Volume 11, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Symplectic manifolds with vanishing action–Maslov homomorphism

Mark Branson

Algebraic & Geometric Topology 11 (2011) 1077–1096
Bibliography
1 A Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997) 289 MR1454400
2 M Branson, The action-Maslov homomorphism on monotone symplectic manifolds, PhD thesis, Columbia University (2010)
3 M Entov, L Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773 MR2507748
4 K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds I, Duke Math. J. 151 (2010) 23 MR2573826
5 R Leclercq, The Seidel morphism of Cartesian products, Algebr. Geom. Topol. 9 (2009) 1951 MR2550462
6 Y P Lee, R Pandharipande, A reconstruction theorem in quantum cohomology and quantum K–theory, Amer. J. Math. 126 (2004) 1367 MR2102400
7 D McDuff, Quantum homology of fibrations over S2, Internat. J. Math. 11 (2000) 665 MR1780735
8 D McDuff, Monodromy in Hamiltonian Floer theory, Comment. Math. Helv. 85 (2010) 95 MR2563682
9 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, American Mathematical Society (2004) MR2045629
10 A Pedroza, Seidel’s representation on the Hamiltonian group of a Cartesian product, Int. Math. Res. Not. (2008) 19 MR2440331
11 L Polterovich, Hamiltonian loops and Arnold’s principle, from: "Topics in singularity theory", Amer. Math. Soc. Transl. Ser. 2 180, Amer. Math. Soc. (1997) 181 MR1767123
12 P Py, Quasi-morphismes et difféomorphismes hamiltoniens, PhD thesis, École normale supérieure de Lyon (2008)
13 S K Sehgal, Units in integral group rings, 69, Longman Scientific & Technical (1993) MR1242557
14 P Seidel, π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046 MR1487754
15 E Shelukhin, Remarks on invariants of Hamiltonian loops, J. Topol. Anal. 2 (2010) 277 MR2718126
16 B Siebert, G Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997) 679 MR1621570