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On links with locally infinite Kakimizu complexes

JESSICA E BANKS

We show that the Kakimizu complex of a knot may be locally infinite, answering a
question of Przytycki–Schultens. We then prove that if a link L only has connected
Seifert surfaces and has a locally infinite Kakimizu complex then L is a satellite of
either a torus knot, a cable knot or a connected sum, with winding number 0.
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1 Introduction

The Kakimizu complex MS.L/ of a non-split, oriented link L in S3 records the
structure of the set of minimal genus Seifert surfaces for L. When every minimal
genus Seifert surface for L is connected, MS.L/ has the following description, which
mirrors the definition of the curve complex of a compact surface.

Definition 1.1 (Kakimizu [5, page 225]) MS.L/ is a simplicial complex, the vertices
of which are the ambient isotopy classes of minimal genus Seifert surfaces for L.
Vertices R0; : : : ;Rn span an n–simplex exactly when they can be realised disjointly.

In [6], Przytycki and Schultens generalise this definition as follows.

Definition 1.2 Let M be a compact, connected, orientable, irreducible, @–irreducible
3–manifold. Let  be a union of disjoint, oriented, simple closed curves on @M such
that  does not separate any component of @M . Let ˛2H2.M; @M IZ/ with @˛D Œ �.
Call an oriented surface S properly embedded in M a .; ˛/–surface if ŒS �D ˛ and
@S is homotopic to  .

The flag simplicial complex MS.M;;˛/ is defined as follows. The set V.MS.M;;˛//

of vertices is defined to be the set of isotopy classes of .; ˛/–surfaces with maximal
Euler characteristic � in their homology class. Two such surfaces S;S 0 are joined by
an edge if they can be isotoped such that a lift of M nS 0 to the infinite cyclic cover of
M associated to ˛ intersects exactly two lifts of M nS .

Remark 1.3 Using this definition, MS.L/ is MS
�
S3 n intN .L/; @R; ŒR�

�
, where R

is any Seifert surface for L.

Published: 17 May 2011 DOI: 10.2140/agt.2011.11.1445



1446 Jessica E Banks

Viewing MS.L/ in terms of the infinite cyclic cover of its complement in this way has
proved especially useful when considering questions about distances in MS.L/. In
particular, the following results are proved using this viewpoint.

Theorem 1.4 (Kakimizu [5, Theorem A]) Let L be a non-split link. Then MS.L/
is connected.

Theorem 1.5 (Sakuma and Shackleton [8, Theorem 1.1]) Let K be a knot in S3 that
is not a satellite. Then the diameter of MS.K/ is bounded above by 2g.K/.3g.K/�

2/C 1, where g.K/ denotes the genus of K .

Theorem 1.6 (Przytycki and Schultens [6, Theorem 1.1]) If M; ; ˛ are as above,
MS.M; ; ˛/ is contractible.

It is known that any knot that is not a satellite has only finitely many minimal genus
Seifert surfaces (see, for example, Eisner [2, page 329]). Contrasting with this and
Theorem 1.5, Kakimizu has shown [5, Theorem B] that there are knots K such that
MS.K/ has infinite diameter. Przytycki and Schultens raise the question of whether
the complex MS.M; ; ˛/ can be locally infinite. In Section 2 we give an example that
answers this question with the following result.

Theorem 1.7 MS can be locally infinite even for a knot.

In Section 3 we prove the following condition on the types of links that might have a
locally infinite Kakimizu complex, under the additional assumption that all minimal
genus Seifert surfaces for the link are connected. Note that such a link cannot be split.

Theorem 1.8 Let L be an oriented link such that every minimal genus Seifert surface
for L is connected. If MS.L/ is locally infinite then L is a satellite of either a torus
knot, a cable knot or a connected sum, with winding number 0.

This, in particular, includes all links with non-zero Alexander polynomial.

I wish to thank Marc Lackenby for helpful conversations, particularly with regard to
the proof of Theorem 1.8.
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2 A knot with locally infinite MS

Definition 2.1 (Przytycki and Schultens [6, Section 3]) Let M be a connected 3–
manifold, and let S;S 0 be (possibly disconnected) surfaces properly embedded in M

in general position. S and S 0 bound a product region if the following holds. There is
a compact surface T , a finite collection � � @T of arcs and simple closed curves and
an embedding of T � D .T � I/=� into M with the following properties.

� T � f0g D S \T � and T � f1g D S 0\T � .

� @T � n .T � @I/� @M .

Here � collapses x � I to a point for each x 2 � . Say S and S 0 have simplified
intersection if they do not bound a product region.

Proposition 2.2 (see Sakuma [7, Proposition 4.8(2)]) Let M be a @–irreducible
Haken manifold. Let S;S 0 be incompressible, @–incompressible surfaces properly
embedded in M in general position. Suppose S \S 0 ¤∅, but S can be isotoped to
be disjoint from S 0 . Then there is a product region between S and S 0 .

Theorem 2.3 Let K˛ be the twisted Whitehead double of the trefoil shown in Figure 1.
Then MS.K˛/ is not locally finite.

Figure 1

Proof Let R be the genus 1 Seifert surface for K˛ shown in Figure 1 (note that every
Whitehead double has such a Seifert surface). We construct an infinite family of genus
1 Seifert surfaces for K˛ that are disjoint from R.

Let M D S3 n intN .K˛/. Let T be the torus that bounds the trefoil knot companion
of K˛ , such that K˛ lies in the solid torus bounded by T . In addition, let M1 be the
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part of M outside of T as drawn in Figure 2 (that is, the side away from the knot),
and M0 the part on the inside. Let � be a meridian of T � S3 . There is a Möbius
band properly embedded in M1 , the boundary of which is a longitude � of the solid
torus bounded by T . Then � and � are as shown in Figure 2. Let S1 be the annulus

�

�

Figure 2

properly embedded in M1 that is contained in the boundary of a regular neighbourhood
of this Möbius band in M1 . Then @S1 is two copies of �, with opposite orientations.
Let ST be one of the two annuli into which T is divided by @S1 .

R is a plumbing of two annuli S0 and S 0
0

in M0 , where S0 is parallel to ST in
S3 n int.M1/. Isotope R in M so that R\T D ST , keeping @R fixed. Let R0 be
the Seifert surface for K˛ given by removing ST from R and replacing it with S1 .
Then jR0\T j D 2. In addition, R0 can be made disjoint from R.

Express a regular neighbourhood N .T / of T as S1�I�S1 , where S1�f
1
2
g�f1gD�

and f1g � f1
2
g �S1 D �, and let S be the annulus S1 � I� f1g. Let  WS ! S be a

Dehn twist. Define ‰WS3 nN .K˛/! S3 nN .K˛/ by

‰.x/D

(
. .y/; z/ if x D .y; z/ 2 S �S1 DN .T /
x else.

For n 2Z let RnD‰
n.R0/. Then, for each n, Rn is a minimal genus Seifert surface

for K˛ that can be made disjoint from R. It remains to show that Rn ¤ R and
Rn ¤Rm for m¤ n when viewed as vertices of MS.K˛/.

Fix n 2 Z. To show that Rn ¤ R we will show that Rn cannot be made disjoint
from T . In this case we may assume n D 0. First note that M is @–irreducible,
R0 and T are incompressible, and T is obviously @–incompressible. R0 is also
@–incompressible as it is orientable, incompressible and not @–parallel and @M is a
torus. M n intN .R0 [ T / has three components. One of these is M0 n intN .R0/.
This is not a product manifold between R0 and T since R0 meets K˛ in M0 whereas
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T does not. The other two components lie in M1 . One is homeomorphic as a sutured
manifold to that shown in Figure 3, and the other is homeomorphic to its complement.
Neither of these is a product manifold. By Proposition 2.2, Rn cannot be isotoped to
be disjoint from T .

Figure 3

Now fix m 2 Z. Again we may assume nD 0. Let R0
0

be a copy of R0 , isotoped to
be disjoint from R0 (except along its boundary). Then R0m D‰m.R0

0
/ is isotopic to

Rm . Figure 4 shows a cross-section of N .T / in the case mD 2, where K˛ lies on

R0

R0
m

MT

M 0
1;a

M1;a

M1;b M1;b

M0;a

M0;a

M0;bM0;b

Figure 4

the inside of T as shown. The components of M n .R0 [R0m/ are of five types, as
marked. Outside N .T /, those marked M0;b and M1;b are each part of the parallel
region between R0 and R0

0
. It is therefore clear that neither of M0;b;M1;b is a product

region as they each have disconnected intersection with R0 . For the same reason, the
components of the same type as MT are not product regions, and neither is M0;a . The
manifolds M1;a and M 0

1;a
are sutured manifolds and are the same as the components
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of M n .R0 [ T / in M1 . Hence, again by applying Proposition 2.2, we see that
R0 ¤Rm .

Thus MS.K˛/ is locally infinite at R.

Remark 2.4 In [4], Kakimizu constructs incompressible Seifert surfaces for a White-
head double of a knot K using two copies of a Seifert surface for K . Although
expressed differently, the above construction is very similar to that used by Kakimizu,
with the two Seifert surfaces replaced by the annulus S 0 .

3 A restriction on links with locally infinite MS

In this section we prove Theorem 1.8. Our proof relies heavily on the work of Wilson
in [9], to which we refer the reader for definitions not given here. We will also need
the following proposition.

Proposition 3.1 (Burde and Zieschang [1, 15.26]) Let K be a knot, and let M D

S3 n intN .K/. Suppose there is an annulus S properly embedded in M that is not
@–parallel. If neither component of @S bounds a disc in @M then K is a torus knot, a
cable knot, or a connected sum.

Definition 3.2 A compact surface S embedded in S3 with no closed components is
a spanning surface for an unoriented link L if @S DL. We will call S an unoriented
Seifert surface for L if S is orientable.

Remark 3.3 An unoriented Seifert surface R for an unoriented link L, together with
a fixed orientation on R, is a Seifert surface for L with the orientation induced by R.

Definition 3.4 Let S be a normal surface in a triangulated 3–manifold. Its weight is
the number of times it meets the 1–skeleton of the triangulation. Call S minimal if it
has minimal weight among normal surfaces isotopic to S by an isotopy fixing @S .

Definition 3.5 Let ‘C’ denote the usual addition on normal surfaces. Given normal
surfaces S;S1;S2 with S D S1CS2 , say that S1 and S2 are in reduced form if they
have been isotoped to minimise jS1\S2j while maintaining the equation S DS1CS2 .

In [9], Wilson states the following.
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Theorem 3.6 (Wilson [9, Main Theorem 1.1]) Let K be a non-trivial knot, and let
M D S3 nN .K/. Then there is a finite set fR1; : : : ;Rmg of incompressible Seifert
surfaces for K and a finite set fS1; : : : ;Sng of closed surfaces in M that are not
boundary parallel such that any incompressible Seifert surface R is isotopic to a Haken
sum RDRi C a1S1C � � �C anSn , where a1; : : : ; an are non-negative integers.

The surfaces R1; : : : ;Rm that arise from Wilson’s proof are spanning surfaces for K .
However, he does not consider the orientability of these surfaces, which is necessary to
conclude, as he does, that they are in fact Seifert surfaces. With some further work it
can be shown that it is possible to require these surfaces to be orientable. We will not
need this.

It is also worth noting the nature of the isotopy referred to in Theorem 3.6. In his proof,
Wilson isotopes the chosen Seifert surface R into normal form based on the following
lemma.

Lemma 3.7 (Wilson [9, Lemma 3.3]) Let K be a knot, let M D S3 nN .K/ and let
R be an incompressible Seifert surface for K in M . Suppose that M is triangulated,
and @R meets each 2–simplex of the triangulation in at most one normal arc. Then R

can be put into normal form by an isotopy fixing @R.

The proof of this lemma gives the stronger conclusion that the isotopy puts the surface
into minimal normal form. This is important because minimality is a key hypothesis of
Jaco and Oertel [3, Theorem 2.2], which is used in the proof of Theorem 3.6.

Aside from these points, Wilson’s proof is actually stronger than the statement of
Theorem 3.6 suggests. In particular, by following the proof with M the complement
of a minimal genus Seifert surface for a link, it gives the following.

Theorem 3.8 Let L be an oriented link such that every minimal genus Seifert surface
for L is connected. Let R be a minimal genus Seifert surface for L, let M D

S3 n intN .R/, and fix a set �1; : : : ; �k of core curves of the annuli @M \@N .L/, one
for each link component. There is a triangulation of M such that every Seifert surface
R0 for L disjoint from R can be put into normal form with @R0 D

Sk
iD1 �i .

Furthermore, there is a finite set fR1; : : : ;Rmg of surfaces in M with non-empty
boundary contained in

Sk
iD1 �i , and a finite set fS1; : : : ;Sng of closed surfaces in M ,

such that all these surfaces are incompressible and in normal form, and the following
holds. Any minimal genus Seifert surface R0 for L in M with @R0 D

Sk
iD1 �i and in

minimal normal form can be expressed as a1R1C � � �C amRmC b1S1C � � �C bnSn

for some ai ; bi 2 Z�0 .
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If L has more than one component, it is possible that, for a given j � m, @Rj is a
strict subset of

Sk
iD1 �i . However, only finitely many combinations of R1; : : : ;Rm

will yield the correct boundary. Hence we may assume that @Rj D
Sk

iD1 �i . ThenPm
iD1 ai D 1.

If K is an oriented knot, any unoriented Seifert surface for K can be oriented to make
it a Seifert surface. For a link L with more than one component this might not be the
case in general. The presence of the Seifert surface R for the oriented link L that is
disjoint from the spanning surfaces Ri allows us to say more in this case. Suppose that,
for some j , Rj cannot be oriented to make it a Seifert surface for L. Combining it
with R then gives a closed, non-orientable surface in S3 , which is not possible. Hence
each Ri is a Seifert surface for L.

Theorem 1.8 Let L be an oriented link such that every minimal genus Seifert surface
for L is connected. If MS.L/ is locally infinite then L is a satellite of either a torus
knot, a cable knot or a connected sum, with winding number 0.

Proof Let R be a minimal genus Seifert surface for L such that MS.L/ is locally
infinite at R. That is, there are infinitely many minimal genus Seifert surfaces for L that
can be made disjoint from R. Let M DS3 n intN .R/, and fix a set �1; : : : ; �k of core
curves of the annuli @M \ @N .L/, one for each link component. Then Theorem 3.8
applies. In addition, it is clear that none of the Ri is a disc and that, since R is
connected, M is irreducible.

By discarding surfaces if necessary, we may ensure that, for any j � n, the sets
fR1; : : : ;Rmg and fS1; : : : ;Sng n fSj g do not satisfy the conclusions of Theorem 3.8.
We may also assume that S1 has minimal genus among the Si . Let R0 be a minimal
genus Seifert surface in minimal normal form such that R0 DR1Cb1S1C� � �CbnSn

with b1 > 0, and set T DS1 . Let R�DR1C.b1�1/S1Cb2S2C� � �CbnSn , so that
R0DR�CT , and isotope R� and T into reduced form. Since the isotopy keeps @R0
fixed and T is closed, this will leave @R� unchanged. Then, by [3, Lemma 2.1], no
curve of R�\T bounds a disc in either R� or T . Note that although [3, Lemma 2.1]
is proved only for closed surfaces, the same proof works in this case because T is
closed.

Suppose that T is a 2–sphere. Then, after the isotopy, it must be disjoint from R� .
This contradicts that R0 is connected. Since there are infinitely many minimal genus
Seifert surfaces in minimal normal form in M , it follows that T is a torus.

Let M0 be the component of M n intN .T / containing @M , and M1 the other
component. The orientation that R0 inherits from L induces an orientation on each
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component of R0 \M0 and hence on each curve of R� \ T . Let � be a curve
on T that meets each curve of R� \ T once. Because T is disjoint from R, the
algebraic intersection �:R of � and R is 0. As ŒR0� D ŒR� in S3 n intN .L/, this
gives that �:R0 D 0, and so �:.R� \ T / D 0 on T . Therefore half the curves of
R�\T are oriented in one direction, and half are oriented in the other direction. In
particular, jR�\T j is even. Find adjacent curves with opposite orientations, and surger
R� along the subannulus of T between them. Repeating this to remove all curves
of R� \ T gives a new Seifert surface R00 for L, together with a closed, possibly
disconnected, surface S 00 . Note that R00�M0 and S 00 is orientable. As R0 is minimal
genus, �.R0/ � �.R00/ D �.R�/� �.S 00/ D �.R0/� �.T /� �.S 00/, so �.S 00/ � 0.
The components of .R� [T / n .R� \T / from which S 00 is constructed each have
boundary, and none of them is a disc. Therefore each of these components is an annulus,
and in particular this includes every component of R�\M1 .

Let S be one such annulus in M1 , and suppose it is parallel to a subannulus ST of T .
If there are other curves of R�\T in ST , they must also bound annuli parallel to T .
Hence we may assume R�\ int.ST /D∅. At each of the two boundary curves of ST ,
the cut-and-paste operation that creates R0 from R� and T might go one of two ways
(see Figure 5). If both join together S and ST then this creates a torus component of

T

M1

S

ST
R� or

M0

Figure 5

R0 , contradicting that R0 is connected. If both go the other way, we see that an isotopy
of R� and T could reduce R� \T without changing R0 , contradicting the choice
of R� and T . If only one joins the two annuli, an isotopy along the product region
reduces the weight of R0 , again giving a contradiction.
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Thus S is not @–parallel in M1 . Note that the part of S3 n intN .T / containing L is a
solid torus V . Let K be the core curve of V . Since R� V and T is incompressible,
L is a satellite of K with winding number 0. Because S is not parallel to T , the knot
K satisfies the hypotheses of Proposition 3.1.
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