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Simplicial volume and fillings of hyperbolic manifolds

KOJI FUJIWARA

JASON FOX MANNING

Let M be a hyperbolic n–manifold whose cusps have torus cross-sections. In [8],
the authors constructed a variety of nonpositively and negatively curved spaces as
“2� –fillings” of M by replacing the cusps of M with compact “partial cones” of
their boundaries. These 2� –fillings are closed pseudomanifolds, and so have a
fundamental class. We show that the simplicial volume of any such 2� –filling is
positive, and bounded above by Vol.M /

vn
, where vn is the volume of a regular ideal

hyperbolic n–simplex. This result generalizes the fact that hyperbolic Dehn filling of
a 3–manifold does not increase hyperbolic volume.

In particular, we obtain information about the simplicial volumes of some 4–dimen-
sional homology spheres described by Ratcliffe and Tschantz, answering a question
of Belegradek and establishing the existence of 4–dimensional homology spheres
with positive simplicial volume.

20F65, 53C23

1 Introduction

Simplicial volume was defined for manifolds by Gromov in [11]. For an n–dimensional
closed manifold M of constant sectional curvature K D �1, the simplicial volume
kM k is proportional to the (Riemannian) volume Vol.M /, and the ratio is the volume of
a regular ideal hyperbolic n–simplex; in particular, it depends only on the dimension [11,
0.4]. More generally (see [11, 0.3, 0.5]) for constants a � b < 0, there is a constant
C D C.a; b; n/ > 1 so that if the sectional curvatures K satisfy a�K � b , then

(1) Vol.M /=C � kM k � C Vol.M /:

This note is motivated in part by the (apparently open) question:

Question 1.1 Fix v > 0, and let Mn;v be the set of (homotopy classes of) closed
n–manifolds whose sectional curvatures are all negative, and whose simplicial volume
is bounded above by v . Is Mn;v finite whenever n� 4?

Some comments, fixing n� 4 and v > 0:
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2238 K Fujiwara and J F Manning

� The set Mn;v contains only finitely many constant curvature manifolds, even up
to diffeomorphism. This follows from Wang’s finiteness theorem [30] together
with the proportionality of simplicial volume to hyperbolic volume for closed
manifolds (see, for example, Benedetti and Petronio [4, C.4]).

� Fix b > 0. The set Mn;v contains only finitely many diffeomorphism classes of
manifolds with sectional curvatures K pinched between �1 and b . Indeed, as
noted in the inequality (1), the curvature assumption �1�K � b < 0 together
with an upper bound on the simplicial volume gives an upper bound on the
volume (see [11, 0.3, 1.2]). On the other hand, the condition �1 � K < 0

together with the upper bound on the volume gives an upper bound on the
diameter (see Gromov [10, 1.2]) and a lower bound on the volume [10, 1.3 A].
Now, Cheeger’s finiteness theorem applies [10, 1.4].
Thus if there are infinitely many diffeomorphism types of closed n–manifolds of
bounded volume, with sectional curvatures � �1, there cannot be any uniform
lower bound on their sectional curvatures, so long as n� 4. So a negative answer
to Question 1.1 would have to involve manifolds without uniformly pinched
curvature. For n > 3 there do exist sequences of negatively curved manifolds
whose curvatures cannot be uniformly pinched. Gromov and Thurston [13, 0.5]
describe a sequence fVig of negatively curved closed manifolds which are i –fold
ramified covers of a fixed closed manifold V of constant negative curvature,
and show the curvatures of the Vi cannot be uniformly pinched. We remark that
such a sequence of ramified covers Vi must satisfy 0< ikV k � kVik, so it does
not imply a negative answer to Question 1.1.

� The sets M3;v are infinite for large enough v , even if one restricts to constant
curvature. This is because of Thurston’s hyperbolic Dehn surgery theorem, and
Thurston’s theorem (which we generalize in this note) that volume decreases
under hyperbolic Dehn filling.

It is easy to extend the definition of simplicial volume to closed pseudomanifolds. This
is explained in Section 2 (see also [31]). Pseudomanifold versions of the bounds in (1)
have been established by Yamaguchi [31, Theorem 0.2 and 0.5] as follows. First, if X

is an orientable n–dimensional, compact, geodesically complete (locally) CAT(�1)
pseudo-manifold, then

(2) Vol.X /�
�

.n� 1/!
kXk:

Yamaguchi conjectures that the factor of �
.n�1/!

in (2) can be replaced by the volume of
a regular ideal hyperbolic n–simplex. Second, if X is an n–dimensional compact ori-
entable geodesic space without boundary such that K ��1 in the sense of Alexandrov
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and X is “locally Lipschitz contractible”, then

kXk � n!.n� 1/nVol.X /;

where Vol.X / is the n–dimensional Hausdorff measure of X . Both bounds cannot be
applied at once except in the manifold setting, since upper and lower curvature bounds
can only coexist in a manifold. We do not use either bound in this paper, except in
Remark 1.11 below.

We do not answer Question 1.1, but we answer the analogous question for negatively
curved pseudomanifolds:

Question 1.2 Let n � 4. Fix v > 0, and let Pn;v be the set of (homotopy classes
of) closed locally CAT.�1/ n–pseudomanifolds whose simplicial volume is bounded
above by v . Is Pn;v finite?

Specifically, we apply a “Dehn filling” construction to give a negative answer to
Question 1.2.

Let M be a compact n–manifold with boundary a union of m tori, whose interior
V D Int.M / admits a complete hyperbolic metric of finite volume. Let SM ŠM be
a compact manifold obtained from V by removing horospherical neighborhoods of
the cusps. The manifold SM has m boundary components N1; : : : ;Nm , each of which
inherits a flat metric from the hyperbolic metric on Int.M /. In [8], we defined and
studied fillings of M , which are topological spaces obtained by gluing the product of
a torus with the cone on another torus to each boundary component of SM . Here is an
equivalent definition.

Definition 1.3 For each i 2 f1; : : : ;mg, let Ti <Ni be a ki –dimensional submanifold
which is totally geodesic in Ni . The .n�1/–torus Ni is foliated by parallel copies
of Ti , with leaf space Vi homeomorphic to an .n�1�ki/–dimensional torus. Let
hi W Ni ! Vi be the quotient map, and define M.T1; : : : ;Tm/ to be the quotient
SM = �, where x � x0 if hi.x/ D hi.x

0/ for some i . The space M.T1; : : : ;Tm/ is
called a filling of M . If all of the tori Ti have injectivity radius strictly larger than � ,
M.T1; : : : ;Tm/ is called a 2� –filling of M .

In case M is 3–dimensional, and each Ti is one-dimensional, fillings M.T1; : : : ;Tm/

are the same as ordinary Dehn fillings of M . In [8], we generalize work of Bleiler
and Hodgson [5], Schroeder [28] and Mosher and Sageev [23] (including the Gromov–
Thurston 2� Theorem) to prove:
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Theorem 1.4 (Fujiwara and Manning [8]) Let M be an n–dimensional hyperbolic
manifold as above. Every 2� –filling M.T1; : : : ;Tm/ of M admits a locally CAT.0/
metric, so the universal cover is CAT.0/ with isolated flats. If every Ti has dimension
at least n� 2, then M.T1; : : : ;Tm/ admits a locally CAT.�1/ metric.

Each filling of M is a closed pseudomanifold with singular set equal to a disjoint union
of tori of dimensions n� .1C dim.T1//; : : : n� .1C dim.Tm// (see Definition 2.1 for
these terms). In particular, its simplicial volume is well-defined (see Yamaguchi [31]).
The main result of the current paper is that these fillings have positive simplicial volume,
bounded above by the simplicial volume of M .

Theorem 1.5 Let M be a compact n–manifold with boundary a union of .n�1/–tori,
and suppose that V D Int.M / admits a complete hyperbolic metric of finite volume
Vol.V /. Let M.T1; : : : ;Tm/ be a 2� –filling of Int.M /. Then

0< kM.T1; : : : ;Tm/k �
Vol.V /
vn

;

where vn is the volume of a regular ideal hyperbolic n–simplex.

Corollary 1.6 The answer to Question 1.2 is “no,” for v equal to the volume of any
hyperbolic n–manifold with torus cusps.

Proof Let M , SM , N1; : : : ;Nm be as in the discussion preceding Definition 1.3. For
each j 2 f1; : : : ;mg, choose a sequence

˚
T

j
i

	
i2N of totally geodesic codimension 1

tori in Nj , all with inj> � , and so that limi!1 inj
�
T

j
i

�
D1. Let Mi be the filling

M.T 1
i ; : : : ;T

m
i /. [8, Proposition 2.12] implies that for any i only finitely many Mj

have fundamental group isomorphic to �1Mi , so the set fMigi2N contains infinitely
many homotopy classes. Theorem 1.4 implies that 0< kMik �

Vol.V /
vn

for all i .

Remark 1.7 In [27], Ratcliffe and Tschantz describe some nonpositively curved 4–
dimensional homology spheres. These homology spheres are obtained by 2� –filling
of a cusped hyperbolic manifold described by Ivanšić in [18]. They seem to be the first
exmples of 4–dimensional homology spheres with Riemannian metrics of non-positive
sectional curvature (see Nabutovsky and Weinberger [24, paragraph after Remark 5]).
Belegradek in [3] asked if these homology spheres have positive simplicial volume. Our
main theorem answers this question affirmatively, but the main part of our argument
is to do with the upper bound on simplicial volume. The reader primarily interested
in positivity of simplicial volume can stop with Section 2.1. In particular, we answer
Belegradek’s question with Corollary 2.5 at the end of that subsection.
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It would be interesting to get some further information on the possible volumes of
fillings of M . Hyperbolic Dehn filling of a 3–manifold strictly decreases volume, and
the volume difference goes to zero as the length of the filling slope goes to infinity (see
Thurston [29, 6.5.6] for strictness and Neumann–Zagier [25], Hodgson–Kerckhoff [16]
and Futer–Kalfagianni–Purcell [9] for estimates of the difference). We conjecture that
similar phenomena hold in higher dimensions.

Conjecture 1.8 The volumes kM.T1; : : : ;Tm/k accumulate on Vol.V /
vn

but do not
attain it.

Question 1.9 Let � > 0. Is there some R so that if every torus Ti has injectivity
radius bigger than R, then

Vol.V /
vn

� � < kM.T1; : : : ;Tm/k<
Vol.V /
vn

?

Question 1.10 Consider the set of fundamental groups of 2� –fillings of M as a
subspace of the space of “marked groups” generated by some fixed set of generators of
�1M . Is the simplicial volume a continuous function on this space?

Remark 1.11 It is possible to analyze the metrics we constructed in [8] and apply
Yamaguchi’s inequality (2) to deduce that the CAT.�1/ fillings of a fixed M have
simplicial volume bounded away from zero, but this is about all we know for certain.

1.1 Outline

In Section 2.1 we recall the definition of simplicial volume for manifolds and pseudo-
manifolds, and apply work of Mineyev–Yaman to obtain the lower bound in the main
theorem. Section 2.2 and Appendix B are technical sections concerned with replacing
singular chains by “symmetric” singular chains. The upper bound of the main theorem
is proved in Section 3. In Appendix A we give a proof of the proportionality of volume
and relative simplicial volume for cusped hyperbolic manifolds.

2 Simplicial volume and duality

In this section we recall the definition of simplicial volume for pseudomanifolds and
set up some computational tools.
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2.1 Gromov norms

Let X be any space, and let ! 2 H�.X IR/ or ! 2 H�.X;Y IR/ for some Y � X .
The Gromov norm of ! is the smallest l1 –norm of a real singular chain representing
! ,

k!k D inf
� kX

iD1

j˛i j

ˇ̌̌̌ � kX
iD1

˛i�i

�
D !

�
:

(Since this infimum may be zero, the “Gromov norm” is only a seminorm in general.)
This quantity only depends on ! and the homotopy type of the pair .X;Y /. In the
absolute case, we can use it to define the Gromov norm of any ! 2H�.G/, where G

is a discrete group, by choosing X to be a K.G; 1/.

If ! is an integral cycle and � is the canonical map from integral to real homology,
then we set k!k D k�.!/k.

The Gromov norm of a cycle can be computed via the pairing between bounded
cohomology and l1 homology: If ! 2Hk.X / and H k

b
.X IR/ is the k –dimensional

bounded cohomology of X , then

(3) k!k D sup
��

1

k�k1

ˇ̌̌̌
� 2H k

b .X IR/; h�; !i D 1

�
[f0g

�
:

See Benedetti and Petronio [4, Proposition F.2.2] for a proof.

For M a closed orientable n–manifold, Gromov defined the simplicial volume kM k
to be the Gromov norm of the fundamental class in Hn.M IR/. For a manifold with
boundary, it is natural to define kM; @M k to be the Gromov norm of the fundamental
class in Hn.M; @M IR/. It is clear from the definition that this volume only depends
on the homotopy type of .M; @M /. For closed hyperbolic manifolds the simplicial
volume is proportional to the volume. More generally, if M is compact, and the interior
of M admits a complete finite volume hyperbolic metric of volume Vol, then

kM; @M k D
1

vn
Vol;

where vn is the volume of a hyperbolic regular ideal simplex of dimension n. (See [4,
C.4] for the closed case; we show how to extend to the finite volume case in Appendix A.)

In [31], Yamaguchi extended the notion of simplicial volume to orientable pseudoman-
ifolds, defined as follows.

Definition 2.1 (Yamaguchi [31, Definition 2.1]) A locally compact, Hausdorff, lo-
cally homologically n–connected space X is called an oriented n–pseudomanifold if
it contains a closed subset S (the singular set) so that:
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(i) X XS is an orientable n–manifold,

(ii) dim.S/� n� 1, and

(iii) dim.S \X XS/� n� 2.

Remark 2.2 In this definition, we allow the possibility that S is not “really” singular.
For example, X could be a manifold and S a codimension 2 submanifold. This is
important in applying Proposition 2.3 to 2� –fillings which happen to be manifolds, as
in Corollary 2.5 below.

In [31, Proposition 2.2], Yamaguchi shows that an oriented n–pseudomanifold X

has a fundamental class ŒX � in Hn.X /DHn.�1.X // so that the orientation cocycle
ˇ 2H n.X / is dual to this class. For such a pseudomanifold X , the simplicial volume
of X is defined to be the Gromov norm of ŒX �, and written kXk.

If X is compact with CAT.�1/ universal cover, then X is aspherical and �1.X / is
(word) hyperbolic (see Gromov [12]). In this case the orientation cocycle is cohomolo-
gous to a bounded cocycle by the main theorem of the paper [21] by Mineyev, and so
kXk> 0 by the duality equation (3).

If X is compact and the universal cover is CAT.0/ with isolated flats, then X is again
aspherical, but �1.X / is only relatively hyperbolic, relative to fundamental groups
of images of flats in X (see Hruska and Kleiner [17]). In this case, we will need the
following corollary of a theorem of Mineyev–Yaman:

Proposition 2.3 Let M be a closed orientable aspherical n–dimensional pseudoman-
ifold with singular set V �M which is a disjoint union of aspherical components
V D[m

iD1
Vi . Suppose that �1.M / is hyperbolic relative to the collection of subgroups

f�1.Vi/ j i 2 f1; : : : ; ngg. Then kM k> 0.

Proof The inclusion of pairs .M;∅/! .M;V / gives a natural map

H n.M;V IR/!H n.M IR/:

Since dim.V \M XV /� n� 2, the Mayer–Vietoris exact sequence shows this map
to be an isomorphism (see Yamaguchi [31, Proposition 2.2]). The main result of
Mineyev–Yaman [22] implies that the map

H n
b

�
�1.M /; f�1.Vi/g

m
iD1IR

�
!H n

�
�1.M /; f�1.Vi/g

m
iD1IR

�
is surjective, since �1.M / is hyperbolic relative to the fundamental groups of the
components of V . Since M and the components of V are aspherical, this is the same
as saying that the map

(4) H n
b .M;V IR/!H n.M;V IR/DH n.M IR/
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is surjective. It follows that the orientation cocycle of M is cohomologous to a bounded
cocycle ˛ . (The cocycle moreover can be chosen to vanish on chains in V , but we
don’t use this.) Equation (3) gives kM k � 1

k˛k1
> 0.

Applying Theorem 1.4, we immediately obtain the lower bound of Theorem 1.5.

Corollary 2.4 If M.T1; : : : ;Tm/ is a 2� –filling as in Theorem 1.5, then

kM.T1; : : : ;Tm/k> 0:

The special case of nonpositively curved manifolds obtained by 2� –filling of �
4–dimensional hyperbolic manifolds has been studied before us by Schroeder [28],
Anderson [1] and others. Ivanšić describes in [18] a particular cusped hyperbolic
manifold which is the complement of five linked 2–tori in the 4–sphere. Ratcliffe
and Tschantz point out in [27] that appropriately chosen 2� –fillings of this hyperbolic
manifold are homology 4–spheres. In [3, Question 7.2], Belegradek asked if such
fillings have positive simplicial volume. As a special case of Corollary 2.4 above, we
give an affirmative answer.

Corollary 2.5 Every manifold obtained by 2� –filling of an orientable hyperbolic n–
manifold with torus cusps has positive simplicial volume. In particular, the aspherical
homology 4–spheres constructed by Ratcliffe and Tschantz have positive simplicial
volume.

Theorem 1.5 gives further information (an upper bound) on the simplicial volume.

2.2 Symmetrization

It will be convenient in the arguments of Section 3 to assume that all chains considered
are symmetric. Here we say what this means and justify the assumption.

Consider the abstract n–simplex �n . The symmetric group SnC1 acts in an obvious
way on the vertices, and any permutation p 2 SnC1 extends to �n as an affine
transformation.

Let X be some space. Any singular simplex � W �n!X can be altered by precom-
position with some p 2 SnC1 and the singular simplices � and � ıp are generally
different, though if p is an odd permutation and q is an even one (so sgn.p/D �1

and sgn.q/D 1), we’d really like to think of � ıp as being the same as � ı q or � ,
just with opposite orientation. We would also like to avoid the annoying bookkeeping
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which is standard when dealing with simplices. We therefore define the symmetrization
map

S W C�.X IR/! C�.X IR/

on singular n–simplices � by

(5) S.�/D
1

.nC 1/!

X
p2SnC1

sgn.p/ .� ıp/ ;

and extend linearly over C�.X IR/.

Lemma 2.6 S is a chain map, chain homotopic to the identity. Moreover kS.c/k1 �
kck1 for any chain c .

Proof It is evident that norm does not increase. The chain homotopy is described in
Appendix B.

Define C S
� .X IR/ to be the subcomplex of C�.X IR/ consisting of chains in the image

of S ; the transformation S restricts to the identity on this subcomplex. Lemma 2.6 im-
plies that in computing Gromov norms, we may as well restrict attention to C S

� .X IR/.

Suppose X has the structure of a simplicial complex (or more generally just a CW
complex so that each cell is a simplex, and so that each restriction of a gluing map to a
face is affine) with triangulation T .

Definition 2.7 We call a singular simplex � W �n ! X affine if � D � ı a where
aW �n!�k is some affine surjection taking vertices to vertices, and � is the charac-
teristic map of some k –simplex of T . A linear combination of affine simplices is an
affine chain, and so on.

Remark 2.8 There is a nice inclusion

CT
� .X IR/

i
�! C S

� .X IR/

of simplicial chains CT
� .X IR/ given by sending a simplex of X to the symmetrization

of its characteristic map. This gives a way to think of simplicial chains as symmetric
affine singular chains.

In fact, the image of the map i from Remark 2.8 contains all of the symmetric affine
simplices; the symmetrization of an affine simplex which drops dimension must vanish:
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Lemma 2.9 Let X have a triangulation T , and suppose that � is an affine singular
n–simplex with image in the .n�1/–skeleton of X . Then S.�/D 0.

Proof Since � has image in the .n�1/–skeleton, there must be a pair of vertices
fvi ; vj g of the standard simplex �n which are identified by � . Let p be a permutation
of the vertices of �n , and let � be the transposition switching vi and vj . The maps
� ıp and � ı � ıp are the same as singular simplices, but the permutations p and
� ıp have opposite signs, so the terms sgn.p/.� ıp/ and sgn.ø ı p/.� ı �p/ cancel
in the sum (5).

3 Main result

In this section we prove the main result, Theorem 1.5. The strategy is to modify an
efficient relative fundamental cycle for .M; @M / to a fundamental cycle on the filling,
without increasing norm by too much.

Lemma 3.1 Let X be a topological space. Let c 2 Cn.X IR/ be homologous to a
rational chain, and let � > 0. Then there is some c0 2 Cn.X IQ/ homologous to c so
that kc0� ck1 < � . If c is symmetric, c0 can be chosen to be symmetric.

Proof By assumption, there is some f 2 CnC1.X IR/ so that cC @f 2 Cn.X IQ/.
Since CnC1.X IQ/ is dense in CnC1.X IR/, there is some f 0 2 CnC1.X IQ/ with
kf �f 0k< �

nC2
. The chain c0D cC@.f �f 0/ satisfies kc0�ck< � , since k@nC1kD

nC 2.

If c is symmetric, we can take f and f 0 to be symmetric in the above argument, and
it will follow that c0 is symmetric.

Definition 3.2 Let T be a finite triangulation of a space X , and let T 0 be its barycen-
tric subdivision. The (closed) star neighborhood of a simplex � of T is the union
of those simplices of the subdivision T 0 intersecting � . A point in the interior of an
n–simplex of X lies in at least one closed star neighborhood of a vertex, and in at
most nC 1 such closed stars.

The open star neighborhood of a simplex is the interior of its star neighborhood. (So
the open star neighborhood of a simplex does not include its proper faces.) The open
star neighborhoods of the simplices of T form an open cover of X .

Let � W �n! X be a singular simplex. We say � is small with respect to T if the
image of � is contained entirely in the open star of some vertex of T 0 .

A singular chain will be called small if all its simplices are small.
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Given an order on the vertices of T there is a canonical way to homotope a small chain
to an affine chain, as we describe in the next lemma.

Lemma 3.3 Let X be a space with a (combinatorial) triangulation T , and let <T be
a total order on the vertices of T . Canonically associated to any small singular simplex
� W �n!X are

(1) a “straightened” affine simplex a.�/, and

(2) a homotopy ft .�/ so that f0.�/D � and f1.�/D a.�/,

so that if F is a face of �n , then a.� jF / D a.�/jF and ft .� jF / D ft .�/jF . (In
other words, homotopies on a face depend only on that face, so a cycle remains a cycle
throughout the homotopy.) Moreover, if � is invariant under precomposition with an
affine map � , so are a.�/ and ft .�/.

Proof The idea is illustrated quite well by the figure given in Thurston’s notes [29,
Proposition 6.5.1]. We give a little more detail. (The figure given there is not of a
combinatorial triangulation. In that case a total order on the “corners” of the simplices
must be given, rather than on the vertices. We avoid this complication here by assuming
a combinatorial triangulation.)

We begin by defining the straightening a.�/. For x 2 X define n.x/ to be the least
vertex v of T so that x is in the closed star neighborhood of v . Let fv0; : : : ; vng

be the vertices of the standard simplex �n . Since � is small, the image of � lies in
the open star neighborhood of some simplex � of T . (In fact there may be several
choices for � , but the maps a.�/ and ft .�/ we define will not depend on the choice.)
It follows that n.�.vi// is a vertex of � for each i . We define a.�/.vi/D n.�.vi//

and then extend to an affine map a.�/W �n! � . It is clear that if F is a face of �n

we have a.� jF /D a.�/jF .

We now must define the homotopies ft .�/. For each x 2 �n , we let �.x/ be the
unique simplex of T so that

(1) �.x/ 2 �.x/, and

(2) �.x/ has minimal dimension subject to (1).

Since �.x/ lies in the open star neighborhood of � , the simplex � is a face of �.x/.
Thus both �.x/ and a.�/.x/ lie in �.x/. Convex combination is well-defined for
points in the same simplex, so we may take, for t 2 Œ0; 1�,

ft .�/.x/D .1� t/�.x/C t a.�/.x/:
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The reader may check that ft is well-defined, continuous, and satisfies the property
ft .� jF /D ft .�/jF for each face F of �n .

Finally, we note that if � is some affine map from �n to itself so that � ı � D � , then
a.� ı �/D a.�/ and therefore ft .� ı �/D ft .�/ for all t .

Lemma 3.4 Let N be a manifold, and let T be a triangulation of @N . If c2Ck.N IR/
is a relative singular cycle in .N; @N / so that @c is small with respect to T , then c

is (relatively) homologous to c0 with kc0k1 � kck1 and @c0 an affine chain. If c was
symmetric, then so is c0 .

Proof The chain c is a finite linear combination cD
Pm0

iD1 �i�i of singular simplices
�i W �

k ! N . The idea is to “preassemble” the simplices to get a map �W Kc ! N

from a certain CW complex Kc , so that c is �] of a linear combination of characteristic
maps. We can use Lemma 3.3 to homotope the “boundary” of Kc to a simplicial map,
and then apply the homotopy extension property of CW pairs.

More precisely, let J Df1; : : :m0g=�, where i � j if �iD�j ıq for some permutation
q . We define

(6) Kc D

� a
Œi�2J

�k
Œi�

��
�

where x1�x2 whenever there are .k�1/–dimensional faces F1��
k
Œi1�

and F2��
k
Œi2�

satisfying

(1) xj 2 Fi for j 2 f1; 2g, and

(2) there is an affine map � W F1! F2 so that �.x1/D x2 and �i1
jF1 D �i2

ı � .

That is, if two singular simplices agree on a codimension 1 face, we glue the corre-
sponding faces together in Kc . Moreover, if a codimension 1 face is unchanged by
precomposing with some isometry, we identify the face to itself by the corresponding
symmetry. We thus obtain a CW complex Kc and a map �W Kc ! N given by
�.x/D �i.x/ where x 2�k

Œi�
. In the complex Kc we can canonically build a chain zc

made up of “characteristic maps” �k
Œi�
!Kc so that

c D �].zc/:

If c was symmetric, then so is zc .

The boundary @zc is supported in some minimal subcomplex of Kc , which we’ll refer
to as @Kc . Because c is a relative cycle, the map � described in the last paragraph is
really a map of pairs

�W .Kc ; @Kc/! .N; @N /:
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After fixing some total order on the simplices of T , Lemma 3.3 gives a homotopy in
@N of �j@Kc to a “simplicial” map  ; this map is simplicial in the sense that if F

is any face of one of the simplices �k
Œi�

used to define Kc , and if �F is the inclusion
map, then � ı �F is affine, with image in a single simplex of T .

By the homotopy extension property of CW pairs, the homotopy from �j@Kc to  
can be extended to all of Kc . Let

ˆt W Kc!N , t 2 Œ0; 1�

be this homotopy, with ˆ0 D � . The chain

c0 D .ˆ1/].zc/

has all the properties we want.

We need to show that tori can be triangulated so that every simplex of diameter much
smaller than the injectivity radius is small. Say that a triangulation of a torus is K–
fat if every singular simplex of diameter less than K is small with respect to that
triangulation.

Lemma 3.5 For each d � 1 there is a constant 0<Kd < 1 so that every flat torus of
dimension d with injectivity radius R has a .KdR/–fat triangulation with td D 2dd!

simplices.

Proof Let T be a flat d –torus, which we can think of as Rd=ƒ, where ƒ is some
rank d lattice. Every such lattice has a Lovász–reduced basis (see Lenstra, Lenstra and
Lovász [19]) BD fv1; : : : ; vdg. For k 2 f1; : : : ; dg define �k to be the angle made by
vk with the subspace of Rd spanned by the rest of the basis. Babai [2] showed that,
for all k ,

sin.�k/�

�p
2

3

�d

:

Any basis B of ƒ gives rise in a canonical way to a triangulation TB of T with td
simplices given by the first barycentric subdivision of the parallelepiped spanned by B .

Let V be the set of all ordered bases of lattices in Rd , topologized as a subset of
Rd2

, and let F W V ! RC be the function which sends B to the least real k so that
TB is k –fat. The number F.B/ is also the least number k so that triangulation of Rd

covering TB is k –fat. We note the following useful properties of F :

(1) F is continuous and positive everywhere on V .

(2) If � 2RC and B 2 V , then F.�B/D �F.B/.
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(3) If there is a length-decreasing map from B to B0 then F.B/� F.B0/.

Let U � V be the set of bases consisting of unit vectors, any two of which make
an angle � with sin.�/ �

�p
2

3

�d . Since U is compact, F takes some minimum,
positive value L on U . We will show that every torus of injectivity radius � 1=2 has
a triangulation which is L–fat. Linearity of F (property (2) above) then implies the
lemma for Kd D 2L.

Let T DRd=ƒ be a torus of injectivity radius at least 1=2. A Lovász-reduced basis
B D fv1; : : : ; vdg for ƒ has all angles between basis vectors within the interval�

sin�1
��p

2
3

�
d
�
; � � sin�1

��p
2

3

�
d
��
;

by Babai’s result. Since the injectivity radius of T is at least 1=2, there is a distance-
decreasing map from B to a basis in U , namely

B0 D
�

v1

kv1k
; : : : ;

vd

kvdk

�
:

Property (3) above tells us that F.B/� F.B0/�L, so the triangulation TB is L–fat,
and the proof of the lemma is completed.

Lemma 3.6 For each d � 1 and each s there is a constant K.d; s/ so that any
null-homologous real singular s–cycle z in a d –dimensional torus bounds a singular
.sC1/–chain c with

kck1 �K.d; s/kzk1

Proof We follow the proof of Thurston [29, Proposition 6.5.1],which discusses the
case d D sD 2. Let T be a d –dimensional torus, and let z be an s–cycle. Since there
are only finitely many singular simplices in z , their lifts to the universal cover Rd

have diameters bounded by some D > 0. Let Kd be the constant from Lemma 3.5,
and let zT

�
�! T be some cover of T with injectivity radius bigger than D=Kd . By

Lemma 3.5, there is a triangulation T of zT with td simplices so that if z� W �s! zT is
any lift of a singular simplex appearing in z , then z� is small with respect to T (in the
sense of Definition 3.2). The proof of Lemma 3.5 shows that the combinatorics of this
triangulation are independent of the particular chain z and the cover zT .

Write C�.X / for the real singular chain complex of X . There is a transfer map

transW C�.T IR/! C�. zT IR/

which sends any singular simplex to the average of its lifts. The map trans is an isometric
embedding with respect to the l1 norm. The map �]W C�. zT IR/! C�.T IR/ induced
by the covering is norm decreasing and .�] ı trans/ is the identity map.
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By the choice of zT and T , the chain trans.z/ is small. By Lemma 3.3, the simplices
of trans.z/ can be homotoped simultaneously and consistently to the affine singular
simplices making up the singular chain a.trans.z//. Triangulating this homotopy in a
standard way, we find that trans.z/� a.trans.z// bounds an .sC1/–chain c1 in T , so
that

kc1k1 � C1kzk1

for some constant C1 depending on the dimension s but otherwise independent of
z . The space of affine real singular s–boundaries B is finite dimensional, and only
depends on the combinatorics of the triangulation T .

The affine filling norm kbkfill on B is defined, for a boundary b 2B , to be the smallest
l1 –norm of an affine .sC1/–chain bounded by b . Let

C2.d; s/D sup fkbkfill j b 2 B and kbk1 D 1g ;

and note that C2.d; s/ only depends on the combinatorics of T .

The boundary a.trans.z// bounds an .sC1/–chain c2 in T of l1 –norm at most
C2.d; s/ka.trans.z//k1 � C2kzk1 . Thus we have

trans.z/D @.c1C c2/

and
z D �].@.c1C c2//D @.�].c1C c2//

and
k�].c1C c2/k1 � kc1C c2k1 � .C1.s/CC2.d; s// kzk1:

We now prove the main theorem.

Proof of Theorem 1.5 We suppose that M is a compact n–manifold with boundary
a union of tori, so that the interior admits a complete hyperbolic metric of finite volume.
We fix a 2� –filling M.T1; : : : ;Tm/. To prove the theorem we must show

0< kM.T1; : : : ;Tm/k �
Vol.V /
vn

;

where vn is the volume of a regular ideal hyperbolic n–simplex.

The lower bound follows from Mineyev–Yaman [22] and is given above in Corollary 2.4.

We now establish the upper bound. The strategy is to first choose a symmetric repre-
sentative c0 for the (relative) fundamental class of .M; @M / which is close to optimal,
and then modify it to obtain a fundamental class c0

0
for M.T1; : : : ;Tm/. If such a
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modification can be done in such a way that jc0
0
j1 is within some arbitrarily small

constant of kM; @M k, then we will have shown

kM.T1; : : : ;Tm/k � kM; @M k:

The first step is to pass to a rational cycle. Let � > 0. Let c0 2 Cn.M IR/ be a real
symmetric singular relative cycle representing ŒM; @M �, and satisfying

(7) kc0k1 < kM; @M kC �

By Lemma 3.1, there is a symmetric rational singular relative cycle c1 2 Cn.M IQ/
homologous to c0 with kc1� c0k1 < � .

We now pick a finite cover and triangulation of the boundary so that @c1 lifts to a chain
which is small with respect to that triangulation. Let tn�1 D 2n�1.n� 1/!.

Claim 3.7 We can choose a finite cover �M �
�!M and a triangulation T of @ �M

satisfying the conditions:

(1) The restriction of � to any component of @ �M has degree bigger than m=� ,
where m is the number of cusps of M .

(2) If transW C�.M IR/! C�. �M IR/ is the transfer map, then trans.@c1/ is small
with respect to T .

(3) Each boundary component of �M is triangulated by tn�1 .n�1/–simplices.

Proof The compact manifold M is homeomorphic to SM as described in the intro-
duction, a hyperbolic manifold minus a union of disjoint horospherical neighborhoods
of its cusps. We identify M with SM . Any simplex in the support of @c1 therefore lifts
to Hn . Only finitely many such simplices occur, so there some number r bounding
the diameter of any such lift. Residual finiteness of �1M implies that we can pass to a
finite cover �M !M so that

(1) Every boundary component of �M has injectivity radius bigger than r=Kn�1 ,
where Kn�1 is the constant from Lemma 3.5, and

(2) Every boundary component N of �M has area at least m=� times more than the
area of the component of @M covered by N .

Lemma 3.5 implies that @ �M admits an r –fat triangulation with tn�1 .n�1/–simplices
per component so that singular simplices lifted from @c are all small respect to this
triangulation.
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Let D be the degree of the cover coming from Claim 3.7. Since c1 is rational and
symmetric, trans.c1/ must also be rational and symmetric. In particular,

trans.c1/D
1

q
c2

for some integral symmetric chain c2 2 C S
�

� �M IZ� and some positive integer q .
Homologically Œc2� D

q
D

� �M ; @ �M �
in Hn

� �M ; @ �M IR�. Since transW C�.M IR/ !
C�
� �M IR� is isometric, kc2k1 D qkc1k1 .

Since trans.@c1/ is small with respect to T , the chain @c2 is also small with respect
to T . Using Lemma 3.4, we find a symmetric integral chain c3 with kc3k1 � kc2k1

so that c3 is (relatively) homologous to c2 and so that @c3 is an affine chain, that is,
@c3 2 C T

n�1

�
@ �M IZ�.

Let zN1; : : : ; zNp be the boundary components of �M . We have Œc3�D
q
D

� �M ; @ �M �
in

Hn

� �M ; @ �M �
and Œ@c3�D

q
D

Pp
iD1

�
zNi

�
in Hn�1

�
@ zM

�
.

The cycle @c3 is symmetric, affine and represents q
D

times the fundamental class of
@ zM . By Lemma 2.9, @c3 has no “degenerate” affine simplices in its support. It follows
that @c3 consists of exactly q

D
appropriately oriented copies of every .n�1/–simplex

in T .

Each of the p boundary components of �M is triangulated with exactly tn�1 simplices
of dimension n� 1. We therefore have

k@c3k1 D p tn�1

q

D
:

For each i between 1 and n, the i th boundary component of M is covered by pi

boundary components of �M , so that p D
P

i pi . The degrees of these components
are di1; : : : ; dipi

, and
P

j pij DD for each i . Since each dij �
m
�

, we get

D � pi
m

�
for all i;

which implies that mD � p m
�

, and so p � �D . We therefore obtain

k@c3k1 � �tn�1q:

Projecting c3 back down to M gives a chain c4 with Œc4� D qŒM; @M � in relative
homology, and with

kc4k1 � kc3k1 � kc2k1 D qkc1k1;

and with
k@c4k1 � k@c3k1 � �tn�1q:

Algebraic & Geometric Topology, Volume 11 (2011)



2254 K Fujiwara and J F Manning

Dividing by q we obtain a fundamental cycle c D 1
q
c4 for ŒM; @M � satisfying kck1 �

kM; @M kC 2� and k@ck1 � tn�1� .

Now we will take this relative cycle c for ŒM; @M �, and modify it to an honest cycle
in M.T1; : : : ;Tm/. We start by pushing it forward from M to M.T1; : : : ;Tm/ by a
map of pairs

hW .M; @M /! .M.T1; : : : ;Tm/;Z/;

where Z is the singular set of M.T1; : : : ;Tm/ and h is the quotient map described in
Definition 1.3. (Here we are implicitly identifying M with the space SM described
before Definition 1.3.) Let @h be h restricted to @M . The chain .@h/].@c/ is an .n�1/–
cycle in Z . Lemma 3.6 implies there is some K depending only on n so that .@h/].@c/
can be filled in Z with a n–chain c0 satisfying kc0k1 �Kk.@h/].@c/k1 �Ktn�1� . It
is easy to check that h]c � c0 is a fundamental cycle for M.T1; : : : ;Tm/. Moreover,
we have

kh]c � c0k1 � kM; @M kC .2CKtn�1/�:

Letting � tend to zero, we have established

kM.T1; : : : ;Tm/k � kM; @M k:

An application of the proportionality theorem for finite volume hyperbolic manifolds
(Theorem A.1) gives the upper bound

kM.T1; : : : ;Tm/k �
Vol.V /
vn

:

Appendix A A proportionality theorem

The purpose of this appendix is to establish the following proportionality theorem.

Theorem A.1 Let M be a manifold with boundary, so that the interior V of M

admits a complete hyperbolic metric of volume Vol.V / <1. Then

kM; @M k D
Vol.V /
vn

:

Thurston gives a proof in dimension 3 of a version of Theorem A.1 in his lecture
notes [29, 6.5.4], where the norm kM; @M k is replaced by one coming from measure
homology. There is a natural map from singular homology to measure homology,
which at least does not increase norm. Zastrow [32] and Hansen [15] independently
showed this map to be an isomorphism of vector spaces for any CW pair, leaving
open the question of whether it was an isometry. Löh [20] proved that the map from
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(absolute) singular homology to measure homology is an isometric isomorphism for
all connected CW complexes. Since it is not entirely clear whether measure homology
is isometric to singular homology in the relative case, we give a proof of Theorem A.1
which avoids measure homology. Such a proof can also be obtained as a special (and
simpler) case of the arguments in Frigerio–Pagliantini [7]. Some related ideas may be
found in Francaviglia [6].

Our proof of Theorem A.1 follows closely Benedetti and Petronio’s proof of [4, C.4],
which covers the case of @M D∅. As some parts of our proof are identical to steps
in [4], we refer to that text for some details. The proof in [4] uses ordinary real singular
chains, rather than symmetrized ones, so we do not symmetrize our chains here.

We use the following notation for parts of the manifold V : For I �R>0 , we let VI

be the subset of V consisting of points x 2 V where the injectivity radius inj.V;x/ is
in I .

Definition A.2 Let M be a Riemannian n–manifold, and let � W �n!M be a smooth
singular simplex. The algebraic volume of � , written algvol.�/ is the integral over
�n of the pullback of the volume form on M . The algebraic volume is extended to
smooth chains by linearity.

Obtaining the correct lower bound for simplicial volume is fairly easy.

Lemma A.3 kM; @M k � Vol.V /
vn

.

Proof This direction is Thurston’s “straightening” argument [29, 6.5.4]. For any
sufficiently small � > 0, the subset V.0;�� is an open neighborhood of the cusps of V .
Collapsing the components of V.0;�� to their boundaries gives a homotopy equivalence
of pairs .V;V.0;��/! .M; @M /. Since the Gromov norm of a (relative) homology
class is homotopy invariant, we can use chains .V;V.0;��/ to compute kM; @M k.

The straightening map (see Benedetti and Petronio [4] or Ratcliffe [26] for a precise
definition) is a chain map

strW C�.V /! C�.V /;

chain homotopic to the identity, and taking each singular simplex to a totally geodesic
simplex with the same vertices. The map str preserves the subspace C�.V.0;��/ (because
horoballs are convex), as does the chain homotopy between str and the identity, so str
induces a (norm-decreasing) chain homotopy equivalence of C�.V;V.0;��/ to itself. It
follows that we need only consider straight (and therefore smooth) chains.
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If z D
Pk

i �i�i is a real smooth chain representing the relative fundamental class
ŒV;V.0;���, then

algvol.z/D
kX
i

�i algvol.�i/:

The absolute value j algvol.z/j is at least as big as Vol.VŒ�;1//, the volume of the thick
part of V .

Let z� D
Pk

i �i�i be a straight real singular chain representing ŒV;V.0;��� which
�–nearly realizes kM; @M k, that is, so that

kz�k1 � kM; @M kC �:

We then have

(8) Vol.VŒ�;1//� j algvol.z�/j �
kX

iD1

j�i jvn D kz�k1vn � .kM; @M kC �/vn:

Letting � tend to zero in (8) yields the lemma.

It is worth noting that essentially the same proof establishes the bound of Lemma A.3
for measure cycles.

To obtain the upper bound for simplicial volume, we must construct chains representing
the fundamental class which are “close” to the smeared chains from measure homology.
The argument from [4] in the closed case uses rather strongly that there is a compact
(and therefore finite diameter) fundamental domain. We work around this by chopping
the fundamental domain into pieces of bounded diameter.

Proposition A.4 kM; @M k � Vol.V /
vn

Proof We suppose that V is an orientable finite volume hyperbolic n–manifold with
m cusps, homeomorphic to the interior of M . Let � < Isom.Hn/ be the fundamental
group of V , so that Hn=�DV . Let D be the closure of a convex fundamental domain
for the action of � on Hn , and let � W D! V be the quotient.

There is a number � > 0 so that V.0;�� has exactly m connected components for any
� � �. Let P0 � V be equal to V.�;1/ , and choose some x0 2 P0 . The complement
of P0 in V is a union of cusp neighborhoods C1; : : : ;Cn .

Let D0 D �
�1.P0/�D , and choose zx0 in the interior of D0 . Let x0 D �.zx0/ 2 P0 .

For each l 2N , and each j 2 f1; : : : ;mg, we let

Pj ;l D fx 2 V j l � 1� d.x;P0/� lg\Cj ;
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and let Dj ;l D �
�1.Pj ;l/�D . We will refer to any � –translate of D0 or Dj ;l as a

piece.

There is some d > 0 so that diam.D˛/ < d for every piece D˛ �Hn . For each l 2N
and each j 2 f1; : : : ;mg, choose zxj ;l in the interior of Dj ;l and let xj ;l D �.zxj ;l/.
The union of the � –orbits of zx0 and the zxj ;l can be identified in an obvious way with

y� WD � [ .� � f1; : : : ;mg �N/ :

(This is essentially the 0–skeleton of the “cusped space” of Groves and Manning [14]
associated to the pair

�
�; f�1.Cj /g

�
.) Vertices of y� have a depth associated to them:

The depth of an element of � is 0, and the depth of an element of � �f1; : : : ;mg�N
is given by the third coordinate. The group � acts on y� by left multiplication in an
obvious way, and this action preserves depth.

We let � be the quotient �ny�nC1 . For k > 0 an integer, let y�k �
y� be the subset of

vertices of depth at most k . Let z�k D
y�nC1

k
, and let �k �� be the set of � –orbits

in z�k .

For any element ! D Œ.y0; : : : ;yn/� 2�, there is a unique straight simplex

�! W �
n
! V

which is equal to the composition of a simplex z�! W �n!Hn satisfying z�!.vi/D yi

with the projection Hn! V . (Here vi is the i th vertex of the n–simplex �n .) As
in [4], we define

S.R/D f.u0; : : :un/ 2 .H
n/nC1

j d.ui ;uj /DR; for all i ¤ j g D SC.R/tS�.R/;

where SC and S� are those tuples which determine positively and negatively oriented
straight n–simplices in Hn , respectively. There is a measure on S.R/ coming from
Haar measure on Isom.Hn/, and we denote this measure by m. For

! D Œ.y0; : : : ;yn/� 2�;

and R> 0, we define

aC
R
.!/Dm .f.u0; : : : ;un/ 2 SC.R/ j ui and yi lie in the same pieceg/ , and

a�R.!/Dm .f.u0; : : : ;un/ 2 S�.R/ j ui and yi lie in the same pieceg/ :

Obviously these definitions do not depend on the choice of representative of ! . More-
over, for a given R and k , there are only finitely many ! 2�k for which aC

R
.!/ or

a�
R
.!/ is nonzero. (This is because there are only finitely many elements of y� which
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are distance approximately R from a given element of y� .) It follows that if we define
aR.!/ WD aC

R
.!/� a�

R
.!/, then

zR;k D

X
!2�k

aR.!/�!

is a finite real singular n–chain in V . Moreover, we claim that

(9) zR;1 D

X
!2�

aR.!/�!

is a locally finite real singular n–chain. Indeed, let p 2 V , and r > 0. We must show
only finitely many simplices in the support of zR;1 (that is, occurring in the sum (9)
with nonzero coefficient) intersect the ball of radius r about p . Let zp be any point in
��1.p/�D , and note that any simplex �! in the support of zR;1 must lift to one
which comes within r of zp , and whose vertices are therefore within RC 2d C r of
zp . As there are only finitely many such vertices, there are only finitely many such
simplices �! in the support of zR;1 .

Claim A.5 The chain zR;1 is a locally finite cycle.

Proof We have just argued that zR;1 is locally finite. The proof that zR;1 is a
cycle is nearly the same as the proof of [4, pages 115–116, Claim (ii)], except that
sums/unions over � are replaced by sums/unions over y� , and conditions of the form
“ui 2 
i.D/” are replaced by “ui 2D.i/” for appropriately chosen pieces D.i/.

For k 2N , let �.k/ be the smallest injectivity radius at any point in a piece of depth
at most k , that is,

�.k/D inf
n
inj.V;x/

ˇ̌̌
x 2 P0 or x 2

[˚
Pj ;l j j 2 f1; : : : ;mg; l � k

	o
:

It is not hard to see that as k!1, the quantity �.k/ tends to zero. In particular, there
is a constant C so that if k > C , then �.k/ < �.

Claim A.6 Let R > 0, and let C be such that �.k 0/ < � for all k 0 > C . If k >

RCC C 2d C 1, then zR;k is a relative cycle in .V;V.0;��/.

Proof Suppose an .n�1/–dimensional simplex � is in the support of @zR;k . By
Claim A.5, � must also be in the support of @.zR;1 � zR;k/, so any lift z� of � to
Hn must have a vertex mapped to y� X y�k . The diameter of the image of z� is at most
RC 2d . Thus the vertices lie in y� X y�k0 for k 0 D k �dRC 2de> C , and no part of
the image of z� lies in a translate of the “fat piece” D0 . Since �.k 0/ < �, � has image
in the part of V with injectivity radius less than �.
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Claim A.7 If R> 2d then aC
R
.!/ � a�

R
.!/D 0 for all ! 2�.

Proof This statement (and its proof) are identical to [4, pages 116–117, Claim (iii)].

Claim A.8 There is a quantity ı.R/ > 0 so that limR!1 ı.R/ D 0 and so that the
simplices in the support of zR;1 all have volume at least vn� ı.R/.

Proof This statement is a slight rephrasing of [4, page 117, Claim (iv)]. The proof is
the same.

Claim A.9 If R> 2d and aR.!/¤ 0, then aR.!/ algvol.�!/ > 0.

Proof See [4, page 117, Claim (v)]. Claim A.7 is used here.

Claim A.10 Suppose R > 2d CC and k > 2RC 1, where C is the constant from
Claim A.6. The classes ŒzR;1� 2H

lf
n .V IR/ and ŒzR;k � 2Hn.V;V.0;��IR/ are nontriv-

ial.

Proof See [4, page 117, Claim (vi)]. The point here is just that some element of
S.R/ is a tuple of interior points of pieces corresponding to some tuple ! , so that
there is an open (and therefore positive measure) neighborhood of tuples of points all
corresponding to the same tuple ! .

We now complete the proof of the Proposition. Suppose R>2dCC and kDd2ReC2.

It follows from Claim A.10 that there is some �> 0 so that �Œz1;R � is the fundamental
class in the locally finite homology group H

lf
n .V IR/ and some �0 so �0Œzk;R � is

the fundamental class in Hn.V;V.0;��IR/. In fact we must have �0 D �, since both
�Œz1;R � and �0Œzk;R � restrict to the orientation cycle at x0 , and the set of simplices
in the supports of zk;R and z1;R which intersect a small neighborhood of x0 is the
same.

It follows from Claim A.9 that algvol.zk;R/ � algvol.z1;R/. Moreover, an easy
argument shows that if c is a locally finite fundamental cycle for V , then Vol.V /D
algvol.c/. We therefore have

Vol.V /� algvol.�zk;R/

D

X
!2�k

�aR.!/ algvol.�!/

D

X
!2�k

�jaR.!/j � j algvol.�!/j by Claim A.9

� .vn� ı.R//
X
!2�k

�jaR.!/j by Claim A.8

D .vn� ı.R//k�zk;Rk1 � .vn� ı.R//kM; @M k;
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since �zk;R gives a representative for the fundamental class of .M; @M / via the
homotopy equivalence of pairs .V;V.0;��/! .M; @M /. Letting R tend to infinity,
Claim A.8 says that ı.R/ tends to zero, so we have

Vol.V /� vnkM; @M k;

and the proposition is proved.

Lemma A.3 and Proposition A.4 together immediately imply Theorem A.1.

Appendix B (Anti)Symmetrization of chains

In this section we prove that the chain map S defined in Section 2.2 is chain homotopic
to the identity.

We let �n denote the standard n–simplex, and begin by defining a “coning” operator
for all n and k

cnW Ck.�
n
IR/! CkC1.�

n
IR/:

We define cn on a singular k –simplex  W �k !�n and then extend by linearity. Let
�W �k !�kC1 be the affine map taking each vertex ei of �k to the vertex eiC1 of
�kC1 ; the vertex e0 is the only one missed by �. Each point in �kC1 is uniquely
expressible convex combination of some point in �.�k/ with e0 . Let mn be the
barycenter of �n , and define

cn. / .te0C .1� t/�.x//D tmnC .1� t/ .x/:

In words, cn. / is  coned to the barycenter mn . The key fact about cn is that for
any chain a 2 Ck.�

nIR/, we have

(10) @cn.a/D a� cn.@a/:

(In other words, cn is a chain contraction of C�.�
nIR/.)

We use the coning operator to inductively define an element �n 2 CnC1.�
nIR/, and,

for any space Y , a map

P .Y /
n W Cn.Y IR/! CnC1.Y IR/:

As in the definition of symmetrization, we abuse notation by using q 2 SnC1 to denote
the unique affine map from �n to itself which is equal to q when restricted to the
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vertices. We start with �0 D 0, and P0 D 0 for all Y . We may assume P
.�n/
n�1

has
been defined, and set

(11) �n D

�
1

jSnC1j

X
q2SnC1

sign.q/cn.q/

�
� cn.1�n/� cn

�
P
.�n/
n�1

.@1�n/
�
:

For any space Y , we define PnW Cn.Y IR/! CnC1.Y IR/ on simplices, and then
extend linearly; for �W �n! Y a singular n–simplex, define

(12) P .Y /
n .�/D �].�n/:

The maps P
.�/
n commute with continuous maps:

Lemma B.1 If f W X!Y is any continuous map, and n is an integer, then f]ıP
.X /
n D

P
.Y /
n ıf] .

Proof Since all the maps involved are linear, it suffices to verify this for a single
singular simplex �W �n!X . We have

.f] ıP .X /
n /.�/D f]�].�n/D .f ı�/].�n/D P .Y /

n .f ı�/D .P .Y /
n ıf]/.�/:

Lemma B.2 P
.X /
� as defined in equation (12) is a chain homotopy between S and

1C�.X IR/ .

Proof In this proof we’ll write P
.X /

k
as Pk .

It suffices to show that, for each n and each singular n–simplex � ,

@Pn.�/D S.�/�� �Pn�1.@�/:

For n D 0, this is immediate, so we suppose that n > 0 and argue inductively. We
compute from (12) and (10),

@Pn.�/D �]

�
1

jSnC1j

X
q2SnC1

sign.q/.q� cn.@q//

� 1�n C cn.@1�n/�Pn�1.@1�n/C cn@
�
P
.�n/
n�1

.@1�n/
��

By induction on n (and the fact that @2 D 0) we have

@P
.�n/
n�1

.@1�n/D S.@1�n/� @1�n ;
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so we can rewrite

@Pn.�/D �]

�
1

jSnC1j

X
q2SnC1

sign.q/.q� cn.@q//

� 1�n C cn.@1�n/�P
.�n/
n�1

.@1�n/C cn.S.@1�n/� @1�n/

�
D �]

�
S.1�n/� 1�n �P

.�n/
n�1

.@1�n/

C cn.S.@1�n//�
1

jSnC1j

X
q2SnC1

sign.q/cn.@q/

�

The last two terms exactly cancel because cn and @ are both linear, so

1

jSnC1j

X
q2SnC1

sign.q/cn.@q/D cn@

�
1

jSnC1j

X
q2SnC1

sign.q/q
�
D cn@S.1�n/

and, since S is a chain map, cn.@S.1�n//D cn.S.@1�n//. We therefore have

@Pn.�/D �]

�
S.1�n/� 1�n �P

.�n/
n�1

.@1�n/
�
:

We now invoke Lemma B.1, which implies that

�]

�
P
.�n/
n�1

.@1�n/
�
D Pn�1.@�/;

and so

@Pn.�/D S.�/�� �Pn�1.@�/:
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