Volume 11, issue 5 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Reducible braids and Garside Theory

Juan González-Meneses and Bert Wiest

Algebraic & Geometric Topology 11 (2011) 2971–3010
Bibliography
1 D Benardete, M Gutiérrez, Z Nitecki, A combinatorial approach to reducibility of mapping classes, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 1 MR1234257
2 M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109 MR1308491
3 J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups I: Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007) 221 MR2314045
4 J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups II: Structure of the ultra summit set, Groups Geom. Dyn. 2 (2008) 13 MR2367207
5 J S Birman, A Lubotzky, J McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107 MR726319
6 M Calvez, B Wiest, Fast algorithmic Nielsen–Thurston classification of four-strand braids, to appear in J.Knot Theory Ramifications arXiv:1004.0067
7 A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988) MR964685
8 P Dehornoy, L Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. $(3)$ 79 (1999) 569 MR1710165
9 E A El-Rifai, H R Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. $(2)$ 45 (1994) 479 MR1315459
10 D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett (1992) MR1161694
11 B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Ser. 49, Princeton Univ. Press (2011) 488
12 A Fathi, F Laudenbach, V Poénaru, editors, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284 MR568308
13 N Franco, J González-Meneses, Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (2003) 112 MR1994532
14 V Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (2005) 282 MR2166805
15 V Gebhardt, J González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010) 85 MR2606950
16 V Gebhardt, J González-Meneses, Solving the conjugacy problem in Garside groups by cyclic sliding, J. Symbolic Comput. 45 (2010) 629 MR2639308
17 J González-Meneses, On reduction curves and Garside properties of braids, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 227 MR2777822
18 J González-Meneses, B Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. $(4)$ 37 (2004) 729 MR2103472
19 E K Lee, S J Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2008) 783 MR2422316
20 E K Lee, S J Lee, Some power of an element in a Garside group is conjugate to a periodically geodesic element, Bull. Lond. Math. Soc. 40 (2008) 593 MR2438075
21 B Wiest, How to read the length of a braid from its curve diagram, Groups Geom. Dyn. 5 (2011) 673 MR2813531