Volume 11, issue 4 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Rational $\mathbb{Z}_p$–equivariant spectra

David Barnes

Algebraic & Geometric Topology 11 (2011) 2107–2135
Bibliography
1 D Barnes, Classifying dihedral $O(2)$–equivariant spectra arXiv:0804.3357
2 D Barnes, Classifying rational $G$–spectra for finite $G$, Homology, Homotopy Appl. 11 (2009) 141 MR2506130
3 H Fausk, Equivariant homotopy theory for pro-spectra, Geom. Topol. 12 (2008) 103 MR2377247
4 J P C Greenlees, Rational Mackey functors for compact Lie groups I, Proc. London Math. Soc. $(3)$ 76 (1998) 549 MR1620500
5 J P C Greenlees, Rational O(2)-equivariant cohomology theories, from: "Stable and unstable homotopy (Toronto, ON, 1996)", Fields Inst. Commun. 19, Amer. Math. Soc. (1998) 103 MR1622341
6 J P C Greenlees, Rational $S^1$–equivariant stable homotopy theory, Mem. Amer. Math. Soc. 138 (1999) MR1483831
7 J P C Greenlees, J P May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995) MR1230773
8 J P C Greenlees, B Shipley, An algebraic model for rational torus-equivariant spectra arXiv:1101.2511
9 M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999) MR1650134
10 M A Mandell, J P May, Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 159 (2002) MR1922205
11 S Schwede, B Shipley, Stable model categories are categories of modules, Topology 42 (2003) 103 MR1928647
12 B Shipley, An algebraic model for rational $S^1$–equivariant stable homotopy theory, Q. J. Math. 53 (2002) 87 MR1887672
13 B Shipley, $H\mathbb Z$–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038