

Corollary 1.5 Let X be a free G–space, where G is a cyclic group of order p .
Assume that gfree.X / > .m � 1/.p � 1/ C k � 1. Then for any continuous map
f W X !Rm

gfree.A.f; k//� gfree.X /� .m� 1/.p� 1/� kC 1:
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Note that the properties of gfree in Section 2 imply that

dim A.f; k/� gfree.X /� .m� 1/.p� 1/� k;

and therefore Corollary 1.5 confirms the conjecture from the paper by Cohen and
Lusk [8].

In fact, Corollary 1.5 follows from a more general statement; to formulate it we need
some more definitions.

Definition 1.6 Let G be a finite group, X be a G–space. For a given continuous
function f W X !R denote by A0.f; k/ the maximum coincidence set

A0.f; k/D fx 2X W 9 distinct g1; : : : ;gk 2G
such that f .g1x/D � � � D f .gkx/D c and 8g 2G f .gx/� cg:

It is clear that A0.f; k/�A.f; k/.

Definition 1.7 If the group G acts on X without G–fixed points, we call X fixed
point free.

For fixed point free G–spaces a notion similar to the Krasnosel’skii–Schwarz genus
gfree can be defined; see Section 3 for the definition of gG.X / and its properties. For
a cyclic group of prime order these two notions coincide. From the upper bounds on
the genus of certain configuration-like spaces in Section 5, we deduce the following
result on coincidences.

Theorem 1.8 Let G be a finite group, m � 1, 2 � k � jGj be integers. Consider a
fixed point free G –space X with gG.X /> .jGj�1/.m�1/Ck�1 and two continuous
maps f1W X !R and hW X !Rm�1 . Then

gG.A.f1˚ h; k//� gG.A
0.f1; k/\A.h; q//� gG.X /� .jGj � 1/.m� 1/� kC 1:

Here we denote by f1˚h the map to R˚Rm�1 with components .f1; h/. This result
works well at least for p–tori (groups of the form .Z=p/k ), see Sections 3 and 7 for
details. Since any nontrivial finite group has a subgroup of this kind (for example,
a cyclic subgroup of prime order), we can sometimes replace G by an appropriate
p–torus subgroup (if this subgroup acts without fixed points on X ).

In the case when X is a manifold, the following lower bound for dim A.f; k/ was
found by Cohen and Lusk [8]: under the conditions of Theorem 1.4, if X is an Fp –
orientable connected N –dimensional manifold, acyclic over the field Fp in dimensions
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less than .m�1/.p�1/Ck�1, then dim A.f; k/�N � .m�1/.p�1/�kC1. In
Section 7 we prove a similar result for p–tori.

Another corollary is a Knaster-type result, similar to results of [13], see also [14] for
the formulation of Knaster’s conjecture.

Definition 1.9 Denote by I ŒG�� RŒG� the G–invariant subspace in the group ring
RŒG� consisting of X

g2G

˛gg; with
X
g2G

˛g D 0:

Corollary 1.10 Consider a p–torus G D .Z=p/n for odd p and set q D jGj. Let
Sq�2 be the unit sphere of I ŒG� with respect to some G–invariant inner product.
Suppose f W Sq�2!R is a continuous function, and x 2 Sq�2 is some point. Then
there exists a rotation � of Sq�2 with positive determinant, such that

f .�.gx//D c and f .�.x//� c

for all g 2G n feg.

To prove this corollary we use another numerical invariant of G –action, defined by the
second author in [25]. Here we give the definition for connected spaces only.

Definition 1.11 Let G D .Z=p/n be a p–torus, and X be a connected G–space.
Consider the Leray–Serre spectral sequence with

E
�;�
2
DH�.BG;H�.X;Fp//;

converging to the equivariant cohomology of X in the sense of Borel H�
G
.X;Fp/.

Define iG.X / to be the minimum r � 2 such that the image of dr in the bottom row
E
�;0
r is nonzero.

Proof of Corollary 1.10 This corollary follows from Theorem 1.8. Consider the
space SO.q� 1/ along with the action of G by right multiplication by g�1 (g 2G ),
this is a left G–action. The function f induces the function on SO.q � 1/ by the
formula

zf W � 7! f .�x/:

We have to prove that A0. zf ; q� 1/¤∅. By Theorem 1.8 (case mD 1) it suffices to
show that gG.SO.q� 1//� q� 1 for the this action of G on SO.q� 1/.

It was shown by the second author in [26, Proposition 4.7] that gG.X /� iG.X / for
fixed point free G –spaces X , and the value iG.SO.q� 1//D q� 1 was found by the
second author in [13].
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In Section 5 we shall prove a Corollary 5.10 that estimates the genus of the classical
configuration space of an Fp –oriented m–dimensional manifold M from below by
the number .m� 1/.p� 1/C 2. Here p is a prime, the configuration space consists
of p–tuples of distinct points in M , and the genus is taken with respect to the cyclic
permutation action of Z=p . Note that for such groups the free genus and the fixed point
free genus coincide. This result is also valid for the free genus with respect to the action
of the full permutation group †p , because this group acts freely on the configuration
space (see Property (5) of the free genus in Section 2). In [3, Theorem 5.2], Basabe,
González, Rudyak and Tamaki show that for the case M D Sm this bound is optimal,
because the space of configurations of n distinct points in Sm (n does not need to
be a prime) is †n –equivariantly homotopy equivalent to a polyhedron of dimension
.m� 1/.n� 1/C 1. This means that the bound for Z=p–actions is also optimal for
spheres.

The rest of the paper is organized as follows. In Sections 2 and 3 we give the definitions
and properties of the free genus and the fixed point free genus. In Section 4 we define
different configuration-like spaces. In Section 5 we give lower and upper bounds for the
genus of configuration-like spaces; these are the core results of the paper. In Section 6
we deduce the coincidence theorems. In Section 7 we improve the coincidence theorems
in case the domain space is a manifold.

In this paper we generally use purely geometric methods, based on the subadditivity, the
dimension upper bound, and other properties of the genus. The reader may compare this
approach with the lower bounds for the genus (actually for the number iG ) obtained by
the first author in [11], made with computations in cohomology and spectral sequences.
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2 Genus of a free action

It is well known (see, for example, the book by Bartsch [2]) that for paracompact
spaces the definition of gfree can be reformulated as follows, using a partition of unity
argument.

Definition 2.1 The free genus of a free G–space X is the least number n such that
X can be G –mapped to some n–fold join G � � � � �G .

Here we list the properties of the free genus, mainly from the paper by Schwarz [20].
We use the notation gfree.X;G/, when it is needed to indicate explicitly the acting
group.

(1) (Monotonicity) If there is a G –map f W X ! Y , then gfree.X /� gfree.Y /;

(2) (Subadditivity) Let X DA[B , where A, B are closed or open G–invariant
subspaces. Then gfree.X /� gfree.A/C gfree.B/;

(3) (Dimension upper bound) gfree.X /� dim X C 1;

(4) (Cohomology lower bound) Assume that the order of G is divisible by a prime
p and X is connected and acyclic over Fp in degrees � N � 1, that is,
H i.X;Fp/ D 0 for all 0 < i < N . Then gfree.X / � N C 1. In particular,
if X is connected and acyclic over Fp in degrees �N � 1 and G is a p–torus
then gfree.X /�N C 1.

(5) (Passing to a subgroup) If X is a free G –space, and F is a nontrivial subgroup
of G , then gfree.X;G/� gfree.X;F /.

Note that in the cohomology lower bound it is convenient to use Čech or Alexander–
Spanier cohomology because they satisfy the continuity property. That is, if a co-
homology class � 2H�.X / has nonzero restriction to a closed subspace Y , then it
has nonzero restriction to an open subset U � Y . This property is useful to handle
“pathological” subspaces Y . The cohomology lower bound in fact has the more general
form

gfree.X /� ind.X /C 1;

where ind.X / is the maximum dimension n such that the natural map H n.BG;M /!

H n
G
.X;M / is non-trivial for some G–module M (compare with the definition of

iG ). This estimate for the free genus was established by Yang [28] and by Conner
and Floyd [10] for G D Z=2, and by Schwarz [21] for arbitrary G . In [21] the value
ind.X /C 1 was called the homological genus.
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3 Genus of a fixed point free space

The definition of the free genus does not allow one to work with G –spaces that are not
free. Different definitions of the genus for non-free actions of G were given by Clapp
and Puppe [6; 7] and by Bartsch [1]. The most general definitions can be found in the
book by Bartsch [2]; the case of compact Lie group instead of a finite group is also
considered there. Here we make use of a certain kind of genus of actions of a finite
group G without fixed points, that is, actions on a space X such that the stabilizer of
any point x 2X is a proper subgroup of G .

Definition 3.1 Denote by DG the disjoint union of all orbits G=H , where H is a
subgroup of G not equal to G .

Note that any discrete fixed point free G –space can be G –mapped to DG . Similar to
the case of the free genus, the definition (following [2]) of the fixed point free genus
can be given in two different ways, that are equivalent for paracompact G–spaces
through a standard partition of unity argument.

Definition 3.2 The fixed point free genus of a fixed point free G –space X is the least
number n such that X can be G –equivariantly mapped to the n–fold join DG�� � ��DG .
We denote the fixed point free genus by gG.X /.

Definition 3.3 The fixed point free genus of a fixed point free G –space X is the least
number n such that X can be covered by n open subsets X1; : : : ;Xn so that every
Xi can be G –mapped to DG .

Again, we state some properties of the fixed point free genus (see the second author’s
paper [26, Section 4.4] for proofs).

(1) (Monotonicity) If there is a G –map f W X ! Y , then gG.X /� gG.Y /;

(2) (Subadditivity) Let X DA[B , where A, B are closed or open G–invariant
subspaces. Then gG.X /� gG.A/CgG.B/;

(3) (Dimension upper bound) gG.X /� dim X C 1;

(4) (Cohomology lower bound) If X is connected and acyclic over Fp in degrees
�N � 1 and G is a p–torus then gG.X /�N C 1.

It is clear from the definition, that gfree and gG coincide for groups Z=p , because for
such groups G DDG .

Let us give an example that shows the difference between the free genus and the fixed
point free genus.
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Example 3.4 Let G D Z=r , where r D ab is a product of two coprime integers
a; b > 1 and let EG be the universal free G–space. Then gfree.EG/ is infinite (it
follows from the cohomology lower bound), while gG.EG/ is finite. The second
claim follows easily from the example of Conner and Floyd [9] of a contractible
finite simplicial complex C , on which G acts without fixed points. Then EG �C

is contractible and the diagonal action of G on this space is free, so EG � C is
G –homotopy equivalent to EG by a simple equivariant obstruction theory argument
(equivariant obstruction theory coincides with ordinary obstruction theory when the
action is free). From the natural projection EG �C ! C , the monotonicity, and the
dimension upper bound on gG we obtain gG.EG/� gG.C /� dim C C 1<C1.

As was already mentioned in the proof of Corollary 1.10, the cohomology lower bound
was generalized by the second author in [26, Proposition 4.7] to give the estimate

gG.X /� iG.X /:

4 Definitions of configuration-like spaces

First, we need some definitions of configuration spaces for a topological space Y .
Actually, the space Y will often be Rm in this paper.

Definition 4.1 Define the k –wise diagonal

�k
q .Y /D f.y1; : : : ;yq/ 2 Y q

W yi1
D � � � D yik

for some i1 < � � �< ikg:

Definition 4.2 Define the k –wise maximum diagonal

�0
k
q .R/D f.y1; : : : ;yq/ 2Rq

W yi1
D � � � D yik

D c for some i1 < � � �< ik ;
and yj � c for all j g:

It is clear that �0kq .R/��
k
q .R/; for k D q these diagonals are equal.

Definition 4.3 Denote the configuration-like spaces

V .Y; q; k/D Y q
n�k

q .Y /; V .m; q; k/D V .Rm; q; k/:

Put also
W .q; k/DRq

n�0
k
q .R/:
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Note that W .q; k/� V .1; q; k/ in general, and W .q; q/D V .1; q; q/ (since �q
q.R/D

�0
q
q.R/). The spaces V .Y; q; k/ are denoted G.Y; q; k/ by Cohen and Lusk [8], but

we do not use the letter G here to avoid confusion with the group action.

We also need the configuration-like spaces of the following type.

Definition 4.4 Consider Rm DR�Rm�1 and denote

V1.m; q; k/D .R
m/q n�k

q .R/��
q
q.R

m�1/:

These spaces may seem unnatural, but their genus can be calculated precisely in all
cases, see Section 5. Note that V .m; q; k/� V1.m; q; k/.

In the sequel we usually consider a finite group G with jGjD q ; in this case we identify
Y q with the space of maps Map.G;Y /. The latter space has the natural G–action
given in the following definition.

Definition 4.5 For a finite group G and a topological space Y consider the space
Map.G;Y / of maps with the usual left G –action, that is, for � 2Map.G;Y / we define
g� 2Map.G;Y / as follows. For any h 2G put

.g�/.h/D �.g�1h/:

Note that the group ring RŒG� can be identified with Map.G;R/ by the assignment
�$

P
�.g/g . It can be easily checked that this identification transforms the action of

G on Map.G;R/ defined above to the usual left action of G on its group ring RŒG�.

5 Genus of configuration-like spaces

The index of configuration spaces V .2; n; 2/ was estimated from below in the papers of
Smale [22] and Vasil’ev [23], to give lower bounds of the “topological” complexity of
algorithms for finding the roots of a complex polynomial. Similar estimates were given
by Roth [19] and the first author [11] for V .m; n; 2/. In those papers the genus was
considered with respect to the free action of the permutation group Sn by permuting
the points of configuration.

For the action of a p–torus G (with jGj D q ) some lower bounds on the genus of
V .m; q; k/ were obtained by the first author in [11] and the second author in [26; 27],
using the homological lower bound, and a more accurate bound by the homological
index iG.V .m; q; k//.

We start with a simple geometric upper bound, valid for any finite group G .
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Theorem 5.1 For a finite group G and 2� k � q D jGj we have

gG.W .q; k//� k � 1:

Proof By
�

G
m

�
we denote the set of all m–element subsets of G and consider it as

a discrete G–space. For M D fg1; : : : ;gmg 2
�

G
m

�
and g 2 G we define gM D

fgg1; : : : ;ggmg.

The space
�

G
m

�
has no G –fixed points for m<q . Indeed, if M Dfg1; : : : ;gkg 2

�
G
Œk�

�
is

a fixed point and g 2G is some element, then the set M 0 D fg1; : : : ;gkg � .g
�1g1/

�1

contains g , but M DM 0 (this is a fixed point) so g 2M for every g 2 G , hence
M DG .

We identify W .q; k/ with a subset of Map.G;R/, as described above. For a nonempty
subset M � G we define an open subset UM �Map.G;R/ by (here SM D G nM

denotes the complement of M )

UM D f� 2Map.G;R/ W �.g/ > �.h/ 8 g 2M; h 2 SM g;

and for any 1�m� q� 1 we put

Vm D

[
M�G; jM jDm

UM :

Now we are going to prove that:

(1) For any different M 6DM 0 of same size jM j D jM 0j the sets UM and UM 0

are disjoint;

(2) For any g 2G we have gUM D UgM ;

(3) Vm are invariant subspaces of Map.G;R/;

(4) We have the equality W .q; k/D V1[V2[ : : :[Vk�1 and each W .q; k � 1/ is
open in W .q; k/;

(5) The map fmW Vm !
�

G
m

�
defined by fm.UM / D M is continuous and G–

equivariant.

Assertion (1) is almost obvious. For M � G with jM j D k the set UM consists of
�W G!R such that the k largest elements in the set �.G/ are defined and correspond
to M .

To prove assertion (2) it is enough to show that if � 2 UM then g� 2 UgM . Consider
 D g� 2 gUM . Since g�1 D � 2 UM we have 8 h 2M; h0 2 SM the inequality
.g�1 /.h/ > .g�1 /.h0/, that is,  .gh/ >  .gh0/. Since gh 2 gM and gh0 2
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g. SM / D gM , we see that  2 UgM , note that when h runs through M and h0

through SM elements gh and gh0 runs through gM and gM respectively.

Assertion (3) follows from (2).

To prove assertion (4) note that W .q; k/ is the set of �W G!R such that the maximum
of � is attained in < k elements g 2 G . Hence some l < k maximal elements of
�.G/ are separated from the other elements, that is � 2Vl for some l < k . The inverse
reasoning is also valid.

Assertion (5) now follows from (2) and (4), because the domain Vm of fm is a union
of disjoint open sets, and fm is constant on each of these sets by definition.

Now it follows from assertion (5) that gG.Vm/D 1, from assertion (4) that

gG.W .q;m/ nW .q;m� 1//� gG.Vm/D 1;

and by the subadditivity of genus and assertion (4) we obtain the inequality

gG.W .q; k//� k � 1

by induction.

Theorem 5.2 The genus of the configuration-like spaces, under the action of G

described above, satisfies the upper bounds

gG.V .1; q; k//� gG.W .q; k//� k � 1

and gG.V .m; q; k//� gG.V1.m; q; k//

� gG.V .m� 1; q; q//C k � 1

� .m� 1/.q� 1/C k � 1:

Proof The first bound follows directly from Theorem 5.1 and the monotonicity of
genus.

To prove the second bound, we note that under the decomposition Rm DR�Rm�1

we have

V1.m; q; k/� .V .m� 1; q; q/�Rq/� ..Rm�1/q �V .1; q; k//:

The right summands are G–equivariantly projected to V .m� 1; q; q/ and V .1; q; k/

respectively, thus the subadditivity and the monotonicity of genus give the inequality

gG.V1.m; q; k//� gG.V .m� 1; q; q//CgG.V .1; q; k//:
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Note that V .m�1; q; q/ is homotopy equivalent to an ..m�1/.q�1/�1/–dimensional
sphere with action of G without fixed points, so by the dimension upper bound we
have

gG.V .m� 1; q; q//� .m� 1/.q� 1/;

and therefore
gG.V1.m; q; k//� .m� 1/.q� 1/C k � 1:

The inclusion V .m; q; k/� V1.m; q; k/ implies that

gG.V .m; q; k//� gG.V1.m; q; k//;

which completes the proof.

Now we are going to give some estimates on the genus of configuration-like spaces from
below. First, we consider an arbitrary finite group G ; in this case the bounds are ex-
pressed in terms of the genus gG.V .Y; q; q//. In the case Y DRm , the space V .m; q; q/

is homotopy equivalent to I ŒG�m n f0g (see the definition before Corollary 1.10), that
is, a ..q�1/m�1/–dimensional sphere.

For the case of an arbitrary finite group G , the genus gG.V .m; q; q// is not known. For
p–tori the cohomology lower bound and the dimension upper bounds coincide; in this
case gG.V .m; q; q//D .q�1/m. Let us formulate lower bounds for gG.V .m; q; k//

for an arbitrary finite group G ; the case of p–tori is considered in the end of this
section.

Lemma 5.3 For the spaces W .q; k/ and V .1; q; k/ we have

gG.W .q; k//� gG.W .q; q//� qC k D gG.V .1; q; q//� qC k:

Proof The inequality was actually proved in the proof of Theorem 5.1, because (in
the notation of that proof)

W .q; q/�W .q; k/[Vk [VkC1[ : : :[Vq�1

and we obtain the needed inequality by the subadditivity of genus.

Lemma 5.4 For an arbitrary metric space Y we have

gG.V .Y; q; k//� gG.V .Y; q; q//� qC k;

when k > q=2.
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Proof Note that for a metric space Y the spaces V .Y; q; k/ are metric, and hence
paracompact. Thus the additivity of the genus holds for such configuration-like spaces
and their subsets.

Let us argue by descending induction on k . It is clear that

V .Y; q; kC 1/ nV .Y; q; k/D�k
q .Y / n�

kC1
q .Y /:

Let us map Xk D�
k
q .Y / n�

kC1
q .Y / to

�
G
k

�
by assigning to the configuration

.x1; : : : ;xq/ 2Xk

the (unique, since k > q=2) k –element subset M D f ..x1; : : : ;xq// � Œq� ( Œq� is
identified with G ) such that fxigi2M is a one point set. The map f is locally constant
on Xk ; let us show this explicitly. For any k –element M � Œq� set

UM D f.x1; : : : ;xq/ 2 Y q
W jfxigi2M j D 1g;

a closed set. The sets UM \Xk are disjoint, closed in Xk , and cover Xk . Since there
is a finite number of such sets, then they are also open in Xk . Now it remains to note
that f is constant on every UM \Xk .

The existence of the above map f implies

gG.V .Y; q; kC 1/ nV .Y; q; k//� 1:

Now the induction step is made by the subadditivity of gG :

gG.V .Y; q; kC 1//� gG.V .Y; q; k//C 1:

Now we are going to give some exact formulas for the genus in the case of p–tori.

Theorem 5.5 If G is a p–torus then

gG.V .1; q; k//D gG.W .q; k//D k � 1;

and
gG.V1.m; q; k//D .m� 1/.q� 1/C k � 1:

If, in addition, k > q=2, then

gG.V .m; q; k//D .m� 1/.q� 1/C k � 1:

Proof The space V .1; q; k/ is a complement to a system of .q�kC1/–dimensional
linear subspaces in Rq . Thus it is .k�3/–connected, where “.�1/–connected” means
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“arbitrary space”. Thus the cohomology lower bound (for a p–toral action) and the
monotonicity of the genus give

gG.W .q; k//� gG.V .1; q; k//� k � 1:

From Theorem 5.1 we have gG.W .q; k//�k�1, thus all the inequalities are equalities.

Similarly, the space V1.m; q; k/ is a complement in Rmq to a system of .mCq�k/–
dimensional linear subspaces, thus it is c–connected for

c D .m� 1/.q� 1/C k � 3;

and from the cohomology lower bound we have

gG.V1.m; q; k//� .m� 1/.q� 1/C k � 1;

which coincides with the upper bound in Theorem 5.2.

Now consider the space V .m; q; k/. Note that

gG.V .m; q; q//Dm.q� 1/;

because this configuration space is a homotopy sphere, and its cohomology lower
bound for gG coincides with the dimension upper bound. If k > q=2, the lower bound
for gG.V .m; q; k// is obtained from Lemma 5.4, and coincides with the upper bound
in Theorem 5.2.

If we consider an arbitrary m–dimensional manifold M , then the corresponding
configuration space V .M; q; k/ obviously contains a copy of V .m; q; k/. Hence, from
monotonicity, we have

gG.V .M; q; k//� gG.V .m; q; k//:

Let us improve this bound by C1 in one particular case.

Theorem 5.6 Let G be a p–torus, let M be a smooth oriented (if p 6D 2) closed
manifold of dimension m, and let k > q=2. Then

gG.V .M; q; k//� .m� 1/.q� 1/C k:

Proof It was shown by the first author in [11] that

gG.V .M; q; q//� iG.V .M; q; q//�m.q� 1/C 1:

Now Lemma 5.4 implies the required inequality.
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Remark 5.7 In [21] Schwarz showed that some additional restrictions on the manifold
M may give better lower bounds on gG.M; q; q/ for q D p and G D Z=p . Hence,
similar to Theorem 5.6, the genus gG.M; q; k/ for k > q=2 has better bounds from
below. The restrictions on M are expressed in terms of Smith’s operations in homology
(or, equivalently, certain characteristic classes of M ).

Remark 5.8 A lower bound of gG.V .m; q; k// for a p–torus G and arbitrary m and
k is also obtained in [11], estimating the genus by the homological index iG . In the
case G D Z=p (p is a prime) that lower bound coincides with the upper bound of
Theorem 5.2, while in the case of general p–tori the lower bound takes the form:

gG.V .m; q; k//� .m� 1/.q� q=p/C k � 1:

Thus, in the case k � q=2 and q not a prime, the gap between the lower and the upper
bounds still remains.

In the case q D p we have an even better bound for k D 2 (the classical configuration
space).

Lemma 5.9 If G D Z=p , so q D p , then for an arbitrary metric space Y we have

gG.V .Y;p; 2//� gG.V .Y;p;p//�pC 2:

Proof Let us define another configuration space (j � j denotes the cardinality of a finite
set)

U.Y;p; l/D f.x1; : : : ;xp/ 2 Y p
W jfx1; : : : ;xpgj � lg:

Obviously, U.Y;p; 2/D V .Y;p;p/ and U.Y;p;p/D V .Y;p; 2/.

For any k D 2; : : : ;p� 1, the difference Xk D U.Y;p; k/nU.Y;p; kC 1/ has genus
1. This can be shown as follows (similar to the proof of Lemma 5.4). Call a partition
P D fA1; : : : ;Asg of the set Œp� a pattern of coincidence, and denote the subset of the
Cartesian power that has these coincidences (and possibly other coincidences) by

FP D f.x1; : : : ;xp/ 2 Y p
W 8t D 1; : : : ; s jfxigi2At

j D 1gI

these sets are closed. Note that the sets Xk \FP for jPj D k give a partition of Xk ,
hence each Xk \FP is open in Xk . Now we assign to every .x1; : : : ;xp/ 2 Xk its
unique k –element pattern of coincidence, thus obtaining a locally constant map f
from Xk to the set of all patterns of size k . This map is equivariant, and Z=p acts on
such patterns without fixed points if k 2 Œ2;p�1� (here we essentially use G DZ=p ).

The sets U.Y;p; k/ are closed, hence by the subadditivity of the genus

gG.U.Y;p;p//� gG.U.Y;p;p� 1//� 1� � � � � gG.U.Y;p; 2//�pC 2:
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Using the inequality from [11] for Fp –oriented manifolds

gG.V .M;p;p//� iG.V .M;p;p//�m.p� 1/C 1;

we obtain the following lower bound on the genus of the classical configuration space
of a closed manifold.

Corollary 5.10 Let G D Z=p , so q D p , and let M be a smooth oriented (if p ¤ 2)
closed manifold of dimension m. Then

gG.V .M;p; 2//� .m� 1/.p� 1/C 2:

Remark 5.11 This corollary gives a shorter proof (without spectral sequences) of the
main theorem in the paper [12] by the first author.

6 Proof of the coincidence theorem

First we state the main tool to estimate the genus of inverse images under G –maps.

Theorem 6.1 Let X be a fixed point free G–space, and let E be a G–space with
fixed point set contained in a closed G–invariant subspace P � E . Let f W X ! E

be an equivariant map. Then gG.f
�1.P // � gG.X / � gG.E n P /. In particular

f �1.P / 6D∅ if gG.X / > gG.E nP /.

Proof We have X Df �1.P /[f �1.EnP /, and since gG.f
�1.EnP //�gG.EnP //

by the monotonicity of genus, we obtain the desired inequality from the subadditivity
of genus.

Applying this theorem several times we obtain the following statement.

Theorem 6.2 Let fi W X !Ei , i D 1; : : : ; r be G –maps and let closed G –invariant
subspaces Pi �Ei contain all fixed points of their respective Ei . Then

gG

� r\
iD1

f �1
i .Pi/

�
� gG.X /�

rX
iD1

gG.Ei nPi/:

Now let us give some definitions.
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Definition 6.3 Let X be a G –space and let f W X ! Y be a continuous map. Define
the map yf W X !Map.G;Y / by the formula

yf .x/.g/D f .g�1x/:

Note that for any h 2G

h. yf .x//.g/D yf .x/.h�1g/D f ..h�1g/�1x/D f .g�1hx/D yf .hx/.g/;

so h. yf .x//D yf .hx/, thus the map yf is G –equivariant.

Lemma 6.4 The orbit coincidence sets can be defined as follows .q D jGj/:

A.f; k/D yf �1.�k
q .Y //

and
A0.f; k/D yf �1.�0

k
q .R//:

Now we are ready to prove the main result.

Proof of Theorem 1.8 Put E1 D Rq , P1 D �0
k
q .R/, E2 D .Rm�1/q and P2 D

�
q
q.R

m�1/. From Theorems 5.1, 5.2, 6.2, and Lemma 6.4 we obtain

gG.A
0.f1; k/\A.h; q//� gG.X /�gG.W .q; k//�gG.V .m� 1; q; q//

� gG.X /� .m� 1/.q� 1/� kC 1:

Consider f W X ! Rm as a pair f D f1˚ h. It is clear that A.f; k/ � A0.f1; k/\

A.h; q/.

In fact, the above reasoning prove the following statement.

Theorem 6.5 Let G be a finite group, m � 0. Consider a fixed point free G–space
X , functions fi W X ! R .i D 1; : : : ; d/, integers 2 � ki � q .i D 1; : : : ; d/, and a
map hW X !Rm . Then

gG.A.h; q//\

d\
iD1

A0.fi ; ki//� gG.X /�

dX
iD1

gG.W .q; ki//�gG.V .m; q; q//

� gG.X /�m.q� 1/�

dX
iD1

ki C d:
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7 Coincidences of maps from manifolds

In this section we prove a coincidence theorem for the case in which X is a manifold.
In this case the simple estimate dim A.f; k/� gG.A.f; k//� 1 can be improved by
imposing additional assumptions.

Theorem 7.1 Let X be an Fp –orientable compact connected N –dimensional mani-
fold and assume H l.X;Fp/D 0 for all positive l < .m� 1/.q� 1/C k � 1. Suppose
that a p–torus G .jGj D q/ acts on X without fixed points and f W X ! Rm is a
continuous map. Then

dim A.f; k/�N � .m� 1/.q� 1/� kC 1:

Proof Observe that yf restricts to an equivariant map of X nA.f; k/ into V .m; q; k/

and that we may assume that X nA.f; k/ is path connected.

Then gG.X nA.f; k// � gG.V .m; q; k// from the monotonicity of gG . From the
cohomology lower bound for genus, there must be some j , 0< j < gG.V .m; q; k//,
such that H j .X nA.f; k/;Fp/ 6D 0, and hence Hj .X nA.f; k/;Fp/ 6D 0. By Poincaré
duality we obtain

H N�j .X;A.f; k/;Fp/ 6D 0:

From the statement of the theorem Hj .X /D0, and by Poincaré duality H N�j .X /D0.
Thus by the exact cohomology sequence of the pair .X;A.f; k// we obtain

H N�j�1.A.f; k// 6D 0:

It follows that

dim A.f; k/�N�j�1�N�gG.V .m; q; k//�N�.m�1/.q�1/�kC1:
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