Volume 11, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Planar open books with four binding components

Yankı Lekili

Algebraic & Geometric Topology 11 (2011) 909–928
Bibliography
1 C Adams, W Sherman, Minimum ideal triangulations of hyperbolic 3–manifolds, Discrete Comput. Geom. 6 (1991) 135 MR1083629
2 L Armas-Sanabria, M Eudave-Muñoz, The hexatangle, Topology Appl. 156 (2009) 1037 MR2493367
3 J Baldwin, Capping off open books and the Ozsváth–Szabó contact invariant arXiv:0901.3797
4 J Baldwin, J B Etnyre, A note on the support norm of a contact structure, to appear in “Proceedings of the 2009 Georgia Topology Conference (Athens, GA)” arXiv:0910.5021
5 T Etgü, Y Lekili, Examples of planar tight contact structures with support norm one, Int. Math. Res. Not. (2010) 3723 MR2725510
6 J B Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255 MR2126827
7 J B Etnyre, Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103 MR2249250
8 J B Etnyre, B Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008) 3133 MR2379791
9 E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 MR0141126
10 R Fox, L Neuwirth, The braid groups, Math. Scand. 10 (1962) 119 MR0150755
11 P Ghiggini, On tight contact structures with negative maximal twisting number on small Seifert manifolds, Algebr. Geom. Topol. 8 (2008) 381 MR2443233
12 E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)" (editor T Li), Higher Ed. Press (2002) 405 MR1957051
13 C M Gordon, Small surfaces and Dehn filling, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 177 MR1734408
14 C M Gordon, Y Q Wu, Toroidal and annular Dehn fillings, Proc. London Math. Soc. (3) 78 (1999) 662 MR1674841
15 K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 MR2318562
16 K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289 MR2577470
17 W Magnus, A Peluso, On knot groups, Comm. Pure Appl. Math. 20 (1967) 749 MR0222880
18 B Martelli, C Petronio, Dehn filling of the “magic” 3–manifold, Comm. Anal. Geom. 14 (2006) 969 MR2287152
19 K Niederkrüger, C Wendl, Weak symplectic fillings and holomorphic curves, to appear in Ann. Sci. École Norm. Sup. arXiv:1003.3923
20 P Ozsváth, A Stipsicz, Z Szabó, Planar open books and Floer homology, Int. Math. Res. Not. (2005) 3385 MR2200085
21 P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 MR2153455
22 V V Prasolov, A B Sossinsky, Knots, links, braids and 3–manifolds. An introduction to the new invariants in low-dimensional topology, 154, Amer. Math. Soc. (1997) MR1414898
23 W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
24 A Wand, Mapping class group relations, Stein fillings, and planar open book decompositions arXiv:1006.2550
25 C Wendl, Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 MR2605865