Volume 11, issue 4 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
The entropy efficiency of point-push mapping classes on the punctured disk

Philip Boyland and Jason Harrington

Algebraic & Geometric Topology 11 (2011) 2265–2296

We study the maximal entropy per unit generator of point-push mapping classes on the punctured disk. Our work is motivated by fluid mixing by rods in a planar domain. If a single rod moves among N fixed obstacles, the resulting fluid diffeomorphism is in the point-push mapping class associated with the loop in π1(D2 {N points}) traversed by the single stirrer. The collection of motions where each stirrer goes around a single obstacle generate the group of point-push mapping classes, and the entropy efficiency with respect to these generators gives a topological measure of the mixing per unit energy expenditure of the mapping class. We give lower and upper bounds for Eff(N), the maximal efficiency in the presence of N obstacles, and prove that Eff(N) log(3) as N . For the lower bound we compute the entropy efficiency of a specific point-push protocol, HSPN, which we conjecture achieves the maximum. The entropy computation uses the action on chains in a –covering space of the punctured disk which is designed for point-push protocols. For the upper bound we estimate the exponential growth rate of the action of the point-push mapping classes on the fundamental group of the punctured disk using a collection of incidence matrices and then computing the generalized spectral radius of the collection.

pseudo-Anosov, fluid mixing
Mathematical Subject Classification 2010
Primary: 37E30
Received: 8 April 2011
Revised: 23 July 2011
Accepted: 25 July 2011
Published: 25 August 2011
Philip Boyland
Department of Mathematics
University of Florida
Gainesville FL 32611-8105
Jason Harrington
Department of Mathematics
University of Florida
Gainesville FL 32611-8105