Volume 11, issue 4 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Rational $\mathbb{Z}_p$–equivariant spectra

David Barnes

Algebraic & Geometric Topology 11 (2011) 2107–2135
Bibliography
1 D Barnes, Classifying dihedral $O(2)$–equivariant spectra arXiv:0804.3357
2 D Barnes, Classifying rational $G$–spectra for finite $G$, Homology, Homotopy Appl. 11 (2009) 141 MR2506130
3 H Fausk, Equivariant homotopy theory for pro-spectra, Geom. Topol. 12 (2008) 103 MR2377247
4 J P C Greenlees, Rational Mackey functors for compact Lie groups I, Proc. London Math. Soc. $(3)$ 76 (1998) 549 MR1620500
5 J P C Greenlees, Rational O(2)-equivariant cohomology theories, from: "Stable and unstable homotopy (Toronto, ON, 1996)", Fields Inst. Commun. 19, Amer. Math. Soc. (1998) 103 MR1622341
6 J P C Greenlees, Rational $S^1$–equivariant stable homotopy theory, Mem. Amer. Math. Soc. 138 (1999) MR1483831
7 J P C Greenlees, J P May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995) MR1230773
8 J P C Greenlees, B Shipley, An algebraic model for rational torus-equivariant spectra arXiv:1101.2511
9 M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999) MR1650134
10 M A Mandell, J P May, Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 159 (2002) MR1922205
11 S Schwede, B Shipley, Stable model categories are categories of modules, Topology 42 (2003) 103 MR1928647
12 B Shipley, An algebraic model for rational $S^1$–equivariant stable homotopy theory, Q. J. Math. 53 (2002) 87 MR1887672
13 B Shipley, $H\mathbb Z$–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038