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Unexpected local minima in the width complexes for knots

ALEXANDER ZUPAN

In [9], Schultens defines the width complex for a knot in order to understand the
different positions a knot can occupy in S3 and the isotopies between these positions.
She poses several questions about these width complexes; in particular, she asks
whether the width complex for a knot can have local minima that are not global
minima. In this paper, we find an embedding of the unknot 01 that is a local
minimum but not a global minimum in the width complex for 01 , resolving a question
of Scharlemann. We use this embedding to exhibit for any knot K infinitely many
distinct local minima that are not global minima of the width complex for K .

57M25, 57M27

1 Introduction

In [2], Gabai defines knot width and thin position as a measure of the complexity of
various Morse functions on a given knot in S3 . One important aspect of thin position
is that it yields an embedding of a given knot that is minimal with respect to certain
types of isotopies. In [9], Schultens defines the width complex of a knot in order to
better understand these isotopies and the various positions a given knot can occupy
in S3 . Specifically, she asks the following two questions:

Question 12 Can the width complex of a knot have local minima that are not global
minima?

Question 13 Is every vertex of the width complex of a knot connected to one of the
global minima of this complex by a monotonically decreasing path?

Schultens also defines a similar width complex for 3–manifolds, and her Theorem 13
from [9] provides a positive answer to the 3–manifold version of Question 12, namely
that there exist 3–manifolds whose width complexes contain local minima that are not
global minima. On the other hand, combining the results of Bonahon and Otal [1],
Scharlemann and Thompson [6] and Waldhausen [11], we see that if M is S3 or
a lens space, then the width complex of M has a unique minimum, corresponding
to a minimal genus Heegaard splitting. Thus, it seems reasonable to expect that the
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simplest knots might share this property. This is further suggested by Otal’s proof that
nonminimal bridge positions of the unknot and 2–bridge knots are stabilized [3] and
Ozawa’s recent proof of the same statement for torus knots [4].

Schultens compares Question 13 to one answered by Goeritz in 1934. Goeritz produced
a nontrivial diagram of the unknot 01 such that any Reidemeister move increases the
diagram’s crossing number. As an analogue to Goeritz’ result, Scharlemann poses the
next question in his comprehensive treatment of thin position:

Question 3.5 [5] Suppose K � S3 is the unknot. Is there an isotopy of K to thin
position (ie a single minimum and maximum) via an isotopy during which the width is
never increasing?

We provide an answer, finding a nontrivial embedding of 01 such that any isotopy must
increase the width of the embedding. As a result, we give an affirmative answer to
Schultens’ first question, which shows that the answer to the second question must be
no. In fact, we show the surprising and much stronger result that for every knot K , the
width complex of K has infinitely many local minima that are not global minima.

2 Definitions

Let K be a knot in S3 , and fix a Morse function hW S3!R such that h has exactly
two critical points. We consider K to be an equivalence class, denoted K , of the set of
embeddings of S1 into S3 modulo ambient isotopy. In the usual definition of knot
width, the embedding of K is fixed and the Morse function h is allowed to vary up
to isotopy; however, this definition is equivalent with the one that follows. Let k 2K
such that hjk is Morse, and let c0 < c1 < � � �< cn be the critical levels of hjk . Choose
regular levels c0 < r1 < c1 < � � �< rn < cn , and define

w.k/D

nX
iD1

jh�1.ri/\Kj:

w.K/D min
k2K

w.k/:Now, let

The invariant w.K/ is called the width of K , and if k 2 K satisfies w.K/D w.k/,
we say that k is a thin position for K .

For our purposes it will be useful to split an embedding k into thick and thin levels. For
2� i � n� 1, we say that a regular value ri of hjk corresponds to a thick level Ri D

h�1.ri/ if jh�1.ri/\kj> jh�1.ri�1/\kj; jh�1.riC1/\kj. Likewise, ri corresponds
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to a thin level Ri D h�1.ri/ if jh�1.ri/\ kj< jh�1.ri�1/\ kj; jh�1.riC1/\ kj. Let
a0; : : : ; am (b1; : : : ; bm ) represent the regular values of h jk corresponding to thick
(thin) levels A0; : : : ;Am (B1; : : : ;Bm ), where a0 < b1 < a1 < � � �< bm < am .

Note that h�1.Œbi ; ai �/\ k consists of vertical segments and arcs ˛1; : : : ; ˛l , l � 1,
where each j̨ has exactly one minimum and is isotopic to an arc ǰ in Ai . In this case,

j̨ cobounds a disk D with ǰ such that D has no critical points with respect to h

in its interior. We call D a strict lower disk for k at Ai . For any r < c0 , the lowest
minimum of hjk , we have that h�1.Œr; a0�/\ k consists of arcs ˛1; : : : ; ˛l , which
cobound pairwise disjoint strict lower disks with arcs ˇ1; : : : ; ˇl contained in A1 .

Similarly, h�1.Œai ; biC1�/\k consists of vertical segments and arcs ˛1; : : : ; ˛l , l � 1,
where each j̨ has exactly one maximum and is isotopic to an arc ǰ in Ai . Here j̨

cobounds a disk E with ǰ such that E has no critical points in its interior, and we
call E a strict upper disk for k at Ai . For any r > cn , the highest maximum of hjk ,
we have that h�1.Œan; r �/\ k consists of arcs ˛1; : : : ; ˛l , which cobound pairwise
disjoint strict upper disks with arcs ˇ1; : : : ; ˇl contained in An .

Consider k; k 0 2K with corresponding thick/thin levels A0;B1;A1; : : : ;Bl ;Al and
A0

0
;B0

1
; : : : ;B0

l 0 ;A
0
l 0 . We say that k � k 0 if l D l 0 and there is an isotopy of S3 taking

k to k 0 , Ai to A0i , and Bi to B0i . In this case, we call this isotopy a level isotopy,
and we have w.k/Dw.k 0/, so that k and k 0 carry exactly the same information with
respect to width and to upper and lower disks. Thus, from this point forward we will
(under slight abuse of notation) let K denote the set of embeddings isotopic to K up
to this equivalence.

3 The width complex of K

Now, we use the collection K and pairs of strict upper and lower disks to define the
width complex of K , a directed graph � whose vertices correspond to elements of K .
We first make several definitions:

Definition 3.1 Suppose that k 2K . If .D;E/ is a pair of strict upper and lower disks
for a thick level Ai such that D\E is a single point in k , we say that Ai is stabilized.
If D\E D∅, we say that Ai is weakly reducible. In either case, we say that Ai is
reducible. If Ai is not reducible, then Ai is strongly irreducible.

Elements of k 2K with reducible thick surfaces will be at the tail of directed edges
in the width complex of K . If k 2K has a stabilized thick surface Ai , we can slide
k along the pair .D;E/ of upper and lower disks for Ai to cancel out a minimum
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and maximum, changing k to k 0 2K such that w.k 0/D w.k/� .2jAi \ kj � 2/. As
in [9], we call this a Type I move. If k has a weakly reducible thick surface Ai , we can
again slide k along the pair .D;E/ to move a minimum of k above a maximum of k .
This changes k to k 0 2K such that w.k 0/Dw.k/�4, and we call this a Type II move.
In either case, we call .D;E/ a pair of reducing disks at Ai and we make a directed
edge from k to k 0 in � . The next theorem, Theorem 1 from [9], is important to our
understanding of the width complex:

Theorem 3.2 The width complex of a knot is connected.

This theorem says that given k; k 0 2K , there is a series of level isotopies and Type I
and Type II moves and their inverses taking k to k 0 . Schultens’ width complex also
contains higher dimensional cells, but we need only consider the one-skeleton of the
complex in this context.

Definition 3.3 We call k 2K a local minimum of the width complex if there are no
directed edges leaving k in � .

The position k is called a local minimum because any isotopy that changes k to k 0 2K
must increase w.K/. Let yK �K denote the set of local minima of the width complex
of K . It is clear that any thin position k for K must come from yK ; otherwise there is
an isotopy decreasing w.k/. We also have the following, the proof of which is clear
from the definition of the width complex:

Lemma 3.4 An element k 2K is in yK if and only if every thick level of k is strongly
irreducible.

Using the definitions of this section, we can reformulate Schultens’ questions as follows:

Question 12 Is there a knot K with k 2 yK such that w.k/ > w.K/?

Question 13 Given k 2K , is there a directed path in � starting at k and ending at a
thin position for K?

Explicitly, a directed path is a sequence of vertices k D k0; k1; : : : ; kn such that there
is a directed edge from ki to kiC1 for each i < n.
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Figure 1: A troublesome embedding k of the unknot, shown with thick/thin levels

4 A local minimum in the width complex of the unknot

Let K be the unknot in S3 , and let k 2K be the position of the unknot depicted in
Figure 1, where h is the standard height projection onto a vertical axis.

We will label the thick/thin levels of k as A0;B1;A1;B2;A2;B3;A3;B4;A4 , as
shown. First, we need several results about bridge position.

Definition 4.1 For any knot K with embedding k , the bridge number of k , b.k/, is
defined to be the number of maxima in k with respect to h, and the bridge number
of K , b.K/, is the minimum of b.k/ over k 2K . We call k a minimal bridge position
for K if b.k/D b.K/ and k has exactly one thick level, called a bridge sphere for k .

Schubert shows in [7] that the bridge number of any .p; q/–cable of a 2–bridge knot
is 2q (this was later reproved by Schultens in [8]), and we demonstrate in [12] that
any thin position is a minimal bridge position for such a knot. In this case, the bridge
sphere must be strongly irreducible. We will use this fact in the following:
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Theorem 4.2 The pictured embedding k of the unknot is a local minimum in the
width complex.

Proof By Lemma 3.4, it suffices to show that every thick surface of k is strongly
irreducible. Observe that the regions between consecutive thin surfaces around thick
surfaces A0;A1;A3;A4 are identical except for the extra vertical segments passing
through A1 and A3 . Thus, we need only show that A0 and A2 are strongly irreducible.

Claim 1 A0 is strongly irreducible. Suppose not. Then there is a pair of reducing
disks .D;E/ at A0 . Let b1 denote the regular value corresponding to the thin level B1 .
If we restrict our attention to k�D k\h�1.�1; b1�, we can easily see that by adding
two arcs to the four intersection points of k with B1 , we can complete k� to a .p; 2/–
cable of the trefoil for some p , whose thin position is bridge position by the discussion
above, and such that A0 becomes a bridge sphere. Thus, the pair .D;E/ of reducing
disks at A0 is also a pair of reducing disks at the bridge sphere A0 of the trefoil’s
cable, a contradiction to the fact that this cable is in thin position. We conclude that
A0 and thus A1 , A3 , and A4 are strongly irreducible.

Claim 2 A2 is strongly irreducible. Let b2 and b3 be the regular values corresponding
to B2 and B3 , respectively. Then A2 D h�1.Œb2; b3�/ is homeomorphic to S2 � I ,
and k 0 D k \A2 has exactly one maximum contained in an arc �1 and exactly one
minimum contained in an arc �2 properly embedded in A2 . Note that A2 intersects
six additional vertical segments, two of which extend from B1 to B4 , call these 
1

and 
 0
1

, two of which extend from B2 to B4 , call these 
2 and 
 0
2

, and two of which
extend from B1 to B3 , call these 
3 and 
 0

3
.

As above, we will suppose A2 is reducible and add extra arcs along the endpoints
of components of k 0 to derive a contradiction. If A2 is reducible, there is a pair of
reducing disks .D;E/ for k at A2 , where D contains the maximum of �1 and E

contains the minimum of �2 . Note that �1 \ �2 D ∅, implying D \E D ∅. Thus
by extending D down to B2 and E up to B3 , we can find disjoint disks D0 and E0

such that @D0D �1[ ı for some level arc ı �B2 and @E0D �2[� for some level arc
� � B3 . Note further that each pair of vertical arcs 
i and 
 0i cobounds a rectangle
Ri with level arcs �i � B2 and �0i � B3 . After isotopy, we may assume that R1 , R2 ,
R3 , D0 , and E0 are pairwise disjoint.

Now, as pictured in Figure 2, we add four arcs to k 0\B2 and four arcs to k 0\B3 to
get a link k 00 , which is an unlinked square knot (the connected sum of two trefoils, one
left-hand and one right-handed) and two unknots. In addition, we may attach the arcs
so that two arcs of the square knot component cobound a rectangle R with �i and ı and
two other arcs of this component cobound a rectangle R0 with �0i and �, where these
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Figure 2: The tangle k 0 is shown at top, and the link k 00 is shown at bottom.
If A2 is reducible, the square knot component of k 00 is isotopic to the unknot.

rectangles are disjoint from int.R1/, int.D0/, and int.E0/. But this implies that the
square knot component of k 00 bounds a disk D0[R[R1[R0[E0 , a contradiction.
We conclude that A2 is strongly irreducible, completing the proof.

5 Local minima in the width complex of an arbitrary knot

Suppose that k1 and k2 are embeddings representing local minima in the width
complexes of knots K1 and K2 . Then we can find an embedding k of K1#K2 by
connecting the highest maximum of k1 to the lowest minimum of k2 . Observe that
this creates a new thin surface but does not interfere with the reducibility of the thick
surfaces of k1 and k2 . Thus, every thick surface of k is strongly irreducible, and
by Lemma 3.4, k represents a local minimum in the width complex of K1#K2 . For
instance, consider the embedding of the figure eight knot 41 shown in Figure 3. Note
that minimal bridge position is thin position for 41 by Thompson [10]. Here we have
taken k1 to be minimal bridge position of the figure eight knot and k2 to be the unknot
embedding shown above, creating a new embedding k of 41 . Since every thick sphere
is strongly irreducible, this embedding corresponds to a local minimum in the knot’s
width complex. This suggests the following:
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Figure 3: A local minimum in the width complex of the figure eight knot

Corollary 5.1 The width complex of every knot contains infinitely many local minima.

Proof Let K be an arbitrary knot, with embedding k representing a local minimum
in the width complex of K . For any such k , we exhibit another local minimum k 0 of
the width complex of K with w.k 0/ > w.k/, showing that there are infinitely many
such embeddings. Let K0 denote the unknot, and let k0 be the embedding representing
the local minimum of the width complex in Theorem 4.2. Since K#K0 DK , we can
attach k to k0 by connecting the highest maximum of k to the lowest minimum of k0

to get a new embedding k 0 of K with w.k 0/ > w.k/. By the above argument, every
thick sphere of k 0 is strongly irreducible, so k 0 is another local minimum in the width
complex.
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