Volume 11, issue 3 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Surface links which are coverings over the standard torus

Inasa Nakamura

Algebraic & Geometric Topology 11 (2011) 1497–1540
Abstract

We introduce a new construction of a surface link in 4–space. We construct a surface link as a branched covering over the standard torus, which we call a torus-covering link. We show that a certain torus-covering T2–link is equivalent to the split union of spun T2–links and turned spun T2–links. We show that a certain torus-covering T2–link has a nonclassical link group. We give a certain class of ribbon torus-covering T2–links. We present the quandle cocycle invariant of a certain torus-covering T2–link obtained from a classical braid, by using the quandle cocycle invariants of the closure of the braid.

Keywords
surface link, $2$–dimensional braid, knot group, triple point number, quandle cocycle invariant
Mathematical Subject Classification 2000
Primary: 57Q45
Secondary: 57Q35
References
Publication
Received: 25 June 2009
Revised: 1 March 2011
Accepted: 2 March 2011
Published: 26 May 2011
Authors
Inasa Nakamura
Research Institute for Mathematical Sciences
Kyoto University
Oiwake-cho, Kitashirakawa, Sakyo-ku
Kyoto 606-8502
Japan