Volume 11, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Relative fixed point theory

Kate Ponto

Algebraic & Geometric Topology 11 (2011) 839–886
Abstract

The Lefschetz fixed point theorem and its converse have many generalizations. One of these generalizations is to endomorphisms of a space relative to a fixed subspace. In this paper we define relative Lefschetz numbers and Reidemeister traces using traces in bicategories with shadows. We use the functoriality of this trace to identify different forms of these invariants and to prove a relative Lefschetz fixed point theorem and its converse.

Keywords
Reidemeister trace, Nielsen theory, fixed point, Lefschetz number, fixed point index, trace, bicategory
Mathematical Subject Classification 2000
Primary: 55M20
Secondary: 18D05, 55P25
References
Publication
Received: 1 November 2009
Revised: 2 December 2010
Accepted: 12 December 2010
Published: 25 March 2011
Authors
Kate Ponto
Department of Mathematics
University of Kentucky
719 Patterson Office Tower
Lexington KY 40506
USA
http://www.ms.uky.edu/~kate