Volume 11, issue 3 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Units of equivariant ring spectra

Rekha Santhanam

Algebraic & Geometric Topology 11 (2011) 1361–1403
Bibliography
1 M Ando, A J Blumberg, D Gepner, M J Hopkins, C Rezk, Units of ring spectra and Thom spectra arXiv:0810.4535
2 M Atiyah, G Segal, Twisted $K$–theory, Ukr. Mat. Visn. 1 (2004) 287 MR2172633
3 M Barr, C Wells, Toposes, triples and theories, Grund. der Math. Wissenschaften 278, Springer (1985) MR771116
4 A J Blumberg, Continuous functors as a model for the equivariant stable homotopy category, Algebr. Geom. Topol. 6 (2006) 2257 MR2286026
5 J Caruso, S Waner, An approximation theorem for equivariant loop spaces in the compact Lie case, Pacific J. Math. 117 (1985) 27 MR777436
6 S R Costenoble, J P May, S Waner, Equivariant orientation theory, from: "Equivariant stable homotopy theory and related areas (Stanford, CA, 2000)" (editor G Carlsson), Homology Homotopy Appl. 3 (2001) 265 MR1856029
7 S R Costenoble, S Waner, Fixed set systems of equivariant infinite loop spaces, Trans. Amer. Math. Soc. 326 (1991) 485 MR1012523
8 A D Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983) 275 MR690052
9 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monogr. 47, Amer. Math. Soc. (1997) MR1417719
10 D S Freed, M J Hopkins, C Teleman, Twisted equivariant $K$–theory with complex coefficients, J. Topol. 1 (2008) 16 MR2365650
11 P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003) MR1944041
12 A Kock, Monads on symmetric monoidal closed categories, Arch. Math. $($Basel$)$ 21 (1970) 1 MR0260825
13 M Lydakis, Smash products and $\Gamma$–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 311 MR1670245
14 M A Mandell, J P May, Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 159, no. 755, Amer. Math. Soc. (2002) MR1922205
15 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. $(3)$ 82 (2001) 441 MR1806878
16 J P May, $E_{\infty }$ spaces, group completions, and permutative categories, from: "New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972)" (editor G B Segal), London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press (1974) 61 MR0339152
17 J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Math. 577, Springer (1977) 268 MR0494077
18 J P May, Equivariant homotopy and cohomology theory, CBMS Regional Conf. Ser.in Math. 91, Conf. Board of the Math. Sciences (1996) MR1413302
19 J P May, Private communication (2009)
20 J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205 MR508885
21 C W Rezk, Spaces of algebra structures and cohomology of operads, PhD thesis, Massachusetts Institute of Technology (1996)
22 G Segal, Categories and cohomology theories, Topology 13 (1974) 293 MR0353298
23 K Shimakawa, Infinite loop $G$–spaces associated to monoidal $G$–graded categories, Publ. Res. Inst. Math. Sci. 25 (1989) 239 MR1003787
24 K Shimakawa, A note on $\Gamma_G$–spaces, Osaka J. Math. 28 (1991) 223 MR1132161